高级检索

    磷灰石的研究进展及其在矿床学领域的应用

    李姜, 马振波, 杨艳, 黄健瀚, 张荣臻, 韩江伟

    李姜,马振波,杨艳,黄健瀚,张荣臻,韩江伟. 2025. 磷灰石的研究进展及其在矿床学领域的应用[J]. 中国地质, 52(2): 1−23. DOI: 10.12029/gc20240313001
    引用本文: 李姜,马振波,杨艳,黄健瀚,张荣臻,韩江伟. 2025. 磷灰石的研究进展及其在矿床学领域的应用[J]. 中国地质, 52(2): 1−23. DOI: 10.12029/gc20240313001
    Li Jiang, Ma Zhenbo, Yang Yan, Huang Jianhan, Zhang Rongzhen, Han Jiangwei. 2025. Reviews on apatite and its application in the field of ore deposit geology[J]. Geology in China, 52(2): 1−23. DOI: 10.12029/gc20240313001
    Citation: Li Jiang, Ma Zhenbo, Yang Yan, Huang Jianhan, Zhang Rongzhen, Han Jiangwei. 2025. Reviews on apatite and its application in the field of ore deposit geology[J]. Geology in China, 52(2): 1−23. DOI: 10.12029/gc20240313001

    磷灰石的研究进展及其在矿床学领域的应用

    基金项目: 国家自然科学基金项目(41702098,41902079)资助。
    详细信息
      作者简介:

      李姜,男,1989年生,博士,工程师,主要从事矿产勘查和区域成矿研究;E-mail: lijiang@cug.edu.cn

      通讯作者:

      黄健瀚,男,1990年生,博士,讲师,主要从事矿床地质与矿物地球化学研究;E-mail: huangjianhan@ncwu.edu.cn

    • 中图分类号: P578.922; P619.213

    Reviews on apatite and its application in the field of ore deposit geology

    Funds: Supported by the National Nature Science Foundation of China (No.41702098, No.41902079).
    More Information
      Author Bio:

      LI Jiang, male, born in 1989, doctor, engineer, mainly engaged in the mineral exploration and regional metallogenic research; E−mail: lijiang@cug.edu.cn

      Corresponding author:

      HUANG Jianhan, born in 1990, doctor, lecturer, mainly engaged in the deposit geology and mineral chemistry; E−mail: huangjianhan@ncwu.edu.cn.

    • 摘要:
      研究目的 

      磷灰石是广泛存在于各种火山岩、变质岩和沉积岩中的一种副矿物,其晶格内可以容纳Sr、Mn、REEs、U、Th、F、Cl等多种元素,而且磷灰石的化学组成对于岩浆和热液过程十分敏感并因此引起了学者的广泛关注。

      研究方法 

      本文系统分析了目前关于磷灰石在矿相学、同位素年代学、矿床地球化学、人工智能以及勘查指示中的一些常用研究方法和最新成果。

      研究结果 

      岩浆磷灰石的Sr、Y、REEs等元素和Sr−Nd同位素可以用来判别岩浆源区,Ce、Eu、Ga、Mn等对氧逸度敏感的元素可以用来指示岩浆氧化态,F、Cl等元素可以用来估算熔体初始状态下挥发分含量,其U−Pb年龄能代表其寄主岩的结晶年龄,而低温热年代学也常用于研究矿床形成后的剥蚀程度。热液磷灰石的结构和成分记录了流体的相关信息,可以用来指示流体来源、流体性质等与岩浆−热液成矿过程相关的信息。机器学习等人工智能技术可以处理海量磷灰石数据,实现基于磷灰石成分的岩石类型和矿床类型的判别。

      结论 

      磷灰石在矿床学研究和矿床勘查中具有重要作用,今后对热液磷灰石与成矿过程关系的研究工作,以及将人工智能与磷灰石结合来示踪成岩成矿过程应该是值得考虑的研究方向。

      创新点:

      (1)系统总结了磷灰石在矿床学研究及找矿勘查中的主要研究方法和最新研究成果;(2)初步展望了磷灰石在矿床学研究与勘查指示中的发展方向。

      Abstract:

      This paper is the result of mineral exploration engineering.

      Objective 

      Apatite is a mineral commonly present in volcanic, metamorphic, and sedimentary rocks. Its crystal structure can host various elements such as Sr, Mn, REEs, U, Th, F, Cl, and others. Apatite's chemical composition is dictated by magma and hydrothermal processes, which makes it a subject of interest for many researchers.

      Methods 

      This paper reviews common methods and the latest research achievements of apatite in mineralogy, isotope chronology, deposit geochemistry, artificial intelligence, and exploration indication.

      Results 

      Elemental (e.g., Sr, Y, and REEs) and Sr−Nd isotopic compositions of magmatic apatite can help identify the source of its parental magma. Elements such as Ce, Eu, Ga, and Mn can indicate the oxidation state of the magma, while F and Cl can be used to estimate the volatile content of the melt. The U−Pb isotope system of apatite can record the crystallization age of its host rock. Low−temperature thermochronology is often used to study the degree of denudation after ore deposit formation. Hydrothermal apatite's structure and composition bear information about the fluid, which can indicate the fluid source, properties, and other information related to magmatic−hydrothermal mineralization processes. Artificial intelligence techniques such as machine learning can process massive amounts of apatite data to discriminate rock types and deposit types.

      Conclusions 

      Apatite is a mineral that is crucial for studying mineral deposits and exploring ore deposits. Future researches should focus on the relationship between hydrothermal apatite and the metallogenic process. Additionally, combining artificial intelligence with apatite analyses to trace the diagenetic and metallogenic process is a promising avenue for further study.

      Highlights:

      (1) We summarize the main research methods and latest research achievements of apatite in ore deposit research and prospecting; (2) The development direction of apatite in the research and exploration of ore deposits is preliminarily prospected.

    • 图  1   不同类型磷灰石的形态特征

      a−辉石正长岩中的针状和近等轴状岩浆磷灰石(Zirner et al., 2015);b−热液磷灰石中不规则的化学分区(Yu et al., 2019);c−具有一定磨圆程度的沉积磷灰石(Lumiste et al., 2019);d−变质岩中形状不规则的磷灰石(Maraszewska et al., 2023);Ap−磷灰石;Am−角闪石;Fsp−长石;Ptb−沥青铀矿;Fl−萤石;Qz−石石英;Mt−白云母;Hm−赤铁矿

      Figure  1.   Morphological characteristics of different types of apatite

      a–Acicular and equiaxed magmatic apatite in pyroxene syenite (Zirner et al., 2015); b–Irregular chemical zoning in hydrothermal apatite (Yu et al., 2019); c–Sedimentary apatite with a certain degree of roundness (Lumiste et al., 2019); d–Irregular apatite in metamorphic rocks (Maraszewska et al., 2023); Ap−Apatite; Am−Amphibole; Fsp−Feldspar; Ptb−Pitchblende; Fl−Fluorite; Qz−Quartz; Mt−Muscovite; Hm−Hematite

