• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

氧同位素技术在土壤−植被−生态−环境研究中的应用进展与展望

叶桂琦, 季文兵, 杨忠芳, 余涛, 侯青叶, 钱鹍

叶桂琦,季文兵,杨忠芳,余涛,侯青叶,钱鹍. 2025. 氧同位素技术在土壤−植被−生态−环境研究中的应用进展与展望[J]. 中国地质, 52(2): 1−48. DOI: 10.12029/gc20240410003
引用本文: 叶桂琦,季文兵,杨忠芳,余涛,侯青叶,钱鹍. 2025. 氧同位素技术在土壤−植被−生态−环境研究中的应用进展与展望[J]. 中国地质, 52(2): 1−48. DOI: 10.12029/gc20240410003
Ye Guiqi, Ji Wenbing, Yang Zhongfang, Yu Tao, Hou Qingy, Qian Kun. 2025. Research progress and prospect of oxygen isotope technique in soil-vegetation-ecology-environment studies[J]. Geology in China, 52(2): 1−48. DOI: 10.12029/gc20240410003
Citation: Ye Guiqi, Ji Wenbing, Yang Zhongfang, Yu Tao, Hou Qingy, Qian Kun. 2025. Research progress and prospect of oxygen isotope technique in soil-vegetation-ecology-environment studies[J]. Geology in China, 52(2): 1−48. DOI: 10.12029/gc20240410003

氧同位素技术在土壤−植被−生态−环境研究中的应用进展与展望

基金项目: 广东省地质勘查与城市地质调查项目(No.2023-25)、宁夏回族自治区重点研发计划重大(重点)项目“宁夏中北部土壤碳汇源转化因素与碳库保育研究”(No.2022BBF02036)联合资助。
详细信息
    作者简介:

    叶桂琦,女,2001年生,硕士生,地球化学专业,主要从事环境地球化学研究;E-mail:yegq77@163.com

    通讯作者:

    季文兵,男,1991年生,助理研究员,主要研究方向为地球化学和生态地球化学;E-mail:13121531228@163.com

Research progress and prospect of oxygen isotope technique in soil-vegetation-ecology-environment studies

Funds: Supported by the projects of Guangdong Geological Exploration and Urban Geology (No.2023−25) and “Research on the transformation factors of soil carbon sinks and carbon pool conservation in north−central Ningxia” of the Key R&D Program of Ningxia Hui Autonomous Region (No.2022BBF02036).
More Information
    Author Bio:

    YE Guiqi, female, born in 2001, master candidate, majors in geochemistry, engaged in environmental geochemistry; E-mail: yegq77@163.com

    Corresponding author:

    JI Wenbing, male, born in 1991, assistant researcher, majors in geochemistry and ecological geochemistry; E-mail:13121531228@163.com.

  • 摘要:
    研究目的 

    氧是组成生命物质的基本元素之一,自然界的氧循环是生命活动的基本保证。氧同位素技术是一种强有力的示踪手段,能够有效指示生物地球化学循环过程,在生态环境研究中得到了广泛应用。

    研究方法 

    本文通过查阅大量氧同位素的文献,综述了氧同位素的分馏机制以及在土壤−植被−生态−环境方面的应用。

    研究结果 

    依赖于同位素质量比值偏差大,氧同位素可以在自然条件下发生较大程度的同位素分馏。氧同位素的应用主要包括三个方面:(1)示踪环境污染物来源;(2)古环境和古气候恢复;(3)追踪食物(动物)的地理来源。

    结论 

    在实际应用中,氧同位素通常会与其他同位素(氢同位素、碳同位素、氮同位素等)共同使用,从气候、植被发育程度和地理位置等方面多维度示踪。今后氧稳定同位素可与树轮、有孔虫、黄土、盐湖等全球变化领域的代用物模式结合,发挥更重要的环境生态学研究价值。

    创新点:

    本文归纳总结了氧同位素在生态环境方面的应用现状以及前景展望,以期为未来氧同位素在土壤、植被、生态环境方面的研究提供参考。

    Abstract:

    This paper is the result of environmental geological survey engineering.

