Progress and prospect of geophysical monitoring technology for carbon dioxide geological storage
-
摘要:研究目的
全球升温是当今世界面临的严峻挑战之一,应运而生的二氧化碳地质封存是降碳减排的有效途径,但该过程对储层和盖层都可能带来一系列影响,存在二氧化碳泄露的风险。二氧化碳注入前后储层物性参数的改变为测井、地震、电磁及重力等地球物理监测方法奠定了理论依据。
研究方法本文首先概述了二氧化碳地质封存可能面临的风险及相应的地球物理监测方法,接着探讨了各种地球物理监测技术在二氧化碳地质封存领域的研究进展,最后分析了当前地球物理监测技术面临的技术挑战和应用限制,同时也展望了其发展前景。
研究结果面对二氧化碳地质封存过程中可能出现的各种地质力学问题,可以针对性地采用各种地球物理监测方法。如地表变形问题,可采用InSAR、微震及时延重力方法;诱发地震问题,可采用微震方法;破坏井筒完整性问题,可采用测井方法。而在追踪二氧化碳羽流运移及潜在泄露情况时,时延重力/地震、微震及电阻率层析成像等多种方法都能够发挥重要作用。地球物理监测技术的研究进展给实际应用带来了很大信心,但技术本身的局限性、数据处理的复杂性以及现场环境制约等因素依然是不容忽视的挑战。随着人工智能的蓬勃发展,地球物理监测技术也迎来了新的发展机遇。此外,综合利用多源信息也将进一步推动地球物理监测技术的创新和发展。
结论二氧化碳地质封存是双碳目标为地球物理行业带来的新机遇,大力发展相适应的长期稳定的二氧化碳地质封存监测体系,是地球物理开拓新市场的一个重要应用领域。借助人工智能浪潮、综合运用多种地球物理方法来监测二氧化碳地质封存项目是未来的发展趋势。
创新点:分析二氧化碳地质封存项目可能面临的风险及其对应的地球物理监测方法,总结地球物理监测二氧化碳地质封存的研究进展,分析其面临的挑战与机遇,展望地球物理监测的发展潜力。
Abstract:This paper is the result of CCUS (Carbon Capture Utilization and Storage) engineering.
ObjectiveAt present, global warming is one of the most serious challenges in the world. To reduce carbon emissions, carbon dioxide geological storage emerge as an effective way. However, the process may bring a series of impacts on both the reservoir and the cap layer, creating a risk of carbon dioxide leakage. The change of reservoir physical parameters before and after carbon dioxide injection lays a theoretical basis for geophysical monitoring methods such as logging, seismic, electromagnetic and gravity.
MethodsThis paper firstly outlines the potential risks of carbon dioxide geological storage and the corresponding geophysical monitoring methods, then discusses the research progress of various geophysical monitoring techniques in the field of carbon dioxide geological storage, and finally analyzes the technical challenges and application limitations faced by current geophysical monitoring techniques, while also looking ahead to their future development.
ResultsIn the face of numerous geomechanical difficulties that may develop throughout the carbon dioxide geological storage process, we can use a variety of geophysical monitoring approaches to target them. For example, we can utilize InSAR, microseismic and time−lapse gravity methods for surface deformation; microseismic methods for induced seismicity; and well−logging methods to damage wellbore integrity. For tracking carbon dioxide plume transportation and potential leakage, time−lapse gravity/seismic, microseismic, and resistivity tomography methods can all play important roles. The advancement of geophysical monitoring technology has given us tremendous confidence in practical applications, but the limitations of the technology itself, the complexity of data processing, and the constraints of the field environment remain significant difficulties that must be addressed. With the booming development of artificial intelligence, geophysical monitoring technology also has new development prospects. In addition, the comprehensive utilization of multi−source information will foster innovation and progress in geophysical monitoring technologies.
ConclusionsCarbon dioxide geological storage is a new opportunity for the geophysical industry brought by the dual−carbon target, and vigorously developing a suitable long−term and stable monitoring system for carbon dioxide geological storage is an important application field for geophysics to develop new markets. Leveraging the wave of artificial intelligence and integrating multiple geophysical methods to monitor carbon dioxide geologic storage projects is a trend for the future.
Highlights:The possible risks of carbon dioxide geological storage projects and their corresponding geophysical monitoring methods were analyzed, and the research progress of geophysical monitoring of carbon dioxide geological storage was summarized. We analyze the challenges and opportunities, and look forward to the development potential of geophysical monitoring.
