Current situation and application prospect of large−scale geological hydrogen storage engineering
-
摘要:研究目的
地质储氢具有规模大、周期长、可跨季节储能等突出优势,是未来氢能大规模储备的重要发展方向。
研究方法本文通过系统搜集和整理地质储氢领域的研究成果,以及基于文献调研对地质储氢工程现状进行了论述。同时,充分借鉴盐穴天然气储气库工程建设的经验,分析了中国盐穴储氢库建设中的挑战,并提出解决思路。结合江苏省金坛区盐盆资源条件和盐穴综合利用经验,探索在该地建设盐穴储氢库的技术路线的可能性。
研究结果(1)地质储氢库根据地质构造分为盐穴、枯竭油气藏、含水层以及废弃矿洞,其中,盐穴储氢库已投产运行和中试示范的项目数量最多,且已实现纯度95%的氢气储存,是大规模地质储氢的优先发展方向。(2)盐穴储氢库的建设周期可划分为选址、钻井、造腔、注采完井、注气排卤、不压井作业、运行以及监测等8个阶段,可参考盐穴天然气储气库的建设经验,但仍存在政策、材料以及施工工艺等方面的问题。(3)在江苏金坛地区,盐穴储氢技术路线可以与该地的盐穴压缩空气储能和盐穴储天然气技术相结合,形成一套综合技术方案,包括可再生能源发电技术、高压空气压缩技术、电解水制氢技术以及天然气管道掺氢技术等不同领域技术。
结论近年来,国外地质储氢库的选址调研与试验论证工作正在加速进行,出现了多个处于中试阶段的地质储氢项目。综合考虑安全性、经济性以及技术难度等多个方面,盐穴储氢被认为是中国大规模地质储氢的优先发展方向。建成盐穴储氢验证平台,推进示范工程建设,将有助于形成具有自主知识产权的盐穴储氢技术体系。
创新点:(1)从工程角度系统介绍了盐穴天然气储气库主要的建设阶段,提出在国内建设盐穴储氢库可能面临的问题及相应的解决办法建议;(2)结合江苏省金坛区的盐盆资源条件和盐穴综合利用经验,对金坛盐矿进行了建盐穴储氢库条件评价,探索了在该地区建设盐穴储氢库的技术路线的可能性。
Abstract:This paper is the result of energy exploration engineering.
ObjectiveGeological hydrogen storage has the outstanding advantages of large scale, long period and cross−season energy storage, which is an important development direction of large−scale hydrogen energy storage in the future.
MethodsThis review systematically collects and collates the research results in the field of geological hydrogen storage, and discusses the current situation of geological hydrogen storage engineering based on literature investigation. At the same time, the review makes full reference to the experience of salt cavern gas storage engineering construction, analyzes the challenges in the construction of salt cavern hydrogen storage in China, and puts forward solutions. Based on the salt basin resource condition and the comprehensive utilization experience of salt cavern in Jintan District of Jiangsu Province, the possibility of constructing the technical route of salt cavern hydrogen storage is explored.
Results(1) Geological hydrogen storage facilities are classified according to geological structures into salt caverns, depleted oil and gas reservoirs, aquifers, and abandoned mines. Among these, salt cavern storage facilities have the highest number of operational and research projects. They achieve hydrogen storage with purity exceeding 95%, making them the primary direction for large−scale geological hydrogen storage development. (2) The construction cycle of salt cavern hydrogen storage can be divided into eight stages, including site selection, drilling, solution mining, injection and production completion, gas first fill, snubbing, operation and monitoring, which can refer to the construction experience of salt cavern natural gas storage, but there are still problems in policy, materials and construction technology. (3) In Jintan area of Jiangsu Province, the salt cavern hydrogen storage technology route can be combined with the salt cavern compressed air energy storage and salt cavern natural gas storage technology to form a set of comprehensive technical solutions, including renewable energy power generation technology, high−pressure air compression technology, electrolytic water hydrogen production technology and natural gas pipeline hydrogen mixing technology.
ConclusionsIn recent years, the site selection, investigation, and experimental verification of geological hydrogen storage facilities abroad have been accelerating, with several geological hydrogen storage projects in the pilot stage. Considering factors such as safety, economy, and technical difficulty, salt cavern storage is considered the primary direction for large−scale geological hydrogen storage in our country. Establishing a salt cavern hydrogen storage verification platform and advancing demonstration project construction will help to form a salt cavern hydrogen storage technology system with independent intellectual property rights.
Highlights:(1) From an engineering perspective, the main construction stages of salt cavern natural gas storage facilities are systematically introduced. Additionally, potential problems that may arise in constructing salt cavern hydrogen storage facilities domestically are identified, along with corresponding suggested solutions; (2) Based on the salt basin resources and comprehensive utilization experience in Jintan District, Jiangsu Province, an assessment of the conditions for constructing a salt cavern hydrogen storage facility in the Jintan salt mine is conducted. The feasibility of establishing a technical route for constructing a salt cavern hydrogen storage facility in this region is explored.