    Objective 

    Oxygen is one of the basic elements that make up living matter, and the oxygen cycle in nature is the basic guarantee for life activities. Oxygen isotope technology is a powerful tracer that can effectively indicate biogeochemical cycling processes and has been widely used in ecological and environmental research.

    Methods 

    This paper reviewes the fractionation mechanism of oxygen isotopes and its application in soil-vegetation-ecological environment by reviewing a large number of literatures on oxygen isotopes.

    Results 

    Depending on the large isotope mass ratio difference, oxygen isotopes can undergo the greatest degree of isotope fractionation under natural conditions. The application of oxygen isotopes mainly includes three aspects: (1) Tracing the source of environmental pollutants; (2) Paleoenvironment and paleoclimate restoration; (3) Tracing the geographical origin of food (animals).

    Conclusions 

    In practice, oxygen isotopes are usually used together with other isotopes (hydrogen, carbon, nitrogen, etc.) to track multi-dimensional climate, vegetation development, and geographical location. In the future, oxygen stable isotopes can be combined with substitute models in the fields of global change, such as tree rings, foraminifera, loess, and salt lakes, and play a more important role in environmental ecology research.

    Highlights:

    This paper summarizes the current status of oxygen isotope application in the ecological environment and its prospect, which will provide reference for future research on oxygen isotopes in soil, vegetation and ecological environment.

  • 近年来,新疆阿尔金西段萤石找矿取得的重大突破。萤石矿主要分布于卡尔恰尔—阔什区域性大断裂(阿中断裂)以南的晚奥陶世碱长花岗岩侵入体内及其外接触带附近的富钙质岩系中,圈定了卡尔恰尔—小白河沟、盖吉克—亚干布阳、布拉克北—皮亚孜达坂、托盖里克东南—阿其克南4条沿北东向断裂分布的萤石矿带,整个远景区CaF2资源量已达3500万t以上。中国地质调查局西安矿产资源调查中心于2021—2023年对阿尔金西段小白河沟—克鲁求干道班一带开展了矿产调查评价,在小白河沟地区新发现热液充填型萤石矿产地1处,估算萤石的潜在资源达大型规模,对于拓展阿尔金地区萤石矿床具有借鉴意义。

    在对小白河沟地区以往地物化遥成果资料综合研究基础上,结合本次遥感蚀变异常提取和构造解译圈定了重点工作区,通过开展1∶10000地质草测、1∶10000岩石地球化学剖面测量、1∶500地质剖面测量、槽探及钻探等工作,在小白河沟共圈定萤石矿体21条,实现了找矿突破。通过典型矿床对比,总结了区内萤石矿成矿规律,初步建立了找矿模式,分析了区域萤石成矿潜力及找矿前景。

    研究区出露地层基底主要为古元古界阿尔金岩群a岩组和b岩组,二者呈构造面理接触关系。阿尔金岩群a岩组为萤石主要赋矿地层,该岩组出露的岩石类型主要为黑云斜长片麻岩、黑云二长片麻岩、斜长变粒岩、石英岩、大理岩,局部夹有角闪斜长片麻岩(图1b)。区内断裂较为发育,期次较多,主要呈北北东向、北东向、南东东向,南东东向断裂主要与区内的萤石矿化关系密切。地层中岩脉极为发育,在接触带可见岩石具萤石化、钾长石化、碳酸盐化、绿帘石化、硅化等围岩蚀变。

    图  1  区域构造位置图(a)、矿区地质简图(b)、勘探线剖面图(c)及萤石矿岩心(d)
    Figure  1.  Regional structure location map (a), brief geological diagram of ore district (b), prospecting line profile map (c) and cores specimen of fluorite deposit (d)

    在小白河沟共圈定萤石矿体21条(图1c),长100~1130 m,厚度0.7~4.68 m,矿体沿走向延续性较好,沿倾向呈透镜体状,断续产出,斜切岩体和变质岩,有“膨大缩小”变化,部分呈“透镜体”、“扁豆体”断续分布,主矿体旁侧发育少数分枝。矿体品位23.2%~82.4%,平均品位32.2%,钻孔深部验证效果良好。矿石主要以块状、纹层状为主,主要矿物为萤石,局部发育方解石、带云母和少量石英。萤石以紫色、紫黑色为主,少量呈白色或绿色,具粗晶结构、自形—半自形及他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变以碳酸盐化、带云母化、钾化、黄铁矿化、绿帘石化、角闪石化等为主。初步估算CaF2资源量117.42万t,具大型萤石矿床远景。