-
-
图 1 二氧化碳地质封存过程中的地质力学风险(据于恩毅等, 2023)
Figure 1. Geomechanical risks during CO2 geological storage(after Yu Enyi et al., 2023)
图 2 In Salah项目监测布局及InSAR结果示意图(据Cao et al., 2021)
KB−502、KB−503为两口注入井(KB−501未显示);KB−5为弃用的试验井;KB−601为微震监测井;背景轮廓显示卫星测量二氧化碳注入引起的地表变形,展现了KB−502周边地表双叶状隆起;白线代表已知的至2000 m深度的断层;红色五角星标识微震事件
Figure 2. Schematic diagram of the monitoring layout and InSAR results for the In Salah project (after Cao et al., 2021)
KB−502, KB−503 are two injection wells (KB−501 not shown); KB−5 is an abandoned test well; KB−601 is a microseismic monitoring well; background contours show surface deformation caused by satellite measurements of carbon dioxide injection, demonstrating a bilobed uplift of the surface around KB−502; the white lines represent known faults up to 2000 m in depth; the red five−pointed star identifies the microseismic events
图 3 Sleipner项目重力测点布置(据Alnes et al., 2008)
Figure 3. Gravity observation point arrangements for the Sleipner project (after Alnes et al., 2008)
图 4 挪威沿海Johansen 地层第 60 年的随机反演(a、b)和Occam确定性反演(c、d)所得二氧化碳饱和度模型比较
a、c显示反演模型;b、d显示预测饱和度值与真实饱和度值之间的差异(Ayani et al., 2020)
Figure 4. Comparison of carbon dioxide saturation models obtained from stochastic inversion (a, b) and Occam deterministic inversion (c, d) for the Johansen Formation off the coast of Norway in 60th year
a, c show inversion models; b, d show differences between predicted and true saturation values (Ayani et al., 2020)
图 5 Sognefjord储层2030年(a)、2040年(b)、2050年(c)、2060年(d)二氧化碳饱和度预测成像(据Fawad and Mondol, 2022)
Figure 5. Projected carbon dioxide saturation imaging of the Sognefjord reservoir 2030(a), 2040(b), 2050 (c), 2060 (d) (after Fawad and Mondol, 2022)
表 1 二氧化碳地质封存风险及地球物理监测方法
Table 1 Risks of geological storage of carbon dioxide and corresponding geophysical monitoring methods
风险 监测方法 优势 弊端 实例 地质力学
问题地表
变形InSAR 可检测到毫米级变形,不受昼夜、天气影响 可探测性受坡度、地形和地貌的影响 阿尔及利亚InSalah项目 微震 可解释地表变形机制 监测成本高 加拿大Weyburn项目 时延重力 覆盖范围广 多作为补充数据 美国彭德尔顿市ASR项目 诱发地震 微震 具有很强的时空相关性,受地表环境影响较小 需结合精确模型及储层地质信息以准确评估储层状态变化 美国伊利诺斯州盆地Decatur项目 破坏筒
完整性测井 高效检测井筒完整性 存在泄露风险 日本长冈Nagaoka项目 二氧化碳羽流
运移及泄露时延重力 经济实用 灵敏度阈值对二氧化碳注入量有要求 挪威Sleipner项目 时延地震 分辨率高 成本高昂 澳大利亚Otway盆地二氧化碳地质封存示范工程 微震 广泛适用于各类储层 成本较高 中石油吉林油田CO2−EOR项目 电阻率层析成像 经济实惠 分辨率较低 德国Ketzin CO2−EWR项目 表 2 典型地球物理监测方法
Table 2 Typical geophysical monitoring methods
监测方法 观测参数 监测目的 典型应用 测井 盐水盐度
声波速度
CO2饱和度追踪储层CO2运移
校准三维地震调查地震波速Nagaoka(Xue et al., 2006)、
Frio(Hovorka et al., 2006)、
Ketzin(Ivanova et al., 2012)电磁监测 地层电导率
电磁感应追踪储层CO2运移 Ketzin(Kiessling et al., 2010)、
中联煤CO2驱煤层气项目(崔方智等, 2020)地震监测 P波和S波速度
反射界面
地震振幅衰减追踪储层CO2的运移及分布 Frio(Hovorka et al., 2006)、Otway(Dodds et al., 2009)、Snøhvit(Eiken et al., 2011)、InSalah(Ringrose et al., 2013)、Sleipner(Furre et al., 2017)、神华CCS示范工程(赵海英等, 2018)、中联煤CO2驱煤层气项目(Li et al., 2022) 重力监测 流体驱替引起的密度变化 追踪储层CO2的向上运移
地下CO2的质量分布Sleipner(Alnes et al., 2008)、
Dover 33(Bonneville et al., 2021)表 3 电磁、地震及重力监测方法比较
Table 3 Comparison of electromagnetic, seismic and gravity monitoring methods
方法 最低二氧化碳注入量级/t 地质限制 应用限制 电磁 104 浅层低电阻率薄层 受金属设备影响较大;分辨率相对较低 地震 103 低孔隙度较厚层 时延数据可重复性、背景噪声变化不可预测;
数据覆盖范围有限、野外采集工作繁杂重力 104 季节性地表变化 分辨率相对较低;不能成像显示CO2的溶解 表 4 国内典型CCUS项目
Table 4 Typical CCUS projects in China
项目名称 所在省市 CO2来源 CO2输送 CO2利用/封存 设施状态 投运年份 地球物理监测手段 负责单位/企业 处置技术 中联煤CO2驱煤层气
项目(柿庄)山西
沁水外购气 罐车 中联煤 ECBM 运行中 2004 AMT;地震
(微震、VSP)国家能源集团煤制油CCS项目 内蒙古鄂尔多斯 煤制油 罐车 神华煤制油化工
有限公司EWR 于2016年停止注入,监测中 2011 地震(4D地震、
VSP)大庆油田EOR项目 黑龙江大庆 天然气处理 罐车+管道 中石油大庆油田 EOR 运行中 2003 测井 新疆油田EOR项目 新疆克拉玛依 甲醇厂 罐车 中石油新疆油田 EOR 运行中 2015 测井 长庆石油EOR项目 陕西西安 甲醇厂 罐车 中石油长庆油田 EOR 运行中 2017 测井 中石油吉林油田EOR项目 吉林松原 天然气处理 管道 中石油吉林油田 EOR 运行中 2008 测井;井中自然电
位测量;地震
(微震、井中地震)中石化华东油田EOR项目 江苏东台 化工厂 罐车+船舶 中石化华东分公司 EOR 运行中 2005 测井 中石化中原油田EOR项目 河南濮阳 化肥厂 罐车 中石化中原油田 EOR 运行中 2015 测井 中石化胜利油田EOR项目 山东东营 燃煤电厂 罐车 中石化胜利油田 EOR 运行中 2010 4D地震 延长石油煤化工CO2捕集与驱油示范项目 陕西榆林/延安 煤制气 罐车 延长石油靖边/
吴起油田EOR 运行中 2013 测井/3D地震 -
[1] Alnes H, Eiken O, Nooner S, Sasagawa G, Stenvold T, Zumberge M. 2011. Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO2 plume[J]. Energy Procedia, 4: 5504−5511. doi: 10.1016/j.egypro.2011.02.536
[2] Alnes H, Eiken O, Stenvold T. 2008. Monitoring gas production and CO2 injection at the Sleipner field using time–lapse gravimetry[J]. Geophysics, 73(6): WA155–WA161.
[3] Alyousuf T, Li Y, Krahenbuhl R. 2022. Machine learning inversion of time–lapse three–axis borehole gravity data for CO2 monitoring[C]//Second International Meeting for Applied Geoscience & Energy. Houston, Texas: Society of Exploration Geophysicists and American Association of Petroleum Geologists, 3099–3103.