-
-
图 14 钢丝和油管式井下安全阀(据Buzogany and Bernhardt, 2023)
Figure 14. Wireline and tubing retrievable surface controlled subsurface safety valve (after Buzogany and Bernhardt, 2023)
表 1 氢气和甲烷的物理性质(数据来源Muhammed et al., 2022; Ugarte and Salehi, 2022)
Table 1 Physical properties of hydrogen and methane (Data from Muhammed et al., 2022; Ugarte and Salehi, 2022)
气体 相对分子质量 密度/
(kg/m3)比重 黏度/
(Pa⋅s)水中溶解度/
(g/L)标准沸点/
(℃)热值/
(kJ/g)水中扩散速率/
(m2/s)爆炸浓度范围 氢气 2.016 0.089 0.068 0.89×10−5 16×10−4 -253 120~142 5.13×10−9 4%~75% 甲烷 16.043 0.657 0.509 1.1×10−5 22.7×10−3 -165 50~55.5 1.85×10−9 5%~15% 表 2 四种类型地下储氢库特点
Table 2 Four types of underground hydrogen storage
储存类型 盐穴 枯竭油气藏 含水层 废弃矿洞 状态 4座正在运行的储氢成功案例,盐穴地下储氢的可行性已被实践证明 氢气与甲烷的混合气储存以被实践证明可行,纯氢储存尚在研究 氢气与甲烷的混合气储存以被实践证明可行,纯氢储存尚在研究 存在天然气储存案例,纯氢储存尚在研究 运行模式 战略储备和日、周、季节调峰 战略储备和季节调峰 战略储备和季节调峰 战略储备和日、周、季节调峰 注采周期 >10 次/年 1~2 次/年 1~2 次/年 >10 次/年 垫气量 30% 40%~50% 50%~80% ≤30% 运行压力 3.5~20 MPa 1.5~30 MPa 3~30 MPa 2~20 MPa 建设成本 低 低 低 高 运营成本 中等 低 低 中等 主要支出 钻井,腔体建设,卤水处理 钻井,垫气 地质勘察,钻井,垫气 洞室开挖,衬砌加固,密封性监测 技术难点 注采参数(注采速率、频率)优化 残余油气和微生物的影响 储层围岩和盖层致密性需确定、微生物的影响 氢气与衬砌材料的反应机理 表 3 国外地质储氢库项目案例
Table 3 Geological hydrogen storage project in the world
地点 项目名称 纯度/% 状态 投运年份 储存类型 物理容积/m3 深度/m 运行压力/MPa 阿根廷 Diadema 10 运行中 2015年 枯竭油气藏 600~800 1 奥地利 Underground Sun 10 运行中 2017年 枯竭油气藏 60×108 1200 7.8 捷克 Lobodice 50 储天然气 1965年 含水层 1×108 400~500 9 Haje 早期开发 含水层 1×108 丹麦 Green Hydrogen Hub 早期开发 盐穴 66 000 欧盟地区 HyStories 100 早期开发 枯竭油气藏
含水层HyUnder 早期开发 盐穴 4 000 000 法国 HyPster 早期开发 盐穴 480 000 TEREGA 早期开发 盐穴 3 300 000 Beynes 60 储天然气 1956年 含水层 3.3×108 430 1.1 德国 HyCAVmobil 早期开发 盐穴 500 000 HYPOS 早期开发 盐穴 InSpEE 早期开发 盐穴 HyINTEGER 早期开发 枯竭油气藏 Kiel 60 储天然气 1971年 盐穴 32 000 1335 8~10 Ketzin 62 储天然气 1964年 含水层 1.3×108 200~250 H2STORE 早期开发 枯竭油气藏 爱尔兰 Green Hydrogen @ Kinsale 早期开发 枯竭油气藏 990 000 荷兰 Hystock 早期开发 盐穴 60 000 LSES 早期开发 盐穴 0.14×108 枯竭油气藏 0.75×108 瑞典 Hybrit 100 早期开发 废弃矿洞 100 30 英国 Aldbrough 早期开发 盐穴 3.3×108 HyStorPor 早期开发 Teesside 95 运行中 1972年 盐穴(层状盐岩) 225 900 350 4.5 美国 Clemens Dome 95 运行中 1986年 盐穴(盐丘) 580 000 1000 7~13.5 Moss Bluss 95 运行中 2007年 盐穴(盐丘) 566 000 1200 5.5~15.2 Spindletop 95 运行中 2014年 盐穴(盐丘) 906 000 1340 6.8~20.2 注:表中空缺表示相关数据未见报道。 表 4 国内地质储氢库项目案例
Table 4 Geological hydrogen storage projects in China
项目名称 物理容积/m3 运行压力/MPa 储存类型 参与单位 当前状态 湖北大冶岩洞储氢 >5000 5 废弃矿洞 中冶武勘工程技术有限公司、中国科学院武汉岩土力学研究所 开工建设 陕西榆林盐穴储氢 50000 盐穴 陕西氢能产业发展有限公司、陕西华盐绿能能源有限公司、清华大学土木水利学院 准备阶段 平煤神马盐穴储氢 >30000 盐穴 中国平煤神马集团联合盐化公司、中国科学院武汉岩土力学研究所 开工建设 中盐集团盐穴储氢 盐穴 清华大学、中盐集团、中国地质大学(北京)、中国科学院理化技术研究所、天津大学、中国矿业大学、国家电投科学技术研究院、首钢集团、中国特种设备检测研究院、中国石油工程技术研究院 准备阶段 注:表中空缺表示相关数据未见报道。 表 5 盐穴储气库监测技术
Table 5 Monitoring technology of salt cavern gas storage
监测目的 地层完整性监测 注采运行监测 井筒泄露监测 储气库区域沉降监测 腔体变形监测 监测内容 微地震事件 库区内气体泄露 单井注采运行参数(温度、压力、流量等) 井筒、腔体内温度和压力梯度 地面沉降值、沉降速率 腔体形态、结构参数 监测手段 微地震监测 气体示踪剂 井口数据录取 光纤测井 地面沉降观测、测量 声纳测气腔 表 6 盐穴储氢库建设过程中各阶段潜在风险