    (1)小白河沟萤石矿是阿尔金西段萤石找矿新发现,这一发现拓展了区内萤石矿向西延伸的空间,同时本次工作区内多数矿体走向和深部延伸均未封边,仍具有较大找矿潜力。

    (2)本工作发现了品位较富的大型萤石矿,拓宽了区域找矿思路,具有重要借鉴意义,同时为阿尔金瓦石峡南—卡尔恰尔萤石锂大型资源基地建设提供了有力支撑。

    本文为中国地质调查局项目(DD20190143、DD20211551、DD20243309)、陕西省自然科学基础研究计划项目(2023−JC−YB−241)、中国地质调查局自然资源综合调查指挥中心科技创新基金项目(KC20230011)联合资助的成果。

  • 图  1   热液体系中溶解物质之间同位素交换半衰期与pH的关系(据Chiba and Sakai, 1985

    (虚线代表溶解硫酸盐与硫化物之间的硫同位素交换,实线代表溶解硫酸盐与水之间的氧同位素交换)

    Figure  1.   Relationship between isotope exchange half-life and pH between dissolved substances in hydrothermal systems(after Chiba and Sakai, 1985

    Dashed line represents sulfur isotope exchange between dissolved sulfate and sulfide, solid line represents oxygen isotope exchange between dissolved sulfate and water

    图  2   臭氧形成的同位素分馏(据Thiemens et al., 1983Thiemens,2006

    (虚线是一条穿过原始氧同位素组成的质量分馏线)

    Figure  2.   Isotopic fractionation of ozone formation(after Thiemens et al., 1983Thiemens,2006

    (Dotted line is a mass fractionation line through the original oxygen isotopic composition)

    图  3   迄今已测得的大气MIF组分的三氧同位素组成(据Lin et al., 2024

    Figure  3.   Triple oxygen isotope compositions of atmospheric MIF component that have been measured to date(after Lin et al., 2024

    图  4   天然物质中磷酸盐的氧同位素组成(a)和土壤中不同部分的氧同位素组成(b,据Tian et al., 2020

    Figure  4.   Oxygen isotope composition of phosphates in natural substances(a)and oxygen isotope composition of different parts of the soil(b,after Tian et al., 2020

    图  5   沉积物中不同磷库及潜在来源的δ18OP值(据Yuan et al., 2019

    灰色阴影区表示使用沉积物-水界面季节平均温度数据计算的平衡δ18OP值区(Zeng et al., 2018);灰色区域虚线之间的面积是根据沉积物-水界面实测温度和孔隙水同位素值计算出的平衡同位素值范围(95%置信度);浅粉色区域为火成岩/变质岩成因δ18OP值:11 ~ 14.7‰(Jaisi et al., 2010);浅黄色区域代表磷酸酯中新鲜再生的Piδ18OP值在11.90 ~13.33‰之间(计算参考Joshi et al., 2015);浅青色区域代表化学肥料的δ18OP值总体范围为19.4 ~25.0‰(Gruau et al., 2005; McLaughlin et al., 2006; Li et al., 2011; Gross et al., 2013

    Figure  5.   The δ18OP values in different P pools and potential sources in the sediment(after Yuan et al., 2019

    Gray shaded region represents the equilibrium δ18OP values zone calculated using season-average temperature data at sediment-water interface(Zeng et al., 2018). Area between dashed lines in grey zone denotes the range of equilibrium isotope values (with 95% confidence level) calculated using measured temperature at sediment-water interface and porewater isotope values in June. Light pink field refers to the δ18OP values of igneous/metamorphic origin (11~14.7‰; see(Jaisi et al., 2010)). Light yellow field represent freshly regenerated Pi with δ18OP values between 11.90 and 13.33‰ from phosphoesters (calculated as in Joshi et al., 2015) and light cyan field represents the ranges of chemical fertilizers with reported δ18OP values in overall range of 19.4~25.0‰(Gruau et al., 2005; McLaughlin et al., 2006; Li et al., 2011; Gross et al., 2013).