      图  2   玉木沟Mo矿床热史模拟结果(a)、玉木沟Mo矿床多年代温度−时间路径(b)(Yang et al., 2020, 2022a, b; Qian et al., 2022

      Figure  2.   Thermal history modeling results integrated fromYumugou Mo Deposit (a) and temperature−time path of multiple geochronometers of Yumugou Mo Deposit(b) (Yang et al., 2020, 2022a, b; Qian et al., 2022)

      图  3   不同岩石中磷灰石的稀土元素配分模式图(标准化数据来自Boyton,1984;磷灰石数据来自Mao et al., 2016

      Figure  3.   Rare earth element distribution patterns of apatite in different rocks (Normalized data are from Boynton, 1984; Apatie date ate from Mao et al., 2016)

      图  5   常用磷灰石判别图解

      a−LREE−Sr/Y图解(O'Sullivan et al., 2020);b−lgCe−lg(Eu/Y)图解(周统等, 2022);c,d−Sr−Mn、Sr−Y图解(Belousova et al., 2002

      Figure  5.   Common apatite discrimination diagram

      a−LREE−Sr/Y diagram (O'Sullivan et al., 2020); b−lgCe−lg(Eu/Y) diagram (Zhou et al., 2022); c, d−Sr−Mn, Sr−Y diagram (Belousova et al., 2002)

      图  4   磷灰石Sr/Th vs. La/Sm二元图解(底图根据Ding et al., 2015修改)

      Figure  4.   Apatite Sr/Th vs. La/Sm binary diagram (modified from Ding et al., 2015)

      图  6   磷灰石(Eu/Eu*)N−(Ce/Ce*)N氧逸度判别图(数据来自Ding et al., 2015

      Figure  6.   Oxygen fugacity discrimination diagram of apatite (Eu/Eu *) N−(Ce/Ce *) N (after Ding et al., 2015)

      图  7   磷灰石的主量元素和微量元素判别图(据Cao et al., 2012Li et al., 2022修改)

      Figure  7.   Discriminant diagram of major and trace elements in apatite (modified from Cao et al., 2012; Li et al., 2022)

      表  1   不同类型矿床磷灰石U−Pb定年数据

      Table  1   U−Pb dating data of apatite from different types of deposits

      矿床类型 矿床名称 定年方法 定年结果 参考文献
      卡林型金矿床 高龙 LA−ICP−MS (156.8 ± 8.3) Ma Lin et al., 2023
      斑岩Mo矿床 南泥湖 LA−ICP−MS 151.5~102.3 Ma Yang et al., 2020
      大黑山 LA−ICP−MS (175.5±1.3) Ma Qu et al., 2021
      火山岩型U矿床 相山 LA−ICP−MS 131~127 Ma Wang et al., 2023
      IOA型矿床 陶村 LA−ICP−MS (131.1±1.9) Ma Zeng et al., 2016
      矽卡岩W−Cu矿床 朱溪 LA−ICP−MS (150.2±2.4) Ma 刘敏等, 2021
      Sn多金属矿床 个旧 LA−ICP−MS 83.5~85.1 Ma Guo et al., 2018a
      大厂 LA−ICP−MS 90.3~95.4 Ma Guo et al., 2018b
      下载: 导出CSV

      表  2   蚀变磷灰石与岩浆磷灰石的区别

      Table  2   The difference between altered apatite and magmatic apatite

      岩浆磷灰石蚀变磷灰石
      结构特征无明显分区核−边结构、溶解−再沉淀结构、化学分区
      晶体特征透明度高、自形、边界清晰、无流体包裹体或
      少流体包裹体、无矿物包裹体
      透明度低、半自形−他形、边界模糊、大量流体包裹体、
      有独居石等热液矿物析出
      阴极发光特征阴极发光均一、黄−棕色阴极发光有分区、绿色、黄绿色、黄褐色
      成分特征REE含量降低、U、Th、Mn、Na、Cl等元素含量降低
      下载: 导出CSV

      表  3   不同机器学习方法的磷灰石判别指标

      Table  3   Apatite discrimination indexes using different machine learning methods

      矿床类型判别指标
      XGBoost(n=8629)SDBM
      n=1551)
      PLS−DA
      n=4298)
      IOA型矿床高Th, 低Sr, UU, Sm, Lu高Nd, Sm, Gd, Tb, Dy,低Mn, U
      斑岩矿床
      矽卡岩矿床
      低Th, Nd
      低U, Eu

      La, Ce
      高V, Sr, U
      造山型Au矿高Dy, SrPr, Nd, Sm;
      IOCG矿床Sr, Eu
      花岗岩相关W矿床高Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
      花岗岩相关Cu−Pb−Zn矿床高Sr
      花岗岩相关Mo矿床高Mn, Th
      下载: 导出CSV
    • [1]

      Azadbakht Z, Lentz D, Mcfarlane C. 2018. Apatite chemical compositions from Acadian−related granitoids of New Brunswick, Canada: Implications for petrogenesis and metallogenesis[J]. Minerals, 8(12): 598. doi: 10.3390/min8120598

      [2]

      Barfod G H, Krogstad E J, Frei R, Albarède F. 2005. Lu−Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu−Hf isotopic closure in metamorphic apatite[J]. Geochimica et Cosmochimica Acta, 69(7): 1847−1859. doi: 10.1016/j.gca.2004.09.014

      [3]

      Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration; trace−element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 76(1): 45−69. doi: 10.1016/S0375-6742(02)00204-2

      [4]

      Belousova E A, Walters S, Griffin W L, O'Reilly S Y, Allen C M. 2001. Trace−element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland[J]. Australian Journal of Earth Sciences, 48(4): 603−619. doi: 10.1046/j.1440-0952.2001.00879.x

      [5]

      Bouzari F, Hart C J R, Bissig T, Barker S. 2016. Hydrothermal alteration revealed by apatite luminescence and chemistry; a potential indicator mineral for exploring covered porphyry copper deposits[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 111(6): 1397−1410. doi: 10.2113/econgeo.111.6.1397

      [6]

      Boyce J W, Liu Y, Rossman G R, Guan Y, Eiler J M, Stolper E M, Taylor L A. 2010. Lunar apatite with terrestrial volatile abundances[J]. Nature, 466(7305): 466−469. doi: 10.1038/nature09274

      [7]

      Boyce J W, Tomlinson S M, McCubbin F M, Greenwood J P, Treiman A H. 2014. The lunar apatite paradox[J]. Science, 344(6182): 400−402. doi: 10.1126/science.1250398

      [8]

      Boynton W V. 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[M]. Developments in Geochemistry, Henderson P, Elsevier. 2, 63−114.

      [9]

      Bromiley G D. 2021. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas?[J]. Lithos, 384−385: 105900.