[4] Anyosa S, Bunting S, Eidsvik J, Romdhane A, Bergmo P. 2021. Assessing the value of seismic monitoring of CO2 storage using simulations and statistical analysis[J]. International Journal of Greenhouse Gas Control, 105: 103219. doi: 10.1016/j.ijggc.2020.103219
[5] Appriou D, Bonneville A, Zhou Q, Gasperikova E. 2020. Time–lapse gravity monitoring of CO2 migration based on numerical modeling of a faulted storage complex[J]. International Journal of Greenhouse Gas Control, 95: 102956. doi: 10.1016/j.ijggc.2020.102956
[6] Attias E, Weitemeyer K, Hölz S, Naif S, Minshull T, Best A, Haroon A, Jegen–Kulcsar M, Berndt C. 2018. High–resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean–bottom receiver data[J]. Geophysical Journal International, 214(3): 1701−1714. doi: 10.1093/gji/ggy227
[7] Ayani M, Grana D, Liu M. 2020. Stochastic inversion method of time–lapse controlled source electromagnetic data for CO2 plume monitoring[J]. International Journal of Greenhouse Gas Control, 100: 103098.
[8] Baumann G, Henninges J, De Lucia M. 2014. Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron–gamma logging at the Ketzin pilot site[J]. International Journal of Greenhouse Gas Control, 28: 134–146.
[9] Bergmann P, Ivandic M, Norden B, Rücker C, Kiessling D, Lüth S, Schmidt–Hattenberger C, Juhlin C. 2014. Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO2 storage site, Ketzin, Germany[J]. Geophysics, 79(2): B37−B50. doi: 10.1190/geo2013-0131.1
[10] Bhakta T, Paap B, Vandeweijer V, Mannseth T. 2022. Monitoring of CO2 plume movement using time–lapse distributed acoustic sensing (DAS) data[C]//Second International Meeting for Applied Geoscience & Energy. Houston, Texas: Society of Exploration Geophysicists and American Association of Petroleum Geologists, 478–482.
[11] Bickle M J, Stevenson E I, Haese R R. 2020. Sr–isotopic ratios trace mixing and dispersion in CO2 push–pull injection experiments at the CO2CRC Otway Research Facility, Australia[J]. Chemical Geology, 538: 119489.
[12] Black A, Hare J, Macqueen J. 2016. Borehole gravity monitoring in the Aquistore CO2 sequestration well[C]//SEG Technical Program Expanded Abstracts 2016. Dallas, Texas: Society of Exploration Geophysicists, 768–772.
[13] Bonneville A, Black A J, Hare J L, Kelley M E, Place M, Gupta N. 2021. Time–lapse borehole gravity imaging of CO2 injection and withdrawal in a closed carbonate reef[J]. Geophysics, 86(6): G113−G132. doi: 10.1190/geo2020-0650.1
[14] Bonneville A, Heggy E, Strickland C, Normand J, Dermond J, Fang Y, Sullivan C. 2015. Geophysical monitoring of ground surface deformation associated with a confined aquifer storage and recovery operation[J]. Water Resources Management, 29(13): 4667−4682. doi: 10.1007/s11269-015-1083-y
[15] Börner J H, Wang F, Weißflog J, Bär M, Görz I, Spitzer K. 2015. Multi–method virtual electromagnetic experiments for developing suitable monitoring designs: A fictitious CO2 sequestration scenario in Northern Germany[J]. Geophysical Prospecting, 63(6): 1430−1449. doi: 10.1111/1365-2478.12299
[16] Bourne S, Crouch S, Smith M. 2014. A risk–based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada[J]. International Journal of Greenhouse Gas Control, 26: 109–126.
[17] Braunberger J, Hamling J, Gorecki C, Miller H, Rawson J, Walsh F, Pasternack E, Rowe W, Butsch R, Steadman E, Harju J. 2014. Characterization and time–lapse monitoring utilizing pulsed–neutron well logging: Associated CO2 storage at a commercial CO2 EOR project[J]. Energy Procedia, 63: 3935−3944. doi: 10.1016/j.egypro.2014.11.423
[18] Cao W Z, Shi J Q, Durucan S, Korre A. 2021. Evaluation of shear slip stress transfer mechanism for induced microseismicity at In Salah CO2 storage site[J]. International Journal of Greenhouse Gas Control, 107: 103302. doi: 10.1016/j.ijggc.2021.103302
[19] Capriotti J, Li Y. 2015. Inversion for permeability distribution from time–lapse gravity data[J]. Geophysics, 80: WA69–WA83.
[20] Celaya A, Denel B, Sun Y, Araya–Polo M, Price A. 2023. Inversion of time–lapse surface gravity data for detection of 3–D CO2 plumes via deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 61: 1−11.
[21] Chen Zhaoxi, Meng Xiaohong, Guo Lianghui, Liu Guofeng. 2012. Three–dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU[J]. Chinese Journal of Geophysics, 55(12): 4069−4077 (in Chinese with English abstract).
[22] Cheng Y, Liu W, Xu T, ZhangY, Zhang X, Xing Y, Feng B, Xia Y. 2023. Seismicity induced by geological CO2 storage: A review[J]. Earth–Science Reviews, 239: 104369.
[23] Colombo D, Li W, Sandoval–Curiel E, McNeice G W. 2020. Deep–learning electromagnetic monitoring coupled to fluid flow simulators[J]. Geophysics, 85(4): WA1−WA12. doi: 10.1190/geo2019-0428.1
[24] Couëslan M L, Ali S, Campbell A, Nutt W L, Leaney W S, Finley R J, Greenberg S E. 2013. Monitoring CO2 injection for carbon capture and storage using time–lapse 3D VSPs[J]. The Leading Edge, 32(10): 1268−1276. doi: 10.1190/tle32101268.1
[25] Cui Fangzhi, Zhou Tao, Zhang Bing. 2020. TEM monitoring technology of CO2 injection and transport in coal seam[J]. Geophysical and Geochemical Exploration, 44(3): 573−581 (in Chinese with English abstract).
[26] Davis T L, Terrell M J, Benson R D, Cardona R, Kendall R R, Winarsky R. 2003. Multicomponent seismic characterization and monitoring of the CO2 flood at Weyburn Field, Saskatchewan[J]. The Leading Edge, 22(7): 696−697. doi: 10.1190/1.1599699
[27] Diao Yujie, Liu Ting, Wei Ning, Ma Xin, Jin Xiaolin, Fu Lei. 2023. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 50(3): 943−951 (in Chinese with English abstract).