Table 6 Potential risks in the construction process of salt cavern hydrogen storage
阶段 可能存在的风险/问题 应对措施 选址 受政策影响,制氢必须放在化工园区,距离盐矿较远 等待当地氢能产用政策松绑,允许非化工园区绿氢生产;购买氢气先进行储存,验证盐穴储氢可行性 钻井 固井水泥性能不足,氢气逃逸 考虑胶乳、树脂等新型固井水泥的研发 盐穴储氢库对注采能力要求高,而大尺寸管柱组合(生产套管13 3/8″)施工方案未成熟 借鉴金坛压缩空气储能电站所用管柱组合的经验,攻克大尺寸管径组合方案或设置两个井口和注采管 造腔 清水(微生物)、垫层(柴油、氮气)的使用影响储气时氢气纯度 对清水定期进行水质检测,必要时进行水质处理;使用无垫层造腔方法 腔体体积小,储气容量低,建库速度慢 考虑采用小间距双直井自然溶通法造腔 注采完井 传统气密封测试不一定适用盐穴储氢库 采用国外已有的组合气密封测试方法,确定最大允许泄漏率 注采管、井下工具不足以密封住氢气 研发新型阻氢渗透防腐材料,使用金属密封,避免使用弹性密封,减小弹性密封元件厚度 注气排卤 氢气进入排卤管随卤水排出、透过注采管造成环空带压 定期检测排出卤水中氢气含量以及环空压力,安装脱气装置 不压井作业 不压井作业装置本身或受氢气影响造成密封性能不足,氢气逃逸 增加额外的密封部件,减少弹性密封部件的使用,在作业前先用氢气对其进行气密封性检测以及考虑注入一些氮气暂时顶替井筒上面的氢气 运行 注采效率低 钻井时采用大尺寸管径组合,提升注采流量;造腔时采用小间距双直井自然溶通法,实现两个井口同时注采气 监测 已有声呐装置对于盐穴氢气腔的适用性未知 对用于测量盐穴氢气腔的声呐装置进行适当改造,确定在氢气中的声速等关键参数 -
[1] Amir M, Deshmukh R G, Khalid H M, Said Z, Raza A, Muyeen S M, Nizami A S, Elavarasan R M, Saidur R, Sopian K. 2023. Energy storage technologies: An integrated survey of developments, global economical/envirnmental effects, optimal scheduling model, and sustainable adaption policies[J]. Journal of Energy Storage, 72.
[2] Andersson J, Gronkvist S. 2019. Large−scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 44(23): 11901−11919. doi: 10.1016/j.ijhydene.2019.03.063
[3] Bely N I, Smirnov V I, Parfenov V I, Marchand R L, Laguerie P D, Yoy T. 1997. Experience of cooperation between rao gazprom (russia) and geostock (france) in the project for underground storage of natural gas in salt caverns at volgograd [C]// 20th World Gas Conference.
[4] Berest P, Brouard B. 2006. Safety of salt caverns used for underground storage blow out, Mechanical Instability, Seepage, Cavern Abandonment[J]. Oil & Gas Science and Technology, 58(3): 361−384.
[5] Berest P, Brouard B, Durup J G. 2006. Tightness tests in salt−cavern wells[J]. Oil & Gas Science and Technology, 56(5): 451−469.
[6] Berest P, Brouard B, Hevin G, Reveillere A. 2021. Tightness of salt caverns used for hydrogen storage [C]//SMRI Collection(ed./eds.). SMRI Spring 2021 Virtual Technical Conference. USA: Solution Mining Research Instituteusa, 2021: 1−20.
[7] Buzogany R, Bernhardt H. 2023. Hydrogen storage in salt caverns current status and potential future research topics [C]//Fifth EAGE Global Energy Transition Conference & Exhibition, European Association of Geoscientists & Engineers, (1): 1−4.
[8] Caglayan D G, Weber N, Heinrichs H U, Linben J, Robinius M, Kukla P A, Stolten D. 2020. Technical potential of salt caverns for hydrogen storage in Europe[J]. International Journal of Hydrogen Energy, 45(11): 6793−6805. doi: 10.1016/j.ijhydene.2019.12.161
[9] Chemical Weekly Group. 2017. Air Liquide commissions world's largest hydrogen storage facility in US[J]. Chemical Weekly, 62(24): 184−184.