      [10]

      Cao M J, Evans N J, Hollings P, Cooke D R, Mcinnes B I A, Qin K Z. 2021. Apatite texture, composition, and O−Sr−Nd isotope signatures record magmatic and hydrothermal fluid characteristics at the Black Mountain porphyry deposit, Philippines[J]. Economic Geology, 116(5): 1189−1207. doi: 10.5382/econgeo.4827

      [11]

      Cao M J, Evans N J, Qin K Z, Danišík M, Li G M, Mcinnes B I A. 2019. Open apatite Sr isotopic system in low−temperature hydrous regimes[J]. Journal of Geophysical Research: Solid Earth, 124(11): 11192−11203. doi: 10.1029/2019JB018085

      [12]

      Cao M J, Hollings P, Evans N J, Cooke D R, Mcinnes B I A, Zhao K D, Qin K Z, Li D F, Sweet G. 2020. In situ elemental and Sr isotope characteristics of magmatic to hydrothermal minerals from the Black Mountain porphyry deposit, Baguio District, Philippines[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 115(4): 927−944. doi: 10.5382/econgeo.4701

      [13]

      Cao M J, Li G M, Qin K Z, Seitmuratova E Y, Liu Y. 2012. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: Implications for petrogenesis and mineralization[J]. Resource Geology, 62(1): 63−83. doi: 10.1111/j.1751-3928.2011.00180.x

      [14]

      Chen M H, Leon B, Liao X, Zhang Z Q, Li Q L. 2019. Hydrothermal apatite SIMS Th/Pb dating; constraints on the timing of low temperature hydrothermal Au deposits in Nibao, SW China[J]. Lithos, 324−325: 418−428.

      [15]

      Chen N, Pan Y M, Weil J A. 2002. Electron paramagnetic resonance spectroscopic study of synthetic fluorapatite: Part I. Local structural environment and substitution mechanism of Gd3+ at the Ca2 site[J]. American Mineralogist, 87: 37−46. doi: 10.2138/am-2002-0105

      [16]

      Chen W T, Zhou M F, Gao J F. 2014. Constraints of Sr isotopic compositions of apatite and carbonates on the origin of Fe and Cu mineralizing fluids in the Lala Fe−Cu−(Mo, LREE) deposit, SW China[J]. Ore Geology Reviews, 61: 96−106. doi: 10.1016/j.oregeorev.2014.01.008

      [17]

      Chen Xiaocui, Mao Kainan, Yang Wei, Yang Wu, Yan Jun, Li Peng, Jiang Hai. 2023. The indicative significance of apatite geochemical characteristics on tin metallogenic capacity of granite: A case study of the Xiaolonghe tin deposit in the Tengchong−Lianghe tin belt, western Yunnan[J]. Acta Geologica Sinica, 97(11): 3846−3860 (in Chinese with English abstract).

      [18]

      Chen Yin, Liu Jianguo, Chen Lulu, Zhao Hualei. 2024. Mesozoic tectonic Eevolution of the Ordos Basin, China: Insights from the detrital zircon and apatite (U−Th)/He analyses[J]. China Geology, 7: 1−18.

      [19]

      Chew D M, Petrus J A, Kamber B S. 2014. U−Pb LA−ICPMS dating using accessory mineral standards with variable common Pb[J]. Chemical Geology, 363: 185−199. doi: 10.1016/j.chemgeo.2013.11.006

      [20]

      Chew D M, Spikings R A. 2015. Geochronology and thermochronology using apatite; Time and temperature, lower crust to surface[J]. Elements (Quebec), 11(3): 189−194. doi: 10.2113/gselements.11.3.189

      [21]

      Chew D M, Spikings R A. 2021. Apatite U−Pb thermochronology: A review[J]. Minerals, 11(10): 1095. doi: 10.3390/min11101095

      [22]

      Chu M, Wang K, Griffin W L, Chung S, O Reilly S Y, Pearson N J, Iizuka Y. 2009. Apatite composition: Tracing petrogenetic processes in Transhimalayan granitoids[J]. Journal of Petrology, 50(10): 1829−1855. doi: 10.1093/petrology/egp054

      [23]

      Chung C, You C, Schopf J W, Takahata N, Sano Y. 2020. NanoSIMS U−Pb dating of fossil−associated apatite crystals from Ediacaran (~570 Ma) Doushantuo Formation[J]. Precambrian Research, 349: 105564. doi: 10.1016/j.precamres.2019.105564

      [24]

      Cooke D R, Wilkinson J J, Baker M, Agnew P, Phillips J, Chang Z, Chen H, Wilkinson C C, Inglis S, Hollings P, Zhang L, Gemmell J B, White N C, Danyushevsky L, Martin H. 2020. Using mineral chemistry to aid exploration; a case study from the Resolution porphyry Cu−Mo deposit, Arizona[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 115(4): 813−840. doi: 10.5382/econgeo.4735

      [25]

      Coulson I M, Dipple G M, Raudsepp M. 2001. Evolution of HF and HCl activity in magmatic volatiles of the gold−mineralized Emerald Lake Pluton, Yukon Territory, Canada[J]. Mineralium Deposita, 36(6): 594−606. doi: 10.1007/s001260100191

      [26]

      Dawson J B, Hinton R W. 2003. Trace−element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa[J]. Mineralogical Magazine, 67(5): 921−930. doi: 10.1180/0026461036750151

      [27]

      Decrée S, Cawthorn G, Deloule E, Mercadier J, Frimmel H, Baele J. 2020. Unravelling the processes controlling apatite formation in the Phalaborwa Complex (South Africa) based on combined cathodoluminescence, LA−ICPMS and in−situ O and Sr isotope analyses[J]. Contributions to Mineralogy and Petrology, 175: 34. doi: 10.1007/s00410-020-1671-6

      [28]

      Deer W A, Howie R A, Zussman J. 1996. The Rock−forming Minerals. Vol5: Non−silicates, Apatite[M]. 2nd ed. New York: Londman.

      [29]

      Ding T, Ma D S, Lu J J, Zhang R Q. 2015. Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi–Hang zone, China: Implications for petrogenesis and metallogenesis[J]. Ore Geology Reviews, 69: 104−117. doi: 10.1016/j.oregeorev.2015.02.004

      [30]

      Doherty A L, Webster J D, Goldoff B A, Piccoli P M. 2014. Partitioning behavior of chlorine and fluorine in felsic melt–fluid(s)–apatite systems at 50 MPa and 850–950°C[J]. Chemical Geology, 384: 94−111. doi: 10.1016/j.chemgeo.2014.06.023

      [31]

      Donelick R A. 2005. Apatite fission−track analysis[J]. Reviews in Mineralogy and Geochemistry, 58(1): 49−94. doi: 10.2138/rmg.2005.58.3

      [32]

      Fleet M E, Pan Y. 1995. Site preference of rare earth elements in fluorapatite[J]. American Mineralogist, 80(3/4): 329−335.

      [33]

      Garzanti E. 2017. The maturity myth in sedimentology and provenance analysis[J]. Journal of Sedimentary Research, 87(4): 353−365. doi: 10.2110/jsr.2017.17

      [34]

      Glorie S, Jepson G, Konopelko D, Mirkamalov R, Meeuws F, Gilbert S, Gillespie J, Collins A S, Xiao W, Dewaele S, De Grave J. 2019. Thermochronological and geochemical footprints of post−orogenic fluid alteration recorded in apatite: Implications for mineralisation in the Uzbek Tian Shan[J]. Gondwana Research, 71: 1−15. doi: 10.1016/j.gr.2019.01.011

      [35]

      Golani P R. 2021. Assessment of Ore Deposit Settings, Structures and Proximity Indicator Minerals in Geological Exploration[M]. Springer Mineralogy, 1−389.