    图  6   不同来源硝酸盐氮氧同位素特征值(据Nestler et al., 2011

    Figure  6.   Nitrogen and oxygen isotopes signatures of nitrate from different sources(after Nestler et al., 2011

    图  7   温瑞塘河流域河水、雨水和潜在硝酸盐来源中δ15N-NO3和Δ17O-NO3值散点图(据Ji et al., 2022

    AD—大气沉降硝酸盐,NF—氮肥(氨基复合肥和尿素),SN—土壤氮,MS—城市污水

    Figure  7.   Scatter plot of δ15N-NO3 and Δ17O-NO3 values in river water, rainwater and potential nitrate sources in the Wen-Rui Tang River watershed(after Ji et al., 2022

    AD−atmospheric deposition nitrate, NF−nitrogen fertilizer (ammonia-based composite fertilizers and urea); SN−soil nitrogen; MS−municipal sewage.

    图  8   河水和矿井废水样本δD和δ18OH2O之间的关系(据Li et al., 2022

    MWW01—SW01下游,岩石和熔渣垃圾场的渗滤液(碱性残渣),取决于降雨量;MWW02—SW01下游,MWW01与矿井排水混合废水,大量排入河流;MWW03—受当地渣堆渗滤液和冶炼废水污染的混合废水,旱季无流量,雨季流量较大;MWW04—入河流量大,季节变化小;MWW05—定时入河,无季节变化;MWW06—SW06下游,尾矿库渗滤液。SW01—上游河水,代表了当地的背景;SW06—下游矿山废水排入河流。

    Figure  8.   The relationship between δD and δ18OH2O of river water and mine wastewater samples(after Li et al., 2022

    MWW01−downstream of SW01, leachate (alkaline residue) from rock and slag dumps, depending on rainfall; MWW02−downstream of SW01, mixed wastewater from MWW01 and mine drainage, discharged in large quantities into the river; MWW03−mixed wastewater contaminated by local slag dump leachate and smelting wastewater, with no flow in the dry season and high flow in the rainy season; MWW04−high volume into the river, seasonal variation small; MWW05−regular flow into the river, no seasonal variation; MWW06−downstream of SW06, tailings pond leachate. sw01−upstream river, representing the local context; sw06−downstream mine wastewater discharged into the river.

    图  9   针叶树稳定氧同位素分馏模型(据McCarroll and Loader, 2004

    Figure  9.   Modeling stable oxygen isotope fractionation in conifers(after McCarroll and Loader, 2004

    图  10   1968—2001年LGB69冰芯δ18O与戴维斯站气温距平5年滑动平均散点图(据张子洋等,2021

    Figure  10.   The 5-year moving average scatter diagram of δ18O of LGB69 ice core and temperature departure of Davis Station from 1968 to 2001(after Zhang Ziyang et al., 2021

    图  11   东亚三个洞穴更新世到全新世石笋δ18O的最新记录

    a—Maborishi洞穴(据Shen et al., 2010);b—葫芦洞穴(据Wang et al., 2001),以及c—Fukugakuchi洞穴(据Sone et al., 2013Amekawa et al., 2021

    Figure  11.   Latest Pleistocene to Holocene records of stalagmiteδ18O from three caves in east Asia

    a−Maborishi cave (after Shen et al., 2010), b−Hulu cave(after Wang et al., 2001), and c−Fukugakuchicave(Sone et al., 2013; after Amekawa et al., 2021)

    图  12   不同地层单元湖相碳酸盐岩δ18O和δ13C平均值在现代开放型和封闭型湖泊中原生碳酸盐δ18O和δ13C分布区的投影(据王春连等,2013

    Figure  12.   Plot of average δ18O and δ13Cvalues of lacustrine carbonate rocks in different stratigraphic units in comparison with δ18O and δ13C domains of primary lacustrine carbonates in modern open and closed lakes(after Wang Chunlian et al., 2013

    图  13   盐湖流域不同水体δD−δ18O关系(据付昌昌和刘聪,2022

    Figure  13.   The relationship of δD−δ18O of the different water samples in Yanhu Lake basin (after Fu Changchang and Liu Cong, 2022)