[10] Dash S K, Chakraborty S, Elangovan D. 2023. A brief review of hydrogen production methods and their challenges[J]. Energies, 16(3): 1141. doi: 10.3390/en16031141
[11] Davenport J, Wayth N. 2023. Statistical Review of World Energy [R]. Britain: Energy Institute.
[12] Dawood F, Anda M, Shafiullah G M. 2020. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 45(7): 3847−3869. doi: 10.1016/j.ijhydene.2019.12.059
[13] Deveci M. 2018. Site selection for hydrogen underground storage using interval type−2 hesitant fuzzy sets[J]. International Journal of Hydrogen Energy, 43(19): 9353−9368. doi: 10.1016/j.ijhydene.2018.03.127
[14] Dopffel N, Jansen S, Gerritse J. 2021. Microbial side effects of underground hydrogen storage−Knowledge gaps, risks and opportunities for successful implementation[J]. International Journal of Hydrogen Energy, 46(12): 8594−8606. doi: 10.1016/j.ijhydene.2020.12.058
[15] Ding Guosheng, Xie Ping. 2006. Current situation and prospect of Chinese underground gas storage[J]. Natural Gas Industry, 26(6): 111−113(in Chinese with English abstract).
[16] Ding Guosheng, Zhang Yuwen. 2010. Salt Cavern Underground Gas Storage[M]. Beijing: Petroleum Industry Press, 62–63 (in Chinese).
[17] Duan Zhixiang, Shi Kun, Hu Hangjian, Zhang Yansheng, Feng Yiyong. 2003. Review on the development of inspection technology for underground gas (hydrogen) storage wells in China[J]. China Special Equipment Safety, 39(6): 1−7 (in Chinese with English abstract).
[18] Dutta A, Gupta D S, Gupta A, Sarkar J, Roy S, Mukherjee A, Sar P. 2018. Exploration of deep terrestrial subsurface microbiome in Late Cretaceous Deccan traps and underlying Archean basement, India[J]. Scientific Reports, 8(1): 17459. doi: 10.1038/s41598-018-35940-0
[19] Fang D, Zhao C, Yu Q. 2018. Government regulation of renewable energy generation and transmission in China’ s electricity market[J]. Renewable and Sustainable Energy Reviews, 93: 775−793. doi: 10.1016/j.rser.2018.05.039
[20] Gajda D, Lutynski M. 2021. Hydrogen permeability of epoxy composites as liners in lined rock caverns—Experimental study[J]. Applied Sciences, 11(9): 3885. doi: 10.3390/app11093885
[21] Gu Chunsheng, Yang Lei, Min Wang, Zhang Qiqi, Lu Yi, Su Dong. 2023. Monitoring and analyzing the development trend of land subsidence in Changzhou City, Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control, 34(2): 82−91 (in Chinese with English abstract).
[22] Guan Guoxing, Li Liurong. 2003. Jintan City cooperated with "West–East Gas Transmission" to establish gas storage by using underground salt caverns[J]. Conservation and Utilization of Mineral Resources, 2: 24 (in Chinese).
[23] Guney T. 2019. Renewable energy, non−renewable energy and sustainable development[J]. International Journal of Sustainable Development & World Ecology, 26(5): 389−397.
[24] Guo Chaobin, Li Cai, Yang Lichao, Liu Kai, Ruan Yuejun, He Yang. 2021. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China, 8(4): 109−119 (in Chinese with English abstract).
[25] Guo Chaobin, Wang Zhihui, Liu Kai, Li Cai. 2019. The application and research progress of special underground space[J]. Geology in China, 46(3): 482−492. (in Chinese with English abstract
[26] Guo Juan, Cui Rongguo, Zhou Qizhong, Hu Rongbo. 2024. Outlook and overview of mineral resources situation of China in 2023[J]. China Mining Magazine, 33(1): 12−19. (in Chinese with English abstract
[27] Harlan T. 2022. Low−carbon Frontier: Renewable energy and the new resource boom in western China[J]. The China Quarterly, 255: 591−610.
[28] Hayden L E, Stalheim D. 2009. ASME b31.12 hydrogen piping and pipeline code design rules and their Interaction with pipeline materials concerns, issues and research [C]//ASME Pressure Vessels and Piping Conference, 43642: 355−361.
[29] Hematpur H, Abdollahi R, Rostami S, Haghighi M, Blunt M J. 2023. Review of underground hydrogen storage: Concepts and challenges[J]. Advances in Geo−Energy Research, 7(2): 111−131. doi: 10.46690/ager.2023.02.05
[30] Hong L, Moller B. 2012. Feasibility study of China's offshore wind target by 2020[J]. Energy, 48(1): 268−277. doi: 10.1016/j.energy.2012.03.016
[31] Horvath P R B. 2022. Hydrogen storage in the netherlands−latest findings from demonstration project hyStock for underground storage of hydrogen in salt caverns [C]// SMRI Fall 2022 Technical Conference. Chester; Solution Mining Research Institute.