[28] Dodds K, Daley T, Freifeld B, Urosevic M, Kepic A, Sharma S. 2009. Developing a monitoring and verification plan with reference to the Australian Otway CO2 pilot project[J]. The Leading Edge, 28(7): 812−818. doi: 10.1190/1.3167783
[29] Dodds K, Krahenbuhl R, Reitz A, Li Y G, Hovorka S. 2013. Evaluating time–lapse borehole gravity for CO2 plume detection at SECARB Cranfield[J]. International Journal of Greenhouse Gas Control, 18: 421−429. doi: 10.1016/j.ijggc.2013.05.024
[30] Duguid A, Guo B, Nygaard R. 2017. Well integrity assessment of monitoring wells at an active CO2–EOR flood[J]. Energy Procedia, 114: 5118−5138. doi: 10.1016/j.egypro.2017.03.1667
[31] Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp T A, Høier L. 2011. Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit[J]. Energy Procedia, 4: 5541−5548. doi: 10.1016/j.egypro.2011.02.541
[32] Fabriol H, Bitri A, Bourgeois B, Delatre M, Girard J F, Pajot G, Rohmer J. 2011. Geophysical methods for CO2 plume imaging: Comparison of performances[J]. Energy Procedia, 4: 3604−3611. doi: 10.1016/j.egypro.2011.02.290
[33] Fan J L, Zhang F, Tian L L, Xiao G P, Zhang H, Fang Q W. 2022. A monitoring CO2 method by the dual cross section pulsed neutron logging technology in heavy oil reservoirs[C]//SPWLA 63rd Annual Symposium Transactions. Society of Petrophysicists and Well Log Analysts.
[34] Fawad M, Mondol N H. 2022. Monitoring geological storage of CO2 using a new rock physics model[J]. Scientific Reports, 12(1): 297.
[35] Feitz A, Radke B, Ricard L, Glubokovskikh S, Kalinowski A, Wang L, Tenthorey E, Schaa R, Tertyshnikov K, Schacht U, Chan K, Jordana S, Vialle S, Harris B, Lebedev M, Pevzner R, Sidenko E, Ziramov S, Urosevic M, Green S, Ennis–King J, Coene E, Laviña M, Abarca E, Idiart A, Silva O, Grandia F, Sainz–García A, Takemura T, Dewhurst D, Credoz A. 2022. The CO2 CRC Otway shallow CO2 controlled release experiment: Fault characterization and geophysical monitoring design[J]. International Journal of Greenhouse Gas Control, 118: 103667. doi: 10.1016/j.ijggc.2022.103667
[36] Fibbi G, Del Soldato M, Fanti R, 2023. Review of the monitoring applications involved in the underground storage of natural gas and CO2[J]. Energies, 16(1): 12.
[37] Furre A–K, Eiken O, Alnes H, Vevatne J N, Kiær A F. 2017. 20 Years of monitoring CO2–injection at Sleipner[J]. Energy Procedia, 114: 3916−3926. doi: 10.1016/j.egypro.2017.03.1523
[38] Gasperikova E, Appriou D, Bonneville A, Feng Z, Huang L, Gao K, Yang X, Daley T. 2022. Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes[J]. International Journal of Greenhouse Gas Control, 114: 103585. doi: 10.1016/j.ijggc.2022.103585
[39] Gettings P, Chapman D S, Allis R. 2008. Techniques, analysis, and noise in a Salt Lake Valley 4D gravity experiment[J]. Geophysics, 73(6): WA71–WA82.
[40] Glubokovskikh S, Wang R, Ricard L, Bagheri M, Gurevich B, Pevzner R. 2021. Toward automated early detection of risks for a CO2 plume containment from permanent seismic monitoring data[J]. Journal of Geophysical Research: Solid Earth, 126(5): e2020JB021087. doi: 10.1029/2020JB021087
[41] Gonzalez K, Misra S. 2022. Unsupervised learning monitors the carbon–dioxide plume in the subsurface carbon storage reservoir[J]. Expert Systems with Applications, 201: 117216.
[42] Goto H, Ishido T, Sorai M, 2020. Numerical study of reservoir permeability effects on gravity changes associated with CO2 geological storage: Implications for gravimetric monitoring feasibility[J]. Greenhouse Gases: Science and Technology, 10(3): 557–566.
[43] Hovorka S, Benson S, Doughty C, Freifeld B, Sakurai S, Daley T, Kharaka Y, Holtz M, Trautz R, Nance H, Myer L, Knauss K. 2006. Measuring permanence of CO2 storage in saline formations: The Frio experiment[J]. Environmental Geosciences, 13: 105−121. doi: 10.1306/eg.11210505011
[44] Huang C, Zhu T, Xing G. 2023. Data–assimilated time–lapse visco–acoustic full–waveform inversion: Theory and application for injected CO2 plume monitoring[J]. Geophysics, 88(1): R105–R120.
[45] Issaoui W, Nasr I H, Khaskhoussi S, Inoubli M H. 2023. Monitoring of soil contamination from olive mill wastewater (OMW) using physico–chemical, geotechnical analysis and electrical resistivity tomography (ERT) investigation[J]. Environmental Earth Sciences, 82(13): 331. doi: 10.1007/s12665-023-11020-z
[46] Ivandic M, Bergmann P, Kummerow J, Huang F, Juhlin C, Lueth S. 2018. Monitoring CO2 saturation using time–lapse amplitude versus offset analysis of 3D seismic data from the Ketzin CO2 storage pilot site, Germany[J]. Geophysical Prospecting, 66(8): 1568−1585. doi: 10.1111/1365-2478.12666
[47] Ivanova A, Kashubin A, Juhojuntti N, Kummerow J, Henninges J, Juhlin C, Lüth S, Ivandic M. 2012. Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany[J]. Geophysical Prospecting, 60(5): 957−973. doi: 10.1111/j.1365-2478.2012.01045.x
[48] Jia L Q, Chen X J, Liu Y, Hao Z G. 2023. Progress in carbon capture, utilization and storage of China Geological Survey and other geological exploration entities[J]. China Geology, 6(3): 541−544.
[49] Jung Y, Zhou Q, Birkholzer J T. 2013. Early detection of brine and CO2 leakage through abandoned wells using pressure and surface–deformation monitoring data: Concept and demonstration[J]. Advances in Water Resources, 62: 555–569.