    图  14   大气水同位素散点值(据Aron et al., 2021

    Figure  14.   Scatterplots of meteoric water isotope values(after Aron et al., 2021

    图  15   d-excess(a)和Δ′17O之间的相似性(b,据Aron et al., 2021)Fig.15Schematic showing the similarities between (a) d-excess andΔ′17O(b, afterAron et al., 2021

    图  16   水文循环对氧同位素比值影响的示意图(据Rohling, 2013李悦等,2016

    Figure  16.   Schematic representation of the effect of the hydrologic cycle on oxygen isotope ratios(after Rohling, 2013Li Yue et al., 2016

    图  17   抚仙湖Bellamya大贝壳生命周期中单个贝壳系列样品的δ18OAr值以及计算出的沿贝壳生长方向的温度(黑色平滑线)变化(据Roy et al., 2019

    阴影区域表示计算的温度范围

    Figure  17.   δ18OAr values of serial samples fromBellamya shell and the calculated temperature (black smooth line) variation along the direction of shell growth from Fuxian Lake(after Roy et al., 2019

    Shaded area represents the range of calculated temperature

    图  18   全球深海氧和碳同位素记录(据Zachos et al., 2001

    垂直条粗略地表示了每个半球相对于末次盛冰期的冰量,虚线条表示最小冰覆盖时期(≤50%),实线条代表接近最大冰盖覆盖率(大于目前的50%)。*:δ18O温标是针对无冰海洋计算的[∼1.2‰标准平均海水(SMOW)],因此仅适用于南极洲大规模冰川作用开始之前(∼35Ma)。

    Figure  18.   Global deep-sea oxygen and carbon isotope records(after Zachos et al., 2001

    The vertical bars provide a rough qualitative representation of ice volume in each hemisphere relativeto the LGM, with the dashed bar representing periods of minimal icecoverage (≤50%), and the full bar representing close to maximum icecoverage (>50% of present).The δ18O temperature scale was computed for an ice-free ocean [∼1.2‰ Standard Mean Ocean Water (SMOW)], and thus only applies to the time preceding the onset of large-scale glaciation on Antarctica (∼35 Ma).

    图  19   川东二叠系茅口组钻井样品团簇同位素对地层温度的热模拟结果(据邱楠生等,2023

    Figure  19.   Thermal modeling results of clumped isotope of drilling sample from Permian Maokou Formation in eastern Sichuan Basin on strata temperature(after QiuNansheng et al., 2023

    图  20   欧洲不同地区牛奶水δ18O(a)及乙醇的(D/H)I(b)随纬度(从北到南)的变化(据Perini et al., 2022

    Figure  20.   Variation of δ18O content in milk water (a) and (D/H)I of ethanol(b)of different European regions according to their latitude (from North to South)(after Perini et al., 2022)

    图  21   13种海洋哺乳动物骨骼的δ18OSMOW值箱线图(据Drago et al., 2020

    物种:Tt—拉希尔宽吻海豚、Of—南美洲海狮、Aa—南美洲毛海豹、Pb—方济各海豚、Oo—虎鲸、Pc—伪虎鲸、Dd—普通海豚、Ps—伯迈斯特江豚、Gg—里索海豚、Pd—眼镜江豚、Lh—弗雷泽海豚、Gm—长鳍领航鲸和Zc—库维尔喙鲸

    Figure  21.   Boxplots of the δ18OSMOWvalues in the bones of the thirteen marine mammal species considered(after Drago et al., 2020

    Species: Tt-Lahille’s bottlenose dolphins, Of-South American sea lions, Aa-South American fur seals, Pb-Franciscana dolphins, Oo-killer whales, Pc-false killer whales, Dd-common dolphins, Ps-Burmeister’s porpoises, Gg-Risso’s dolphins, Pd-spectacled porpoises, Lh-Fraser’s dolphins, Gm-long-finned pilot whales, andZc-Cuvier’s beaked whales.