[32] Huang Kuan, Zhang Wanyi, Wang Fengxiang, Luan Zhuoran, Hu Yalu, Chen Ji, Fang Yuan, Song Zefeng, Wang Jian. 2024. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China, 51(1): 105−117. (in Chinese with English abstract
[33] Ishaq H, Dincer I, Crawford C. 2022. A review on hydrogen production and utilization: Challenges and opportunities[J]. International Journal of Hydrogen Energy, 47(62): 26238−26264. doi: 10.1016/j.ijhydene.2021.11.149
[34] Jia Shanpo, Zheng Dewen, Jin Fengming, Zhang Hui, Meng Qingchun, Lin Jianpin, Wei Qiang. 2016. Evaluation system of selected target sites for aquifer underground gas storage[J]. Journal of Central South University (Science and Technology), 47(3): 857−867 (in Chinese with English abstract).
[35] Jiang D Y, Yi L, Chen J, Ren S, Li Y P. 2016. Comparison of cavern formation in massive salt blocks with single−well and two−well systems[J]. Journal of the Chinese Institute of Engineers, 39(8): 954−961. doi: 10.1080/02533839.2016.1220266
[36] Jiangsu Electric Power Industry Association. 2024. Electric power production and operation data of Jiangsu Province from January to November 2024[EB/OL]. http://www.jsepa.com/report.thtml?cid=10932 (in Chinese).
[37] Jing Wenjun, Yang Chunhe, Li Yingping, Yang Changlai. 2012. Research on site selection evaluation method of salt cavern gas storage with analytic hierarchy process[J]. Rock & Soil Mechanics, 33(9): 2683−2690 (in Chinese with English abstract).
[38] Kanezaki T, Narazaki C, Mine Y, Matsuoka S, Murakami Y. 2008. Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels[J]. International Journal of Hydrogen Energy, 33(10): 2604−2619. doi: 10.1016/j.ijhydene.2008.02.067
[39] Kutchko B G, Strazisar B R, Hawthorne S B, Lopano C, Miller D, Hakala J A, Guthrie G. 2011. H2S−CO2 reaction with hydrated Class H well cement: Acid−gas injection and CO2 Co−sequestration[J]. International Journal of Greenhouse Gas Control, 5(4): 880−888. doi: 10.1016/j.ijggc.2011.02.008
[40] Li Guang, Liu Jianjun, Liu Qiang, Ji Youjun. 2016. Review on geological storage of carbon dioxide[J]. Journal of Hunan Ecological Science, 3(4): 41−48 (in Chinese with English abstract).
[41] Li Long, Li Jianjun. 2023. Safety Monitoring Technology of Salt Cavern Gas Storage[M]. Beijing: Petroleum Industry Press, 4–5 (in Chinese).
[42] Li X, Li J L. 2008. Application of no−killing operations in Jintan cavern underground gas storage[J]. Oil Drilling & Production Technology, 30(6): 100−103.
[43] Liebscher A, Wackerl J, Streibel M. 2016. Geologic Storage of Hydrogen-Fundamentals, Processing, and Projects [M]. Weinheim: Wiley-VCH Verlag Gmbh & Co.KGaA, 629−658.
[44] Liu W, Li Q, Yang C H, Shi X L, Wan J F, Jurado M J, Li Y P, Jiang D Y, Chen J, Qiao W B, Zhang X, Fan J Y, Peng T J, He Y X. 2023. The role of underground salt caverns for large−scale energy storage: A review and prospects[J]. Energy Storage Materials, 63: 103045. doi: 10.1016/j.ensm.2023.103045
[45] Liu W, Yang S, Mai Y, Wang J M, Jiang S K. 2018. Reflection on domestic and foreign research status of subsurface safety valves and their domestication[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 40(3): 164−174.
[46] Liu Xiaochi, Mei Shengwei, Dung Ruochen, Zhong Shengyuan, Zhang Xianfeng, Xie Ningning, Chang Yong, Zhang Tong. 2023. Current situation, development trend and application prospect of compressed air energy storage engineering projects[J]. Electric Power Automation Equipment, 43(10): 38−47 (in Chinese with English abstract).
[47] Lord A S, Kobos P H, Borns D J. 2014. Geologic storage of hydrogen: Scaling up to meet city transportation demands[J]. International Journal of Hydrogen Energy, 39(28): 15570−15582. doi: 10.1016/j.ijhydene.2014.07.121
[48] Loto C A. 2017. Microbiological corrosion: Mechanism, control and impact−a review[J]. The International Journal of Advanced Manufacturing Technology, 92(9/12): 4241−4252. doi: 10.1007/s00170-017-0494-8
[49] Lu Jiamin, Xu Junhui, Wang Weidong, Wang Hao, Xu Zijun, Chen Liuping. 2022. Development of large–scale underground hydrogen storage technology[J]. Energy Storage Science and Technology, 11(11): 3699−3707 (in Chinese with English abstract).
[50] Lu Yanan. 2022. Promote the healthy, orderly and sustainable development of the hydrogen energy industry[N]. People's Daily, 2022–03–24(11) (in Chinese).