[50] Kabirzadeh H, Kim J W, Sideris M G, Vatankhah S. 2020. Analysis of surface gravity and ground deformation responses of geological CO2 reservoirs to variations in CO2 mass and density and reservoir depth and size[J]. Environmental Earth Sciences, 79(7): 163. doi: 10.1007/s12665-020-08902-x
[51] Karaoulis M, Minsley B, Todesco M, Zhang J, Werkema D. 2013. Time–lapse gravity inversion with an active time constraint[J]. Geophysical Journal International, 196(2): 748−759.
[52] Kiessling D, Schmidt–Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, the CO2 SINK Group. 2010. Geoelectrical methods for monitoring geological CO2 storage: First results from cross–hole and surface–downhole measurements from the CO2SINK test site at Ketzin (Germany)[J]. International Journal of Greenhouse Gas Control, 4(5): 816–826.
[53] Kim J, Yu S, Yun S T, Kim K H, Kim J H, Shinn Y J, Chae G. 2019. CO2 leakage detection in the near–surface above natural CO2–rich water aquifer using soil gas monitoring[J]. International Journal of Greenhouse Gas Control, 88: 261−271. doi: 10.1016/j.ijggc.2019.06.015
[54] Klokov A, Hardage B. 2017. Seismic characterization and monitoring of a deep CO2 storage reservoir with 3D VSP using direct shear waves[J]. Journal of Petroleum Science and Engineering, 155: 109–119.
[55] Krahenbuhl R A, Li Y, Davis T. 2011. Understanding the applications and limitations of time–lapse gravity for reservoir monitoring[J]. The Leading Edge, 30(9): 1060–1068.
[56] Krahenbuhl R A, Martinez C, Li Y, Flanagan G. 2015. Time–lapse monitoring of CO2 sequestration: A site investigation through integration of reservoir properties, seismic imaging, and borehole and surface gravity data[J]. Geophysics, 80(2): WA15−WA24. doi: 10.1190/geo2014-0198.1
[57] Lee H P, Staniewicz S, Chen J, Hennings P, Olson J E. 2023. Subsurface deformation monitoring with InSAR and elastic inversion modeling in west Texas[J]. Geoenergy Science and Engineering, 231: 212299. doi: 10.1016/j.geoen.2023.212299
[58] Li D, Peng S, Guo Y, Lu Y, Cui X. 2021a. CO2 storage monitoring based on time–lapse seismic data via deep learning[J]. International Journal of Greenhouse Gas Control, 108: 103336. doi: 10.1016/j.ijggc.2021.103336
[59] Li D, Peng S, Huang X, Guo Y, LuY, Cui X. 2021b. Time–lapse full waveform inversion based on curvelet transform: Case study of CO2 storage monitoring[J]. International Journal of Greenhouse Gas Control, 110: 103417. doi: 10.1016/j.ijggc.2021.103417
[60] Li D, Peng S, Yang R, Zheng J, Cai Z, Zhang T, Zhang W. 2022. Joint monitoring of CO2–ECBM based on multiple geophysical methods: A case study of Shizhuang Town, Shanxi Province, China[J]. International Journal of Greenhouse Gas Control, 121: 103795. doi: 10.1016/j.ijggc.2022.103795
[61] Li Honglei, Chen Shi, Zhuang Jiancang, Zhang Bei, Shi Lei. 2021. Gravity inversion method base on Bayesian–assimilation and its application in constructing crust density model of the Longmenshan region[J]. Chinese Journal of Geophysics, 64(4): 1236−1252 (in Chinese with English abstract).
[62] Li Jianghui, Yu Fengling, Niu Xiongwei, Zhou Tian, Zhang Yunxiu, Li Wenling. 2023. Advances and future development of monitoring technologies for marine carbon storage[J]. Advances in Earth Science, 38(11): 1121−1144 (in Chinese with English abstract).
[63] Li Xiaochun, Yuan Wei, Bai Bing. 2016. A review of numerical simulation methods for geomechanical problemsinduced by CO2 geological storage[J]. Rock and Soil Mechanics, 37(6): 1762–1772 (in Chinese with English abstract).
[64] Liu Yan, Lü Qingtian, Li Xiaobin, Qi Guang, Zhao Jinhua, Yan Jiayong, Deng Zhen. 2015. 3D gravity inversion based on Bayesian method with model order reduction[J]. Chinese Journal of Geophysics, 58(12): 4727−4739 (in Chinese with English abstract).
[65] Ma J, Wang X, Gao R, Zhang X, Wei Y, Wang Z, Ma J, Huang C, Zhao X, Jiang S, Liu L, Li L, Yu H, Wang H. 2014. Jingbian CCS Project, China: Second year of injection, measurement, monitoring and verification[J]. Energy Procedia, 63: 2921−2938. doi: 10.1016/j.egypro.2014.11.315
[66] Ma J F, Li L, Wang H F, Tan M Y, Cui S L, Zhang Y Y, Qu Z P, Jia L Y, Zhang S H. 2016. Geophysical monitoring technology for CO2 sequestration[J]. Applied Geophysics, 13(2): 288–306, 417–418.
[67] Ma J F, Li L, Wang H G, Du Y, Ma J J, Zhang X L, Wang Z L. 2022. Carbon capture and storage: History and the road ahead[J]. Engineering, 14: 33–43.
[68] Meng L, Zheng J, Yang R, Peng S, Sun Y, Xie J, Li D. 2023. Microseismic monitoring technology developments and prospects in CCUS Injection Engineering[J]. Energies, 16(7): 3101. doi: 10.3390/en16073101
[69] Nakajima T, Wang L, Xue Z. 2019. Utilization of wave attenuation in the time–lapse sonic logging at the Nagaoka site for a near well monitoring of CO2 migration[J]. International Journal of Greenhouse Gas Control, 88: 342−352. doi: 10.1016/j.ijggc.2019.06.022
[70] Nakajima T, Xue Z. 2013. Evaluation of a resistivity model derived from time–lapse well logging of a pilot–scale CO2 injection site, Nagaoka, Japan[J]. International Journal of Greenhouse Gas Control, 12: 288–299.