      [36]

      Goldoff B, Webster J D, Harlov D E. 2012. Characterization of fluor−chlorapatites by electron probe microanalysis with a focus on time−dependent intensity variation of Halogens[J]. American Mineralogist, 97: 1103−1115. doi: 10.2138/am.2012.3812

      [37]

      Guo J, Zhang R Q, Li C Y, Sun W D, Hu Y B, Kang D M, Wu J D. 2018a. Genesis of the Gaosong Sn–Cu deposit, Gejiu district, SW China: Constraints from in situ LA−ICP−MS cassiterite U–Pb dating and trace element fingerprinting[J]. Ore Geology Reviews, 92: 627−642. doi: 10.1016/j.oregeorev.2017.11.033

      [38]

      Guo J, Zhang R Q, Sun W D, Ling M X, Hu Y B, Wu K, Luo M, Zhang L C. 2018b. Genesis of tin−dominant polymetallic deposits in the Dachang district, South China: Insights from cassiterite U–Pb ages and trace element compositions[J]. Ore Geology Reviews, 95: 863−879. doi: 10.1016/j.oregeorev.2018.03.023

      [39]

      Harja M, Ciobanu G. 2018. Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite[J]. Science of the Total Environment, 628−629: 36−43.

      [40]

      Harlov D E, Wirth R, Foerster H. 2005. An experimental study of dissolution−reprecipitation in fluorapatite; fluid infiltration and the formation of monazite[J]. Contributions to Mineralogy and Petrology, 150(3): 268−286. doi: 10.1007/s00410-005-0017-8

      [41]

      Harlov D E. 2015. Apatite: A fingerprint for metasomatic processes[J]. Elements (Quebec), 11(3): 171−176. doi: 10.2113/gselements.11.3.171

      [42]

      Henrichs I A, Chew D M, O'Sullivan G J, Mark C, McKenna C, Guyett P. 2019. Trace element (Mn−Sr−Y−Th−REE) and U−Pb isotope systematics of metapelitic apatite during progressive greenschist−to amphibolite−facies barrovian metamorphism[J]. Geochemistry, Geophysics, Geosystems, 20: 4103−4129.

      [43]

      Henrichs I A, O'Sullivan G, Chew D M, Mark C, Babechuk M G, Mckenna C, Emo R. 2018. The trace element and U−Pb systematics of metamorphic apatite[J]. Chemical Geology, 483: 218−238. doi: 10.1016/j.chemgeo.2017.12.031

      [44]

      Hu Xiaoyan, Bi Xianwu, Hu Ruizhong, Shang Linbo, Fan Wenling. 2007. Advances in tin distribution between granitic melts and coexisting aqueous fluids and a review of tin in fluids and melts[J]. Advances in Earth Science, 22(3): 281−289 (in Chinese with English abstract).

      [45]

      Jiang Guohao. 2004. Chlorine and Fluorine Control on Copper anD Tungsten Mineralization in Hydrothermal Deposits—Cases of Dexing Porphyry Copper Deposit and Dajishan Tungsten Deposit in Jiangxi Province[D]. Chinese Academy of Science (Institute of Geochemistry), 1−107(in Chinese with English abstract).

      [46]

      Jiang Haoyuan, Zhao Zhidan, Zhu Xinyou, Yang Shangsong, Jiang Binbin, Yang Chaolei, Mao Chunwei. 2020. Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb−Zn−Ag polymetallic deposit, Inner Mongolia[J]. Geology in China, 47(2): 450−471 (in Chinese with English abstract).

      [47]

      Kempe U, Götze J. 2002. Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare−metal deposits[J]. Mineralogical Magazine, 66(1): 151−172. doi: 10.1180/0026461026610019

      [48]

      Kharkongor M B K, Glorie S, Mulder J, Kirkland C L, Chew D, Kohn B, Simpson A, 2023. Apatite laser ablation Lu−Hf geochronology: A new tool to date mafic rocks[J]. Chemical Geology, 636: 121630.

      [49]

      Konecke B A, Fiege A, Simon A C, Parat F, Stechern A. 2017. Co−variability of S6+, S4+, and S2− in apatite as a function of oxidation state: Implications for a new oxybarometer[J]. American Mineralogist, 102(3): 548−557. doi: 10.2138/am-2017-5907

      [50]

      Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake U A, Berugoda Arachchige D M, Kumarasinghe A R, Dahanayake D, Karunaratne V, Amaratunga G A J. 2017. Urea−Hydroxyapatite Nanohybrids for Slow Release of Nitrogen[J]. ACS Nano, 11(2): 1214−1221. doi: 10.1021/acsnano.6b07781

      [51]

      Krneta S, Ciobanu C L, Cook N J, Ehrig K, Kontonikas−Charos A. 2016. Apatite at Olympic Dam, South Australia: A petrogenetic tool[J]. Lithos, 262: 470−485. doi: 10.1016/j.lithos.2016.07.033

      [52]

      Labanieh S, Chauvel C, Germa A, Quidelleur X. 2012. Martinique: A clear case for sediment melting and slab dehydration as a function of distance to the trench[J]. Journal of Petrology, 53: 2441−2464. doi: 10.1093/petrology/egs055

      [53]

      Lassiter J C, Hauri E H, Nikogosian I K, Barsczus H G. 2002. Chlorine–potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: Constraints on chlorine recycling in the mantle and evidence for brine−induced melting of oceanic crust[J]. Earth and Planetary Science Letters, 202(3): 525−540.

      [54]

      Li H J, Hermann J. 2017. Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800°C: A new experimentally derived thermodynamic model[J]. American Mineralogist, 102(3): 580−594. doi: 10.2138/am-2017-5891

      [55]

      Li J, Chen S Y, Zhao Y H. 2022. Trace elements in apatite from Gejiu Sn polymetallic district: Implications for petrogenesis, metallogenesis and exploration[J]. Ore Geology Reviews, 145: 104880. doi: 10.1016/j.oregeorev.2022.104880

      [56]

      Li Jiang. 2022. Significance of Apatite for Metallogenic Mechanism and Prospecting Evaluation of Gejiu Sn−Cu Polymetallic Deposit in Yunnan Province[D]. Wuhan: China University of Geosciences, 1−174(in Chinese with English abstract).

      [57]

      Li Tianyi, Zhou Yan, Fang Shi, He Sheng, He Zhiliang, Fan Dehua. 2013. A new method for apatite fission track dating—the Laser−ICPMS method[J]. Oil & Gas Geology, 34(4): 550−557 (in Chinese with English abstract).