    图  22   章鱼中碳和氧同位素的箱形图(据Martino et al., 2022

    这些地区从高纬度到低纬度排列,包括TAS—塔斯马尼亚州、VIC—维多利亚州、SA—南澳大利亚州、VIET—越南和INDO—印度尼西亚

    Figure  22.   Boxplots of carbon (δ13C) and oxygen isotopes (δ18O) in octopus statoliths(after Martino et al., 2022

    The regions are arranged from high to low latitude and include TAS−Tasmania, VIC−Victoria, SA−South Australia, VIET−Vietnam, and INDO−Indonesia

    图  23   不同地理来源章鱼化学特征的CAP图(据Martino et al., 2022

    TAS—塔斯马尼亚州、VIC—维多利亚州、SA—南澳大利亚州、VIET—越南和INDO—印度尼西亚,南澳样本包括两个物种SA-B和SA-P以阐明物种特异性效应

    Figure  23.   CAP plot of chemical characteristics of octopus from different geographical origins(after Martino et al., 2022

    TAS−Tasmania, VIC−Victoria, SA−South Australia, VIET−Vietnam, and INDO−Indonesia. South Australian samples includes two species – Octopus berrima (SA−B) and Octopus Pallidus (SA−P) − to elucidate species−specific effects

    表  1   常用氧同位素标准样的δ18O值(‰)(据Hoefs, 1997郑永飞和陈江峰,2000

    Table  1   δ18O values of commonly used oxygen isotope standards(after Hoefs, 1997Zheng Yongfei and Chen Jiangfeng, 2000

    标准 母质 PDB VSMOW
    NBS-18 碳酸岩 −23.00 (7.20)
    NBS-19 大理岩 −2.20 (28.64)
    NBS-20 灰岩 −4.14 (26.64)
    NBS-28 石英 (−20.67) 9.60
    NBS-30 黑云母 (−25.30) 5.1
    GISP 格陵兰冰盖水 (−53.99) −24.75
    SLAP 南极洲水样 (−83.82) −55.50
      *注:VSMOW表示海水经蒸馏后加入其他水配制成的δD值非常接近SMOW值的水样(Gonfiantini,1978);括号内表示计算值。
    下载: 导出CSV

    表  2   不同来源CO2的Δ17O值

    Table  2   Δ17O values for different sources of CO2

    CO2来源 Δ17O值/‰ 参考文献
    天然气燃烧 −0.34~−0.25(−0.30±0.02) Horváth et al., 2012(λ=0.522)
    丙烷−丁烷燃烧 −0.38~−0.29(−0.32±0.02)
    汽车尾气 −0.43~−0.24(−0.32±0.03)
    木屑燃烧 −0.27~−0.17(−0.21±0.02)
    人类呼吸 −0.07~0.04(−0.03±0.03)
    稻草燃烧 0.05±0.02 Laskar et al., 2020(λ=0.516)
    背景(南海) 0.335±0.034 Liang et al., 2017(λ=0.516)
    下载: 导出CSV

    表  3   不同流域硝酸盐及氮氧同位素特征值

    Table  3   Eigenvalues of nitrate and nitrogen and oxygen isotopes in different watersheds

    流域 NO3/mg/L δ15N-NO3/‰ δ18O-NO3/‰ 文献来源
    松花江流域 11.43 6.27 3.18 Yue et al., 2014
    海河流域 22.96 16.28 5.05 Peters et al., 2019
    珠江流域 7.58 6.88 4.31 Ye et al., 2015
    黄河流域 19.84 7.26 −0.96 Yue et al., 2017
    辽河流域 14.11 9.60 4.35 Yue et al., 2015
    长江流域 20.17 8.40 6.27 Wang et al., 2017
    淮河流域 10.16 —— —— 毛剑英等,2003
    下载: 导出CSV

    表  4   两极地区和中低纬度地区典型冰芯定年方法

    Table  4   Typical ice core dating methods in the polar regions and at low and middle latitudes