[71] Nakajima T, Xue Z, Watanabe J, Ito Y, Sakashita S. 2013. Assessment of well integrity at Nagaoka CO2 injection site using ultrasonic logging and cement bond log data[J]. Energy Procedia, 37: 5746−5753. doi: 10.1016/j.egypro.2013.06.497
[72] Nooner S L, Eiken O, Hermanrud C, Sasagawa G S, Stenvold T, Zumberge M A. 2007. Constraints on the in situ density of CO2 within the Utsira formation from time–lapse seafloor gravity measurements[J]. International Journal of Greenhouse Gas Control, 1(2): 198−214. doi: 10.1016/S1750-5836(07)00018-7
[73] Onishi K, Ueyama T, Matsuoka T, Nobuoka D, Saito H, Azuma H, Xue Z. 2009. Application of crosswell seismic tomography using difference analysis with data normalization to monitor CO2 flooding in an aquifer[J]. International Journal of Greenhouse Gas Control, 3(3): 311−321. doi: 10.1016/j.ijggc.2008.08.003
[74] Orujov G, Swidinsky A, Streich R. 2022. Do metal infrastructure effects cancel out in time–lapse electromagnetic measurements?[J]. Geophysics: Journal of the Society of Exploration Geophysicists, 87(2): E91− E101.
[75] Paradis S, Goñi M, Masqué P, Durán R, Arjona Camas M, Palanques A, Puig P. 2021. Persistence of biogeochemical alterations of deep‐sea sediments by bottom trawling[J]. Geophysical Research Letters, 48(2): e2020GL091279. doi: 10.1029/2020GL091279
[76] Patidar A K, Joshi D, Dristant U, Choudhury T. 2022. A review of tracer testing techniques in porous media specially attributed to the oil and gas industry[J]. Journal of Petroleum Exploration and Production Technology, 12(12): 3339−3356. doi: 10.1007/s13202-022-01526-w
[77] Popik S, Pevzner R, Tertyshnikov K, Popik D, Urosevic M, Shulakova V, Glubokovskikh S, Gurevich B. 2020. 4D surface seismic monitoring the evolution of a small CO2 plume during and after injection: CO2CRC Otway Project study[J]. Exploration Geophysics, 51(5): 570−580. doi: 10.1080/08123985.2020.1735934
[78] Preston C, Whittaker S, Rostron B, Chalaturnyk R, White D, Hawkesd C, Johnsone J W, Wilkinsona A, Sacuta N. 2009. IEA GHG Weyburn–Midale CO2 monitoring and storage project–moving forward with the Final Phase[J]. Energy Procedia, 1(1): 1743−1750. doi: 10.1016/j.egypro.2009.01.228
[79] Qin Jishun, Li Yongliang, Wu Debin, Weng Hui, Wang Gaofeng. 2020. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 27(1): 20−28 (in Chinese with English abstract).
[80] Qu Wenzhang, An Zhiguo. 2020. Numerical simulation of time–lapse audio magnetotelluric monitoring[J]. Progress in Geophysics, 35(4): 1595−1604 (in Chinese with English abstract).
[81] Raab T, Weinzierl W, Wiese B, Rippe D, Schmidt–Hattenberger C. 2020. Development of an electrical resistivity tomography monitoring concept for the svelvik CO2 field lab, Norway[C]// Advances in Geosciences. Copernicus GmbH: 41–53.
[82] Ren Shaoran, Ren Bo, Li Yongzhao, Zhang Liang, Kang Wanli, Liu Yuncheng, Chen Guoli, Zhang Hua. 2012. Monitoring techniques of CO2 geological storage and its application analysis[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 36(1): 106−111 (in Chinese with English abstract).
[83] Ringrose P S, Mathieson A S, Wright I W, Selama F, Hansen O, Bissell R, Saoula N, Midgley J. 2013. The In Salah CO2 Storage Project: Lessons learned and knowledge transfer[J]. Energy Procedia, 37: 6226−6236. doi: 10.1016/j.egypro.2013.06.551
[84] Rutqvist J. 2012. The geomechanics of CO2 storage in deep sedimentary formations[J]. Geotechnical and Geological Engineering, 30(3): 525−551.
[85] Sambo C, Iferobia C C, Babasafari A A, Rezaei S, Akanni O A. 2020. The role of time lapse(4D) seismic technology as reservoir monitoring and surveillance tool: A Comprehensive review[J]. Journal of Natural Gas Science and Engineering, 80: 103312. doi: 10.1016/j.jngse.2020.103312
[86] Sato K, Mito S, Horie T, Ohkuma H, Saito H, Watanabe J, Yoshimura T. 2011. Monitoring and simulation studies for assessing macro– and meso–scale migration of CO2 sequestered in an onshore aquifer: Experiences from the Nagaoka pilot site, Japan[J]. International Journal of Greenhouse Gas Control, 5(1): 125−137. doi: 10.1016/j.ijggc.2010.03.003
[87] Sheng H, Wu X, Sun X, Wu L. 2023. Deep learning for characterizing CO2 migration in time–lapse seismic images[J]. Fuel, 336: 126806. doi: 10.1016/j.fuel.2022.126806
[88] Sherlock D, Toomey A, Hoversten M, Gasperikova E, Dodds K. 2006. Gravity monitoring of CO2 storage in a depleted gas field: A sensitivity study[J]. Exploration Geophysics, 37(1): 37−43. doi: 10.1071/EG06037
[89] Spetzler J, Xue Z, Saito H, Nishizawa O. 2008. Case story: Time–lapse seismic crosswell monitoring of CO2 injected in an onshore sandstone aquifer[J]. Geophysical Journal International, 172(1): 214−225. doi: 10.1111/j.1365-246X.2007.03614.x
[90] Strack K, Davydycheva S, Passalacqua H, Smirnov M, Xu X. 2021. Using cloud–based array electromagnetics on the path to zero carbon footprint during the energy transition[J]. Journal of Marine Science and Engineering, 9(8): 906. doi: 10.3390/jmse9080906
[91] Su X, Liu S, Zhang L, Liu G, Wang Y, Gan M, Li X. 2023. Wellbore leakage risk management in CO2 geological utilization and storage: A review[J]. Energy Reviews, 2(4): 100049. doi: 10.1016/j.enrev.2023.100049
[92] Sugihara M, Nawa K, Nishi Y, Ishido T, Soma N. 2013. Continuous gravity monitoring for CO2 geo–sequestration[J]. Energy Procedia, 37: 4302−4309. doi: 10.1016/j.egypro.2013.06.333
[93] Sugihara M, Nawa K, Soma N, Ishido T, Miyakawa A, Nishi Y. 2014. Continuous gravity monitoring for CO2 geo–sequestration (2) a case study at the Farnsworth CO2–EOR Field[J]. Energy Procedia, 63: 4404−4410. doi: 10.1016/j.egypro.2014.11.475
[94] Tong Yunxiao, Yang Junquan, Wang Xue, Tan Kun. 2024. Land subsidence monitoring and spatiotemporal evolution characteristics analysis of Datong coalfield, Shanxi Province based on time series InSAR[J]. Geology in China, 51(1): 170−183 (in Chinese with English abstract).