      [58]

      Lin S R, Hu K, Cao J, Liu Y, Liu S J, Zhang B. 2023. Geochemistry and origin of hydrothermal apatite in Carlin−type Au deposits, southwestern China (Gaolong deposit)[J]. Ore Geology Reviews, 154: 105312. doi: 10.1016/j.oregeorev.2023.105312

      [59]

      Liu Min, Song Shiwei, Cui Yurong, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2021. In−situ U−Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform−like W(Cu) ore of the Zhuxi tungsten deposit, northeastern Jiangxi Province[J]. Acta Petrologica Sinica. 37(3): 717−732(in Chinese with English abstract).

      [60]

      Liu Shirong, Hu Ruizhong, Zhou Guofu, Gong Guohong, Jin Zzhisheng, Zheng Wenqin. 2008. Study on the mineral composition of the clastic phosphate in Zhijin phosphate deposits, China[J]. Acta Mineralogica Sinica, 28(3): 244−250 (in Chinese with English abstract).

      [61]

      Liu W H, Danišík M, Zhang J, Hu X L. 2020. Apatite (U–Th)/He thermochronometry of iron deposits in the central Ningwu volcanic basin, eastern China: Implications for exhumation and preservation[J]. Journal of Geochemical Exploration, 217: 106608. doi: 10.1016/j.gexplo.2020.106608

      [62]

      Liu Yu, Peng Mingsheng. 2003. Advances in the researches on structural substitution of apatite[J]. Acta Petrologica et Minralogica, 22(4): 413−415 (in Chinese with English abstract).

      [63]

      Liu Zhenjiang, Wang Jianping, Zheng Dewen, Liu Jiajun, Liu Jun, Fu Chao. 2010. Exploration prospect and post−ore denudation in the northwestern Jiaodong Gold Province, China: Evidence from apatite fission track thermochronology[J]. Acta Petrologica Sinica, 26(12): 3597−3611(in Chinese with English abstract).

      [64]

      Loader M A, Wilkinson J J, Armstrong R N. 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility[J]. Earth and Planetary Science Letters, 472: 107−119. doi: 10.1016/j.jpgl.2017.05.010

      [65]

      Lumiste K, Mänd K, Bailey J, Paiste P, Lang L, Lepland A, Kirsimäe K. 2019. REE+Y uptake and diagenesis in Recent sedimentary apatites[J]. Chemical Geology, 525: 268−281. doi: 10.1016/j.chemgeo.2019.07.034

      [66]

      Mao M, Rukhlov A S, Rowins S M, Spence J, Coogan L A. 2016. Apatite trace element compositions; a robust new tool for mineral exploration[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 111(5): 1187−1222. doi: 10.2113/econgeo.111.5.1187

      [67]

      Marks M A W, Scharrer M, Ladenburger S, Markl G. 2016. Comment on “Apatite: A new redox proxy for silicic magmas?” [Geochimica et Cosmochimica Acta 132 (2014) 101–119][J]. Geochimica et Cosmochimica Acta, 183: 267−270. doi: 10.1016/j.gca.2016.02.017

      [68]

      Mathez E A, Webster J D. 2005. Partitioning behavior of chlorine and fluorine in the system apatite−silicate melt−fluid[J]. Geochimica et Cosmochimica Acta, 69(5): 1275−1286. doi: 10.1016/j.gca.2004.08.035

      [69]

      McClellan G H, Van Kauwenbergh S J, Notholt A J G, Jarvis I. 1990. Mineralogy of sedimentary apatites[J]. Geological Society Special Publication, 52(1): 23−31. doi: 10.1144/GSL.SP.1990.052.01.03

      [70]

      McCubbin F M, Vander Kaaden K E, Tartèse R, Boyce J W, Mikhail S, Whitson E S, Bell A S, Anand M, Franchi I A, Wang J, Hauri E H. 2015. Experimental investigation of F, Cl, and OH partitioning between apatite and Fe−rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C[J]. American Mineralogist, 100(8/9): 1790−1802.

      [71]

      Migdisov A A, Williams−Jones A E, Wagner T. 2009. An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride− and chloride−bearing aqueous solutions at temperatures up to 300°C[J]. Geochimica et Cosmochimica Acta, 73(23): 7087−7109. doi: 10.1016/j.gca.2009.08.023

      [72]

      Miles A J, Graham C M, Hawkesworth C J, Gillespie M R, Hinton R W, Bromiley G D. 2014. Apatite: A new redox proxy for silicic magmas?[J]. Geochimica et Cosmochimica Acta, 132: 101−119. doi: 10.1016/j.gca.2014.01.040

      [73]

      Nadoll P, Mauk J L, Leveille R A, Koenig A E. 2015. Geochemistry of magnetite from porphyry Cu and skarn deposits in the Southwestern United States[J]. Mineralium Deposita, 50(4): 493−515. doi: 10.1007/s00126-014-0539-y

      [74]

      O'Sullivan G, Chew D, Kenny G, Henrichs I, Mulligan D. 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth Science Reviews, 201: 103044. doi: 10.1016/j.earscirev.2019.103044

      [75]

      Palma G, Barra F, Reich M, Valencia V, Simon A C, Vervoort J, Leisen M, Romero R. 2019. Halogens, trace element concentrations, and Sr−Nd isotopes in apatite from iron oxide−apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization[J]. Geochimica et Cosmochimica Acta, 246: 515−540. doi: 10.1016/j.gca.2018.12.019

      [76]

      Pan L C, Hu R Z, Wang X S, Bi X W, Zhu J J, Li C S. 2016. Apatite trace element and halogen compositions as petrogenetic−metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China[J]. Lithos, 254−255: 118−130.

      [77]

      Pan Y, Fleet M E. 2002. Compositions of the apatite−group minerals: Substitution mechanisms and controlling factors[J]. Reviews in Mineralogy and Geochemistry, 48(1): 13−49. doi: 10.2138/rmg.2002.48.2

      [78]

      Peng G, Luhr J F, Mcgee J J. 1997. Factors controlling sulfur concentrations in volcanic apatite[J]. American Mineralogist, 82(11/12): 1210−1224.

      [79]

      Piccoli P M, Candela P A. 2002. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 48(1): 255−292. doi: 10.2138/rmg.2002.48.6

      [80]

      Pickering J, Matthews W, Enkelmann E, Guest B, Sykes C, Koblinger B M. 2020. Laser ablation (U−Th−Sm)/He dating of detrital apatite[J]. Chemical Geology, 548: 119683. doi: 10.1016/j.chemgeo.2020.119683

      [81]

      Prowatke S, Klemme S. 2006. Trace element partitioning between apatite and silicate melts[J]. Geochimica et Cosmochimica Acta, 70(17): 4513−4527. doi: 10.1016/j.gca.2006.06.162

      [82]

      Putnis A. 2002. Mineral replacement reactions: From macroscopic observations to microscopic mechanisms[J]. Mineralogical Magazine, 66(5): 689−708. doi: 10.1180/0026461026650056

      [83]

      Qian Z S, Yang F, Liu C, Xue F, Santosh M, Yang B, Zhang S, Kim S W. 2022. Late Mesozoic Huangbeiling S−type granite in the East Qinling Orogen, China: Geochronology, petrogenesis and implications for tectonic evolution[J]. Geochemistry, 82(1): 125857. doi: 10.1016/j.chemer.2021.125857

      [84]

      Qiu K F, Zhou T, Chew D, Hou Z L, Müller A, Yu H C, Lee R G, Chen H, Deng J. 2024. Apatite trace element composition as an indicator of ore deposit types: A machine learning approach[J]. American Mineralogist, 109(2): 303−314. doi: 10.2138/am-2022-8805

      [85]

      Qu P, Yang W B, Niu H C, Li N B, Wu D. 2021. Apatite fingerprints on the magmatic−hydrothermal evolution of the Daheishan giant porphyry Mo deposit, NE China[J]. GSA Bulletin, (7/8): 1863−1876.