[51] Luo Miao. 2021. Study on Material Selection of Casing Strings for Injection and Production Wells in Hydrogen Underground Energy Storage[D]. Beijing: China University of Petroleum (Beijing), 1–56 (in Chinese with English abstract).
[52] Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan, Chen Jing, Zhong Shuai, Zhu Jichang. 2021. Geoscience and carbon neutralization: Current status and development direction[J]. Geology in China, 48(2): 347−358 (in Chinese with English abstract).
[53] Marchi C S, Somerday B P. 2014. Technical reference for hydrogen compatibility of materials [R]. United States: Sandia National Laboratories.
[54] Miocic J, Heinemann N, Edlmann K, Scafidi J, Molaei F, Alcalde J. 2023. Underground hydrogen storage: A review [J]. Geological Society, London, Special Publications, 528(1): 73−86.
[55] Moody N R, Robinson S L, Garrison J W M. 1990. Hydrogen effects on the properties and fracture modes of iron−based alloys[J]. Res mechanica, 30(2): 143−206.
[56] Muhammed N S, Haq B, Shehri D A, Ahmed A A, Rahman M M, Zaman E. 2022. A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook[J]. Energy Reports, 8: 461−499.
[57] Murakami Y, Matsuoka S. 2010. Effect of hydrogen on fatigue crack growth of metals[J]. Engineering Fracture Mechanics, 77(11): 1926−1940. doi: 10.1016/j.engfracmech.2010.04.012
[58] Navaid H B, Emadi H, Watson M. 2023. A comprehensive literature review on the challenges associated with underground hydrogen storage[J]. International Journal of Hydrogen Energy, 48(28): 10603−10635. doi: 10.1016/j.ijhydene.2022.11.225
[59] Olabi A G, Bahri A S, Abdelghafar A A, Baroutaji A, Sayed E T, Alami A H, Rezk H, Abdelkareem M A. 2021. Large−vscale hydrogen production and storage technologies: Current status and future directions[J]. International Journal of Hydrogen Energy, 46(45): 23498−23528. doi: 10.1016/j.ijhydene.2020.10.110
[60] Oldenburg C M, Pan L. 2013. Porous Media Compressed−Air Energy Storage (PM−CAES): Theory and simulation of the coupled wellbore−reservoir system[J]. Transport in Porous Media, 97(2): 201−221. doi: 10.1007/s11242-012-0118-6
[61] Osman A I, Mehta N, Elgarahy A M, Hefny M, Hinai A A, Muhtaseb A A, Rooney D W. 2021. Hydrogen production, storage, utilization and environmental impacts: A review[J]. Environmental Chemistry Letters, 20(1): 153−188.
[62] Patel H, Salehi S, Ahmed R, Teodoriu C. 2019. Review of elastomer seal assemblies in oil & gas wells: Performance evaluation, failure mechanisms, and gaps in industry standards[J]. Journal of Petroleum Science and Engineering, 179: 1046−1062. doi: 10.1016/j.petrol.2019.05.019
[63] Pei M, Petajaniemi M, Regnell A, Wijk O. 2020. Toward a fossil free future with Hybrit: Development of iron and steelmaking technology in Sweden and Finland[J]. Metals, 10(7): 972. doi: 10.3390/met10070972
[64] Rahman M, Oni A, Kumar A. 2020. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 223: 113295. doi: 10.1016/j.enconman.2020.113295
[65] Reitenbach V, Ganzer L, Hagemann B. 2015. Influence of added hydrogen on underground gas storage: A review of key issues[J]. Environmental Earth Sciences, 73(11): 6927−6937. doi: 10.1007/s12665-015-4176-2
[66] Salehi S, Ezeakacha C P, Kwatia G. 2019. Performance verification of elastomer materials in corrosive gas and liquid conditions[J]. Polymer Testing, 75: 48−63. doi: 10.1016/j.polymertesting.2019.01.015
[67] Sambo C, Dudun A, Samuel S A. 2022. A review on worldwide underground hydrogen storage operating and potential fields[J]. International Journal of Hydrogen Energy, 47(54): 22840−22880. doi: 10.1016/j.ijhydene.2022.05.126
[68] Shahvali A, Azin R, Zamani A. 2014. Cement design for underground gas storage well completion[J]. Journal of Natural Gas Science and Engineering, 18: 149−154. doi: 10.1016/j.jngse.2014.02.007
[69] Shi Jinling. 2020. Evaluation of site selection conditions for salt cavern underground salt cavity gas storage[J]. China Petroleum and Chemical Standard and Quality, 40(18): 5−6 (in Chinese).
[70] Shi Xilin, Wei Xinxing, Yang Chunhe Ma Hongling, Li Yinping. 2023. Problems and countermeasures for construction of China’s salt cavern type strategic oil storage[J]. Bulletin of Chinese Academy of Sciences, 38(1): 99−111 (in Chinese with English abstract).
[71] Song Gangxiang, Lu Yan, Ding Fang, Ju Hao, Xu Bo, Zhang Xinan. 2020. Study on dynamic diagnosis and equilibrium production technology for the gas condensate reservoir with bottom oil[J]. Natural Gas Geoscience, 31(6): 890−894 (in Chinese with English abstract).