[95] Topham A, Lofts J, Du Z, Espie T, Zett A, Krahenbuhl R, Li Y. 2020. 3–axis borehole gravity: method and application to CO2 storage monitoring and oil/gas production[C]// SPE Annual Technical Conference and Exhibition, 2020. Virtual: SPE: D031S025R004.
[96] Tveit S, Mannseth T, Park J, Sauvin G, Agersborg R. 2020. Combining CSEM or gravity inversion with seismic AVO inversion, with application to monitoring of large–scale CO2 injection[J]. Computational Geosciences, 24(3): 1201−1220. doi: 10.1007/s10596-020-09934-9
[97] Um E S, Alumbaugh D, Lin Y, Feng S. 2022. Realtime deep–learning inversion of seismic full waveform data for CO2 saturation and uncertainty in geological carbon storage monitoring[J]. Geophysical Prospecting, 72: 199–212.
[98] Unwin S D, Sadovsky A, Sullivan E C, Anderson R M. 2011. Risk–informed monitoring, verification and accounting (RI–MVA). An NRAP white paper documenting methods and a demonstration model for risk–informed MVA system design and operations in geologic carbon sequestration: PNNL–20808[R]. Pacific Northwest National Lab. (PNNL), Richland, WA (United States).
[99] Uttam S, Sharma P K. 2022. Seasonal groundwater monitoring using surface NMR and 2D/3D ERT[J]. Environmental Earth Sciences, 81(7): 198–198.
[100] Vasco D W, Ferretti A, Novali F. 2008. Reservoir monitoring and characterization using satellite geodetic data: Interferometric synthetic aperture radar observations from the Krechba field, Algeria[J]. Geophysics, 73(6): WA113–WA122.
[101] Verdon J P, Kendall J–M, Stork A L, Chadwick R A, White D J, BissellR C. 2013. Comparison of geomechanical deformation induced by megatonne–scale CO2 storage at Sleipner, Weyburn, and In Salah[J]. Proceedings of the National Academy of Sciences, 110(30): E2762−E2771.
[102] Wang Xiang, Guo Lianghui. 2020. Density interface inversion method in spherical coordinates and its application in the South China mainland[J]. Geophysical and Geochemical Exploration, 44(5): 1161−1171 (in Chinese with English abstract).
[103] Wang Y, Morozov I. 2019. Time–lapse acoustic impedance variations during CO2 injection in Weyburn oilfield, Canada[J]. Geophysics, 85: 1–58.
[104] Wang H, Wang Z, Ma J, Li L, Wang Y, Tan M, Zhang Y, Cui S, Qu Z. 2022. Effective pressure prediction from 4D seismic AVO data during CO2–EOR and storage[J]. International Journal of Greenhouse Gas Control, 113: 103525. doi: 10.1016/j.ijggc.2021.103525
[105] Wang H, Xu J, Yu Y. 2023. Status of CCUS research and governance by worldwide geological surveys and organizations[J]. China Geology, 6(3): 536–540.
[106] Wilkinson M, Mouli–Castillo J, Morgan P, Eid R. 2017. Time–lapse gravity surveying as a monitoring tool for CO2 storage[J]. International Journal of Greenhouse Gas Control, 60: 93−99. doi: 10.1016/j.ijggc.2017.03.006
[107] Wu Jiang, Ren Siyuan, Sun Yijing, Liu Qizhen. 2022. Research and application of CCUS technology based on "doublecarbon" background[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 50(7): 89−100 (in Chinese with English abstract).
[108] Xue Z, Tanase D, Watanabe J. 2006. Estimation of CO2 saturation from time–lapse CO2 well logging in an onshore aquifer, Nagaoka, Japan[J]. Exploration Geophysics, 37(1): 19–29.
[109] Yang X, Buscheck T A, Mansoor K, Wang Z, Gao K, Huang L, Appriou D, Carroll S A. 2019. Assessment of geophysical monitoring methods for detection of brine and CO2 leakage in drinking water aquifers[J]. International Journal of Greenhouse Gas Control, 90: 102803. doi: 10.1016/j.ijggc.2019.102803
[110] Yang X, Chen X, Smith M M. 2022. Deep learning inversion of gravity data for detection of CO2 plumes in overlying aquifers[J]. Journal of Applied Geophysics, 196: 104507.
[111] Yang X, Lassen R N, Jensen K H, Looms M C. 2015. Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography[J]. International Journal of Greenhouse Gas Control, 42: 534−544. doi: 10.1016/j.ijggc.2015.09.005
[112] Yang Yang, Ma Jinfeng, Li Lin. 2015. Research progress of 4D multicomponent seismic monitoring techniquein carbon capture and storage[J]. Advances in Earth Science, 30(10): 1119−1126 (in Chinese with English abstract).
[113] Yu Enyi, Di Yuan, Wu Hui, Cao Xiaopeng, Zhang Qingfu, Zhang Chuanbao. 2023. Numerical simulation on risk analysis of CO2 geological storage under multi–field coupling: A review[J]. Chinese Journal of Theoretical and Applied Mechanics, 55(9): 2075−2090 (in Chinese with English abstract).
[114] Zhang T, Zhang W, Yang R, Liu Y, Jafari M. 2021. CO2 capture and storage monitoring based on remote sensing techniques: A review[J]. Journal of Cleaner Production, 281: 124409. doi: 10.1016/j.jclepro.2020.124409
[115] Zhang Xian, Li Yang, Ma Qiao, Liu Lingna. 2021. Development of carbon capture, utilization and storage technology in China[J]. Engineering, 23(6): 70−80 (in Chinese with English abstract).