      [86]

      Robb L. 2005. Introduction to Ore−Forming Processes[M]. UK: Blackwell Publishing. 1−343.

      [87]

      Rønsbo J G. 2008. Apatite in the Ilímaussaq alkaline complex: Occurrence, zonation and compositional variation[J]. Lithos, 106(1−2): 71−82.

      [88]

      Sang Shengping, Lu Haijian, Ye Jiacan, Pan Jiawei, Li Haibing. 2024. Sediment recycling in the northern Qaidam Basin margin during the Cenozoic: A case study from the Dahonggou section[J]. Geology in China, 51(2): 606−622 (in Chinese with English abstract).

      [89]

      Serova A A, Spiridonov E M. 2018. Three types of apatite in Norilsk sulfide ores[J]. Geochemistry International, 56(5): 474−483. doi: 10.1134/S0016702918050075

      [90]

      Sha L, Chappell B W. 1999. Apatite chemical composition, determined by electron microprobe and laser−ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta, 63(22): 3861−3881. doi: 10.1016/S0016-7037(99)00210-0

      [91]

      Simpson A, Gilbert S, Tamblyn R, Hand M, Spandler C, Gillespie J, Nixon A, Glorie S. 2021. In−Situ Lu Hf geochronology of garnet, apatite and xenotime by La−ICP−MS/MS[J]. Chemical Geology, 577: 120299. doi: 10.1016/j.chemgeo.2021.120299

      [92]

      Sommerauer J, Katz−Lehnert K. 1985. A new partial substitution mechanism of CO2− 3/CO3OH3− and SiO4− 4for the PO3− 4group in hydroxyapatite from the Kaiserstuhl alkaline complex (SW−Germany)[J]. Contributions to Mineralogy and Petrology, 91(4): 360−368. doi: 10.1007/BF00374692

      [93]

      Spear F S, Pyle J M. 2002. Apatite, monazite, and xenotime in metamorphic rocks[J]. Reviews in Mineralogy and Geochemistry, 48(1): 293−335. doi: 10.2138/rmg.2002.48.7

      [94]

      Stokes T N, Bromiley G D, Potts N J, Saunders K E, Miles A J. 2019. The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt[J]. Chemical Geology, 506: 162−174. doi: 10.1016/j.chemgeo.2018.12.015

      [95]

      Sun J F, Yang J H, Zhang J H, Yang Y H, Zhu Y S. 2021. Apatite geochemical and Sr−Nd isotopic insights into granitoid petrogenesis[J]. Chemical Geology, 566: 120104. doi: 10.1016/j.chemgeo.2021.120104

      [96]

      Sun S J, Yang X Y, Wang G J, Sun W D, Zhang H, Li C, Ding X. 2019. In situ elemental and Sr−O isotopic studies on apatite from the Xu−Huai intrusion at the southern margin of the North China Craton: Implications for petrogenesis and metallogeny[J]. Chemical Geology, 510: 200−214. doi: 10.1016/j.chemgeo.2019.02.010

      [97]

      Tan H M R, Huang X W, Meng Y M, Xie H, Qi L. 2023. Multivariate statistical analysis of trace elements in apatite: Discrimination of apatite with different origins[J]. Ore Geology Reviews, 153: 105269. doi: 10.1016/j.oregeorev.2022.105269

      [98]

      Tepper J H, Kuehner S M. 1999. Complex zoning in apatite from the Idaho Batholith; a record of magma mixing and intracrystalline trace element diffusion[J]. American Mineralogist, 84(4): 581−595. doi: 10.2138/am-1999-0412

      [99]

      Thomson S N, Gehrels G E, Ruiz J, Buchwaldt R. 2012. Routine low−damage apatite U−Pb dating using laser ablation–multicollector–ICPMS[J]. Geochemistry, Geophysics, Geosystems, 13(2): Q0AA2.

      [100]

      Toplis M J, Dingwell D B. 1996. The variable influence of P2O5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts[J]. Geochimica et Cosmochimica Acta, 60(21): 4107−4121. doi: 10.1016/S0016-7037(96)00225-6

      [101]

      Wang Guochan. 2002. New approach to determine the exhumation history of the sediment provenance: Detrital zircon and apatite fission−track thermochronology[J]. Geological Science and Technology Information, 21(4): 35−40 (in Chinese with English abstract).

      [102]

      Wang Yiwei, Mei Gang, Xie Qixing, Zhou Xiaoke, Wang Gang. 2015. Apatite fission track evidence for the Cenozoic uplift process in Garze area on the eastern margin of the Tibetan Plateau[J]. Geology in China, 42(2): 469−479 (in Chinese with English abstract).

      [103]

      Watson E B, Green T H. 1981. Apatite/liquid partition coefficients for the rare earth elements and strontium[J]. Earth and Planetary Science Letters, 56: 405−421. doi: 10.1016/0012-821X(81)90144-8

      [104]

      Watson E B. 1980. Apatite and phosphorus in mantle source regions: An experimental study of apatite/melt equilibria at pressures to 25 kbar[J]. Earth and Planetary Science Letters, 51(2): 322−335. doi: 10.1016/0012-821X(80)90214-9

      [105]

      Webster J D, Goldoff B A, Flesch R N, Nadeau P A, Silbert Z W. 2017. Hydroxyl, Cl, and F partitioning between high−silica rhyolitic melts−apatite−fluid(s) at 50–200 MPa and 700–1000°C[J]. American Mineralogist, 102(1): 61−74.

      [106]

      Webster J D, Piccoli P M, Harlov D E, Rakovan J F. 2015. Magmatic apatite; a powerful, yet deceptive, mineral[J]. Elements (Quebec), 11(3): 177−182. doi: 10.2113/gselements.11.3.177

      [107]

      Webster J D, Tappen C M, Mandeville C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa[J]. Geochimica et Cosmochimica Acta, 73(3): 559−581. doi: 10.1016/j.gca.2008.10.034

      [108]

      Wei C W, Xu C, Deng M, Song W L, Shi A G, Li Z Q, Fan C, Kuang G. 2022. Origin of metasomatic fluids in the Bayan Obo rare−earth−element deposit[J]. Ore Geology Reviews, 141: 104654. doi: 10.1016/j.oregeorev.2021.104654

      [109]

      Williams−Jones A E, Migdisov A A, Samson I M. 2012. Hydrothermal mobilisation of the rare earth elements; a tale of "ceria" and "yttria"[J]. Elements (Quebec), 8(5): 355−360. doi: 10.2113/gselements.8.5.355

      [110]

      Wolf R A, Farley K A, Kass D M. 1998. Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer[J]. Chemical Geology, 148(1): 105−114.