[72] Strazisar B, Kutchko B, Huerta N. 2009. Chemical reactions of wellbore cement under CO2 storage conditions: Effects of cement additives[J]. Energy Procedia, 1(1): 3603−3607. doi: 10.1016/j.egypro.2009.02.155
[73] Sun X, Yang P, Zhang Z. 2017. A study of earthquakes induced by water injection in the Changning salt mine area, SW China[J]. Journal of Asian Earth Sciences, 136: 102−109. doi: 10.1016/j.jseaes.2017.01.030
[74] Szummer A, Jezierska E, Lublinska K. 1999. Hydrogen surface effects in ferritic stainless steels[J]. Journal of Alloys and Compounds, 293(51): 356−360.
[75] Tarkowski R. 2019. Underground hydrogen storage: Characteristics and prospects[J]. Renewable and Sustainable Energy Reviews, 105: 86−94. doi: 10.1016/j.rser.2019.01.051
[76] Ugarte E R, Salehi S. 2022. A review on well integrity issues for underground hydrogen storage[J]. Journal of Energy Resources Technology, 144(4): 1−5.
[77] Ursua A, Gandia L M, Sanchis P. 2012. Hydrogen production from water electrolysis: Current status and future trends[J]. Proceedings of the IEEE, 100(2): 410−426. doi: 10.1109/JPROC.2011.2156750
[78] Von T H, Reitze A, Crotogino F. 2022. New procedure for tightness tests (MIT) of salt cavern storage wells: Continuous high accuracy determination of relevant parameters, without the need to use radioactive tools [J]. Geological Society, London, Special Publications, 313(1): 129−137.
[79] Wan J, Peng T J, Shen R. 2019. Numerical model and program development of TWH salt cavern construction for UGS[J]. Journal of Petroleum Science and Engineering, 179: 930−940. doi: 10.1016/j.petrol.2019.04.028
[80] Wang Pengfei, Jiang Chongxin, Ma Bing. 2021. Hydrogen energy development strategy and its important significance at home and abroad[J]. Geological Survey of China, 8(4): 33−39 (in Chinese with English abstract).
[81] Wang T T, Ma H L, Yang C H, Shi X L, Daemen J J K. 2015. Gas seepage around bedded salt cavern gas storage[J]. Journal of Natural Gas Science and Engineering, 26: 61−71. doi: 10.1016/j.jngse.2015.05.031
[82] Wang Y, Guo C H, Zhuang S R, Chen X J, Jia L Q, Chen Z Y. 2021. Major contribution to carbon neutrality by China’ s geosciences and geological technologies[J]. China Geology, 4(2): 329−352.
[83] Wanyan Q Q, Ding G, Zhao Y, Li K, Deng J G, Zheng Y L. 2018. Key technologies for salt−cavern underground gas storage construction and evaluation and their application[J]. Natural Gas Industry B, 5(6): 623−630. doi: 10.1016/j.ngib.2018.11.011
[84] Yang Y, Ma C, Pang X L. 2021. Optimal power reallocation of large−scale grid−connected photovoltaic power station integrated with hydrogen production[J]. Journal of Cleaner Production, 298(10): 126830.
[85] Zhang Z X, Jiang D, Liu W, Chen J, Li E B. 2019. Study on the mechanism of roof collapse and leakage of horizontal cavern in thinly bedded salt rocks[J]. Environmental Earth Sciences, 78(10): 292. doi: 10.1007/s12665-019-8292-2
[86] Zhang Z X, Liu W, Guo Q, Duan X Y. 2022. Tightness evaluation and countermeasures for hydrogen storage salt cavern contains various lithological interlayers[J]. Journal of Energy Storage, 50: 104454. doi: 10.1016/j.est.2022.104454
[87] Zhao Yuchao, Luo Yu, Li Longxin, Zhou Yuan, Li Limin, Wang Xia. 2022. In–situ stress simulation and integrity evaluation of underground gas storage: A case study of the Xiangguosi underground gas storage, Sichuan, SW China[J]. Journal of Geomechanics, 28(4): 523−536 (in Chinese with English abstract).
[88] Zheng Yali, Wanyan Qiqi, Qiu Xiaosong, Kou Yanxia, Ran Lina, Lai Xin, Wu Shuang. 2019. New technologies for site selection and evaluation of salt–cavern underground gas storages[J]. Natrual Gas Industry, 39(6): 123−130 (in Chinese with English abstract).
[89] Zhu Liping. 2022. An overview of monitoring technology for underground natural gas storage[J]. Petroleum Tubular Goods & Instruments, 8(4): 1−7 (in Chinese with English abstract).