[116] Zhang Kai, Chen Zhangxing, Lan Haifan, Ma Haoming, Jiang Liangliang, Xue Zhenqian, Zhang Yuming, Cheng Shixuan. 2023. Status and prospects of carbon capture, utilization and storage technology[J]. Special Oil & Gas Reservoirs, 30(2): 1–12 (in Chinese with English abstract).
[117] Zhang Qi, Cui Yongjun, Bu Xuepeng, Chen Qiang. 2011. Analysis of the current development status of CCS monitoring technology[J]. Shenhua Science and Technology, 9(2): 77−82 (in Chinese with English abstract).
[118] Zhang Yang, Sun Jiawen, Zhao Haidong, Qiao Ting. 2022. Path for realization of ecological product value of CO2 geological storagein lnner Mongolia under the carbon peak and carbon neutrality goals[J]. Journal of Arid Land Resources and Environment, 36(11): 19−26 (in Chinese with English abstract).
[119] Zhao Gaishan. 2023. Geophysical monitoring for geological carbon sequestration: Present status, challenges, and future development[J]. Geophysical Prospecting for Petroleum, 62(2): 194−211 (in Chinese with English abstract).
[120] Zhao Haiying, Chen Yuanzhong, Li Yanpeng, Liu Guojun, Li Tao, Xia Shujun, Fan Hanzhou. 2018. CO2 monitoring with time–lapse vertical seismic profile[J]. Rock and Soil Mechanics, 39(8): 3095−3102 (in Chinese with English abstract).
[121] Zhu T, Ajo–Franklin J, Daley T M, Marone C. 2019. Dynamics of geologic CO2 storage and plume motion revealed by seismic coda waves[J]. Proceedings of the National Academy of Sciences, 116(7): 2464−2469. doi: 10.1073/pnas.1810903116
[122] 陈召曦, 孟小红, 郭良辉, 刘国峰. 2012. 基于GPU并行的重力、重力梯度三维正演快速计算及反演策略[J]. 地球物理学报, 55(12): 4069−4077. doi: 10.6038/j.issn.0001-5733.2012.12.019 [123] 崔方智, 周韬, 张兵. 2020. 煤层中CO2注入运移瞬变电磁法监测技术探索[J]. 物探与化探, 44(3): 573–581. [124] 刁玉杰, 刘廷, 魏宁, 马鑫, 金晓琳, 付雷. 2023. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质, 50(3): 943−951. doi: 10.12029/gc20221030001 [125] 李红蕾, 陈石, 庄建仓, 张贝, 石磊. 2021. 贝叶斯同化重力反演方法构建龙门山地壳密度模型[J]. 地球物理学报, 64(4): 1236−1252. doi: 10.6038/cjg2021O0130 [126] 李姜辉, 余凤玲, 牛雄伟, 周天, 张运修, 李雯菱. 2023. 海底碳封存监测技术体系研究及未来发展[J]. 地球科学进展, 38(11): 1121−1144. doi: 10.11867/j.issn.1001-8166.2023.071 [127] 李小春, 袁维, 白冰. 2016. CO2地质封存力学问题的数值模拟方法综述[J]. 岩土力学, 37(6): 1762–1772. [128] 刘彦, 吕庆田, 李晓斌, 祈光, 赵金花, 严加永, 邓震. 2015. 基于模型降阶的贝叶斯方法在三维重力反演中的实践[J]. 地球物理学报, 58(12): 4727−4739. doi: 10.6038/cjg20151233 [129] 秦积舜, 李永亮, 吴德彬, 翁慧, 王高峰. 2020. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 27(1): 20−28. [130] 屈文璋, 安志国. 2020. 时移音频大地电磁监测数值模拟研究[J]. 地球物理学进展, 35(4): 1595–1604. [131] 任韶然, 任博, 李永钊, 张亮, 康万利, 刘运成, 陈国利, 张华. 2012. CO2地质埋存监测技术及其应用分析[J]. 中国石油大学学报(自然科学版), 36(1): 106−111. [132] 仝云霄, 杨俊泉, 王雪, 谭琨. 2024. 基于时序InSAR的山西大同煤田地表沉降监测及时空演化分析[J]. 中国地质, 51(1): 170−183. doi: 10.12029/gc20221215001 [133] 王祥, 郭良辉. 2020. 球坐标系密度界面反演方法及在华南大陆的应用[J]. 物探与化探, 44(5): 1161–1171. [134] 吴江, 任思源, 孙一景, 刘启贞. 2022. 基于“双碳”背景的CCUS技术研究与应用[J]. 华中科技大学学报(自然科学版), 50(7): 89−100. [135] 杨扬, 马劲风, 李琳. 2015. CO2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 30(10): 1119–1126. [136] 于恩毅, 邸元, 吴辉, 曹小朋, 张庆福, 张传宝. 2023. CO2地质封存风险分析的多场耦合数值模拟技术综述[J]. 力学学报, 55(9): 2075−2090. doi: 10.6052/0459-1879-23-127 [137] 张贤, 李阳, 马乔, 刘玲娜. 2021. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 23(6): 70−80. [138] 张凯, 陈掌星, 兰海帆, 马浩铭, 姜亮亮, 薛振乾, 张育铭, 程世轩. 2023. 碳捕集、利用与封存技术的现状及前景[J]. 特种油气藏, 30(2): 1–12. [139] 张琪, 崔永君, 步学朋, 陈强. 2011. CCS监测技术发展现状分析[J]. 神华科技, 9(2): 77−82. doi: 10.3969/j.issn.1674-8492.2011.02.023 [140] 张阳, 孙佳文, 赵海东, 乔婷. 2022. 碳达峰碳中和目标下内蒙古CO2地质封存的生态产品价值实现路径[J]. 干旱区资源与环境, 36(11): 19−26. [141] 赵改善. 2023. 二氧化碳地质封存地球物理监测: 现状、挑战与未来发展[J]. 石油物探, 62(2): 194–211. [142] 赵海英, 陈沅忠, 李彦鹏, 刘国军, 李陶, 夏淑君, 范含周. 2018. CO2地质封存时移垂直地震监测技术[J]. 岩土力学, 39(8): 3095−3102.