      [111]

      Wu W, Lang X, Wang X, Deng Y, Du L, Wang Y, Jiang K, Zhan H, Zhaxi P, Fayek M. 2024. Cathodoluminescence and geochemical characteristics of Apatite: Implications for mineral exploration in the Xiongcun District, Tibet, China[J]. Ore Geology Reviews, 164: 105786. doi: 10.1016/j.oregeorev.2023.105786

      [112]

      Wyllie P J, Cox K G, Biggar G M. 1962. The habit of apatite in synthetic systems and igneous rocks[J]. Journal of Petrology, 3(2): 238−242. doi: 10.1093/petrology/3.2.238

      [113]

      Xie Fuwei, Lang Xinhai, Tang Juxin, Xiao Hongtian, Ma Di. 2019. Trace element geochemistry of zircon, apatite, and titanite of Late Cretaceous hornblende gabbro and granite porphyry in the southern Lhasa subterrane: Implications for petrogenesis and mineralization. Acta Petrologica Sinica, 35(7): 2124−2142(in Chinese with English abstract).

      [114]

      Yang F, Jepson G, Liu C, Qian Z S, Zhang X H, Zhang Y, Glorie S. 2022a. Uplift−exhumation and preservation of the Yumugou Mo−W deposit, East Qinling, China: Insights from multiple apatite low−temperature thermochronology[J]. Ore Geology Reviews, 141: 104670. doi: 10.1016/j.oregeorev.2021.104670

      [115]

      Yang F, Mao J W, Ren W D, Qian Z S, Li C, Jepson G. 2022b. Temporal evolution and origin of the Yumugou Mo−W deposit, East Qinling, China: Evidence from molybdenite Re−Os age and U−Pb dating and geochemistry of titanite[J]. Ore Geology Reviews, 150: 105172. doi: 10.1016/j.oregeorev.2022.105172

      [116]

      Yang F, Santosh M, Glorie S, Xue F, Zhang S, Zhang X H. 2020. Apatite geochronology and chemistry of Luanchuan granitoids in the East Qinling Orogen, China: Implications for petrogenesis, metallogenesis and exploration[J]. Lithos, 378−379: 105797.

      [117]

      Yang Jing, Shi Wei, Wang Sen, Zhang Shuanhong, Pang Jianzhang, Yang Qian, Zhang Yu, Wang Tianyu. 2023. Measurement procedure and verification of apatite fission track dating: External detector method and LA−ICP−MS/FT method[J]. Acta Geologica Sinica, 97(5): 1701−1710(in Chinese with English abstract).

      [118]

      Yang Li, Yuan Wanmin, Wang Ke. 2018. Research advances of thermochronology in mineral deposits[J]. Earth Science, 43(6): 1887−1902(in Chinese with English abstract).

      [119]

      Yang Y, Chen Y, Zhang J, Zhang C. 2013. Ore geology, fluid inclusions and four−stage hydrothermal mineralization of the Shangfanggou giant Mo–Fe deposit in Eastern Qinling, central China[J]. Ore Geology Reviews, 55: 146−161. doi: 10.1016/j.oregeorev.2013.05.007

      [120]

      Yang Yongfei, Li Nuo, Yang Yan. 2009. Fluid inclusion study of the Nannihu porphyry Mo−W deposit, Luanchuan county, Henan Province[J]. Acta Petrologica Sinica. 25(10): 2550−2562(in Chinese with English abstract).

      [121]

      Yu Z Q, Ling H F, Chen P R, Chen W F, Fang Q C, Mavrogenes J. 2022. In situ elemental and Sr−Nd isotopic compositions of hydrothermal apatite from the Shazhou U deposit in the Xiangshan complex: Implications for the origins of ore−forming fluids of volcanic related U deposits in South China[J]. Journal of Asian Earth Sciences, 233: 105230.

      [122]

      Yu Z Q, Ling H F, Mavrogenes J, Chen P R, Chen W F, Fang Q C. 2019. Metallogeny of the Zoujiashan uranium deposit in the Mesozoic Xiangshan volcanic−intrusive complex, southeast China: Insights from chemical compositions of hydrothermal apatite and metal elements of individual fluid inclusions[J]. Ore Geology Reviews, 113: 103085. doi: 10.1016/j.oregeorev.2019.103085

      [123]

      Yuan Wanmin. 2016. Thermochronological method of revealing conservation and changes of mineral deposits[J]. Acta Petrologica Sinica. 32(8): 2571−2578(in Chinese with English abstract).

      [124]

      Zeng L P, Zhao X F, Li X C, Hu H, Christopher M. 2016. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite−apatite deposit, eastern China; constraints on fluid metasomatism[J]. American Mineralogist, 101(11): 2468−2483. doi: 10.2138/am-2016-5743

      [125]

      Zhang Rongwei, Peng Jiantang, Xue Chuandong Xue Lipeng, Yang Kaijun. 2019. The metallogenic thermal evolution of the Bengge gold deposit related to alkali−rich intrusive rocks in the Sanjiang region SW China: Evidence from apatite fission track (AFT) thermochronology[J]. Acta Geologica Sinica, 93(9): 2260−2272 (in Chinese with English abstract).

      [126]

      Zhang X N, Pan J Y, Lehmann B, Li J X, Yin S, Ouyang Y P, Wu B, Fu J L, Zhang Y, Sun Y, Wan J J, Liu T. 2023. Diagnostic REE patterns of magmatic and hydrothermal apatite in the Zhuxi tungsten skarn deposit, China[J]. Journal of Geochemical Exploration, 252: 107271. doi: 10.1016/j.gexplo.2023.107271

      [127]

      Zhao Linghao, Zhan Xiuchun, Zeng Lingsen, Hu Mingyue, Sun Dongyang, Yuan Jihai. 2022. Direct calibration method for LA−HR−ICP−MS apatite U−Pb dating[J]. Rock and Mineral Analysis. 41(5): 744−753(in Chinese with English abstract).

      [128]

      Zhou Hongying, Gen Jianzhen, Cui Yurong, Li Huaikun, Li Huimin. 2012. In situ U−Pb dating of apatite using LA−MC−ICP−MS[J]. Acta Geoscientica Sinica, 6(33): 857−864 (in Chinese with English abstract).

      [129]

      Zhou Tong, Qiu Kunfeng, Wang Yu, Yu Haochen, Hou Zhaoliang. 2022. Apatite Eu/Y−Ce discrimination diagram: A big data based approach for provenance classification[J]. Acta Petrologica Sinica, 38(1): 291−299 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.01.19

      [130]

      Zhou Yaoqi, Shi Bingjie, Li Su, Liu Qian, Zhang Yuncui. 2013. Geochemical research progress of accessory minerals[J]. Journal of China University of Petroleum (Edition of Natural Science), 37(4): 59−70(in Chinese with English abstract).