[90] Zivar D, Kumar S, Foroozesh J. 2021. Underground hydrogen storage: A comprehensive review[J]. International Journal of Hydrogen Energy, 46(45): 23436−23462. doi: 10.1016/j.ijhydene.2020.08.138
[91] Zou C, Ma F, Pan S Q. 2022. Earth energy evolution, human development and carbon neutral strategy[J]. Petroleum Exploration and Development, 49(2): 468−488. doi: 10.1016/S1876-3804(22)60040-5
[92] 丁国生, 谢萍. 2006. 中国地下储气库现状与发展展望[J]. 天然气工业, 26(6): 111−113. [93] 丁国生, 张昱文. 2010. 盐穴地下储气库[M]. 北京: 石油工业出版社, 62−63. [94] 段志祥, 石坤, 胡杭健, 张烟生, 冯异勇. 2023. 我国地下储气(氢)井检测技术进展综述[J]. 中国特种设备安全, 39(6): 1−7. [95] 顾春生, 杨磊, 闵望, 张其琪, 卢毅, 苏东. 2023. 江苏常州地面沉降监测与发展趋势分析[J]. 中国地质灾害与防治学报, 34(2): 82−91. [96] 管国兴, 李留荣. 2003. 金坛市配合“西气东输”利用地下溶盐穴建立储气库[J]. 矿产保护与利用, (2): 24. [97] 郭朝斌, 李采, 杨利超, 刘凯, 阮岳军, 何阳. 2021. 压缩空气地质储能研究现状及工程案例分析[J]. 中国地质调查, 8(4): 109−119. [98] 郭朝斌, 王志辉, 刘凯, 李采. 2019. 特殊地下空间应用与研究现状[J]. 中国地质, 46(3): 482−492. [99] 郭娟, 崔荣国, 周起忠, 胡容波. 2024. 2023年中国矿产资源形势回顾与展望[J]. 中国矿业, 33(1): 12−19. [100] 黄宽, 张万益, 王丰翔, 栾卓然, 胡雅璐, 陈骥, 方圆, 宋泽峰, 王健. 2023. 地下空间储能国内外发展现状及调查建议[J]. 中国地质, 51(1): 105−117. [101] 贾善坡, 郑得文, 金凤鸣, 张辉, 孟庆春, 林建品, 魏强. 2016. 含水层构造改建地下储气库评价体系[J]. 中南大学学报(自然科学版), 47(3): 857−867. [102] 江苏省电力行业协会. 2024. 2024年1—11月江苏省电力生产经营数据 [EB/OL]. http://www.jsepa.com/report.thtml?cid=10932. [103] 井文君, 杨春和, 李银平, 杨长来. 2012. 基于层次分析法的盐穴储气库选址评价方法研究[J]. 岩土力学, 33(9): 2683−2690. [104] 李光, 刘建军, 刘强, 纪佑军. 2016. 二氧化碳地质封存研究进展综述[J]. 湖南生态科学学报, 3(4): 41−48. [105] 李龙, 李建军. 2023. 盐穴储气库安全监测技术[M]. 北京: 石油工业出版社, 4−5. [106] 刘笑驰, 梅生伟, 丁若晨, 钟声远, 张险峰, 谢宁宁, 常勇, 张通. 2023. 压缩空气储能工程现状, 发展趋势及应用展望[J]. 电力自动化设备, 43(10): 38−47. [107] 陆佳敏, 徐俊辉, 王卫东, 王浩, 徐孜俊, 陈留平. 2022. 大规模地下储氢技术研究展望[J]. 储能科学与技术, 11(11): 3699−3707. [108] 陆娅楠. 2022. 推进氢能产业健康有序可持续发展[N]. 人民日报, 2022−03−24(011). [109] 罗淼. 2021. 氢气地下储能库注采井套管选材研究[D]. 北京: 中国石油大学(北京), 1−56. [110] 马冰, 贾凌霄, 于洋, 王欢, 陈静, 钟帅, 朱吉昌. 2021. 地球科学与碳中和: 现状与发展方向[J]. 中国地质, 48(2): 347−358. [111] 施金伶. 2020. 盐穴地下盐腔储气库选址条件评价[J]. 中国石油和化工标准与质量, 40(18): 5−6. [112] 施锡林, 尉欣星, 杨春和, 马洪岭, 李银平. 2023. 中国盐穴型战略石油储备库建设的问题及对策[J]. 中国科学院院刊, 38(1): 99−111. [113] 宋刚祥, 陆嫣, 丁芳, 鞠颢, 徐博, 张锡楠. 2020. 带底油凝析气藏动态诊断及均衡开采技术[J]. 天然气地球科学, 31(6): 890−894. [114] 王朋飞, 姜重昕, 马冰. 2021. 国内外氢能发展战略及其重要意义[J]. 中国地质调查, 8(4): 33−39. [115] 赵昱超, 罗瑜, 李隆新, 周源, 李力民, 王霞. 2022. 地下储气库地应力模拟研究与地质完整性评估——以相国寺为例[J]. 地质力学学报, 28(4): 523−536. [116] 郑雅丽, 完颜祺琪, 邱小松, 垢艳侠, 冉莉娜, 赖欣, 吴双. 2019. 盐穴地下储气库选址与评价新技术[J]. 天然气工业, 39(6): 123−130. [117] 朱礼萍. 2022. 国内外地下储气库监测技术概述[J]. 石油管材与仪器, 8(4): 1−7.