      [131]

      Zhu Xiaoqing, Wang Zhonggang, Huang Yan, Wang Ganlu. 2004. REE content and distribution in apatite and its geological tracing significance[J]. Chinese Rare Earths, 25(5): 41−45(in Chinese with English abstract).

      [132]

      Zirner A L K, Marks M A W, Wenzel T, Jacob D E, Markl G. 2015. Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: The Ilímaussaq complex, South Greenland[J]. Lithos, 228−229: 12−22.

      [133] 陈晓翠, 毛凯楠, 杨巍, 杨梧, 闫俊, 李朋, 姜海. 2023. 磷灰石地球化学特征对花岗岩锡成矿能力的指示: 以滇西腾冲−梁河锡矿带小龙河锡矿床为例[J]. 地质学报, 97(11): 3846−3860.
      [134] 胡晓燕, 毕献武, 胡瑞忠, 尚林波, 樊文苓. 2007. 锡在花岗质熔体和流体中的性质及分配行为研究进展[J]. 地球科学进展, 22(3): 281−289. doi: 10.3321/j.issn:1001-8166.2007.03.008
      [135] 蒋国豪. 2004. 氟、氯对热液钨、铜成矿的制约—以江西德兴铜矿, 大吉山钨矿为例[D]. 中国科学院研究生院(地球化学研究所), 1−107.
      [136] 蒋昊原, 赵志丹, 祝新友, 杨尚松, 蒋斌斌, 杨朝磊, 茅椿伟. 2020. 内蒙古边家大院铅锌银矿床花岗斑岩及辉石闪长岩特征及对成矿的指示[J]. 中国地质, 47(2): 450−471. doi: 10.12029/gc20200213
      [137] 李姜. 2022. 磷灰石对云南个旧锡铜多金属矿床成矿机制及找矿评价的指示意义[D]. 武汉: 中国地质大学, 174.
      [138] 李天义, 周雁, 方石, 何生, 何治亮, 樊德华. 2013. 磷灰石裂变径迹年龄测试分析新方法—激光剥蚀−ICP−MS法[J]. 石油与天然气地质, 34(4): 550−557. doi: 10.11743/ogg20130418
      [139] 刘敏, 宋世伟, 崔玉荣, 陈国华, 饶建锋, 欧阳永棚. 2021. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U−Pb年代学及微量元素研究[J]. 岩石学报, 37(3): 717−732.
      [140] 刘世荣, 胡瑞忠, 周国富, 龚国洪, 金志升, 郑文勤. 2008. 织金新华磷矿碎屑磷灰石的矿物成分研究[J]. 矿物学报, 28(3): 244−250. doi: 10.3321/j.issn:1000-4734.2008.03.003
      [141] 刘羽, 彭明生. 2003. 磷灰石结构替换的研究进展[J]. 岩石矿物学杂志, 22(4): 413−415. doi: 10.3969/j.issn.1000-6524.2003.04.021
      [142] 柳振江, 王建平, 郑德文, 刘家军, 刘俊, 付超. 2010. 胶东西北部金矿剥蚀程度及找矿潜力和方向—来自磷灰石裂变径迹热年代学的证据[J]. 岩石学报, 26(12): 3597−3611.
      [143] 桑胜萍, 卢海建, 叶家灿, 潘家伟, 李海兵. 2024. 柴达木盆地北缘新生代沉积物再旋回作用研究: 以大红沟剖面为例[J]. 中国地质, 51(2): 606−622. doi: 10.12029/gc20201226001
      [144] 王国灿. 2002. 沉积物源区剥露历史分析的一种新途径—碎屑锆石和磷灰石裂变径迹热年代学[J]. 地质科技情报, 21(4): 35−40.
      [145] 王一伟, 梅刚, 谢启兴, 周晓珂, 王刚. 2015. 青藏高原东缘甘孜地区新生代隆升过程之磷灰石裂变径迹证据[J]. 中国地质, 42(2): 469−479. doi: 10.3969/j.issn.1000-3657.2015.02.008
      [146] 谢富伟, 郎兴海, 唐菊兴, 肖鸿天, 马笛. 2019. 拉萨地块南缘晚白垩世角闪辉长岩、花岗斑岩副矿物微量元素特征对成岩成矿的指示[J]. 岩石学报, 35(7): 2124−2142. doi: 10.18654/1000-0569/2019.07.11
      [147] 杨静, 施炜, 王森, 张拴宏, 庞建章, 杨谦, 张宇, 王天宇. 2023. 磷灰石裂变径迹实验流程的建立及验证—外探测器法和LA−ICP−MS/FT法[J]. 地质学报, 97(5): 1701−1710. doi: 10.3969/j.issn.0001-5717.2023.05.023
      [148] 杨莉, 袁万明, 王珂. 2018. 热年代学方法、技术手段及其在矿床地质中的研究进展[J]. 地球科学, 43(6): 1887−1902.
      [149] 杨永飞, 李诺, 杨艳. 2009. 河南省栾川南泥湖斑岩型钼钨矿床流体包裹体研究[J]. 岩石学报, 25(10): 2550−2562.
      [150] 袁万明. 2016. 矿床保存变化研究的热年代学技术方法[J]. 岩石学报, 32(8): 2571−2578.
      [151] 张荣伟, 彭建堂, 薛传东, 薛力鹏, 杨开军. 2019. 西南三江甭哥与富碱侵入岩有关金矿床成矿热史的磷灰石裂变径迹年代学证据[J]. 地质学报, 93(9): 2260−2272. doi: 10.3969/j.issn.0001-5717.2019.09.011
      [152] 赵令浩, 詹秀春, 曾令森, 胡明月, 孙冬阳, 袁继海. 2022. 磷灰石LA−ICP−MS U−Pb定年直接校准方法研究[J]. 岩矿测试, 41(5): 744−753.
      [153] 周红英, 耿建珍, 崔玉荣, 李怀坤, 李惠民. 2012. 磷灰石微区原位LA−MC−ICP−MS U−Pb同位素定年[J]. 地球学报, 6(33): 857−864.
      [154] 周统, 邱昆峰, 王瑀, 于皓丞, 侯照亮. 2022. 磷灰石Eu/Y−Ce: 基于大数据的源区类型判别新图解[J]. 岩石学报, 38(1): 291−299. doi: 10.18654/1000-0569/2022.01.19
      [155] 周瑶琪, 史冰洁, 李素, 刘倩, 张云翠. 2013. 副矿物地球化学研究进展[J]. 中国石油大学学报(自然科学版), 37(4): 59−70.
      [156] 朱笑青, 王中刚, 黄艳, 王甘露. 2004. 磷灰石的稀土组成及其示踪意义[J]. 稀土, 25(5): 41−45. doi: 10.3969/j.issn.1004-0277.2004.05.013
    图(7)  /  表(3)
    计量
    • 文章访问数:  1377
    • HTML全文浏览量:  410
    • PDF下载量:  265
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-03-12
    • 修回日期:  2024-07-05
    • 网络出版日期:  2025-03-10

    目录

      /

      返回文章
      返回
      x 关闭 永久关闭