    区域 冰芯 钻取年份 钻取深度/
    m
    最老年代
    气候记录
    主要定年方法 参考文献
    中低纬度 古里雅冰芯 1992 308.6 约700 ka δ18O、36C1、离子、冰盖流体模型、CH4、粉尘浓度等 Thompson et al., 1997
    郭德冰芯 1987 140 约40 ka δ18O、微粒浓度、电导率、离子等 Shi et al., 2001
    南极 Dome C 1999—2005 3190 800 ka δ18O、电导率、粒度、粉尘、δD等 Augustin et al., 2004
    Vostok 1998 3623 420 ka δ18O、δ18Oatm、流动模型、离子、10Be等 Petit et al., 1999;
    Augustin et al., 2004
    格陵兰 GRIP 1989—1992 2980 约250 ka δ18O、10Be、36Cl、离子、冰层颜色、电导率等 Yiou et al., 1997;
    Southon, 2002
    GISP2 1989—1993 3053 150 ka δ18O、冰层颜色、14C、10Be、电导率等 Alley et al., 1997;
    Southon, 2002
    NEEM 2008 2540 约130 ka δ18O、火山灰、电导率、层位对比法、CH4
    δ18Oatm、物理特征等
    Dahl-Jensen et al., 2013;
    Rasmussen et al., 2013
    下载: 导出CSV

    表  5   当地大气降水线与盐湖氢氧同位素拟合线关系

    Table  5   Relationship between local atmospheric precipitation lines and hydroxide isotope fitting lines in salt lakes

    地区 当地大气降水线方程(LMWL) 盐湖氢氧同位素拟合线 参考文献
    美国天然湖泊δD=8δ18O+10
    (大气降水线)
    δD=5.3δ18O-37.91Brooks et al., 2014
    美国内华达州δD=8δ18O+10
    (大气降水线)
    δD=5.49δ18O-37.1
    δD=6.75δ18O-7.69
    Newman et al., 2020
    Springer et al., 2017
    俄罗斯外贝加尔湖δD=8.0δ18O+9.2氯化物湖δD=4.5δ18O-32
    硫酸盐湖δD=4.9δ18O-34
    苏打湖δD=5.4δ18O-32
    新鲜湖泊δD=5.1δ18O-35
    Borzenko et al., 2022
    青海省可可西里盐湖δD=8.07δ18O+17.74δD=5.80δ18O-8.42付昌昌和刘聪,2022
    青海省柴达木盆地-δD=5.0δ18O-25李建森等,2022
    内蒙古哈达贺休盐湖δD=7.30δ18O+2.14δD=5.32δ18O-20.08马正明等,2021
    甘肃省苏干湖盆地δD=8δ18O+10
    (大气降水线)
    δD=6.44δ18O-14.48Craig, 1961
    喻生波和屈君霞,2021
    内蒙古吉兰泰盐湖δD=7.9δ18O+8.2δD=7.54δ18O+1.87崔蕊等,2019
    下载: 导出CSV

    表  6   不同体系中三重氧同位素的λobs

    Table  6   λobsvalues of triple oxygen isotopes in different systems

    样本 λobs 参考文献
    大气降水 0.5273 ± 0.0001 Landais et al., 2010
    湖泊 0.5229 ± 0.001 Passey et al., 2019
    植物水(茎和叶) 0.5188 ± 0.0004 Landais et al., 2006
    雪水、冰水 0.5285 ± 0.00006 Touzeau et al., 2016
    地下水 0.5261 ± 0.0001 Bershaw et al., 2020
    海水 0.513±0.037 Galili et al., 2022
    碳酸盐岩 0.5247±0.0007 Miller et al. 2002
    下载: 导出CSV

    表  7   常见食物的氧同位素δ18O特征

    Table  7   Oxygen isotope δ18O characterization of common foods

    种类 地区 δ18O值/‰ 参考文献
    苹果 德国 −5.2~−2.9 Gatzert et al., 2021
    罗马尼亚 −4.2 Magdas et al., 2012
    斯洛文尼亚 −4.8~+0.9 Bat et al., 2016
    意大利 +1.1~+3.0 Mimmo et al., 2015
    大米 澳大利亚 +33.6 Korenaga et al., 2010
    中国 +24.1 Suzuki et al., 2022
    孟加拉 +26.6
    日本 +23.7
    泰国 +24.2 Kukusamude et al., 2018
    美国 +21.9 Li et al., 2015
    葡萄酒 澳大利亚 +1.694~+14.225 Wu et al., 2019
    葡萄牙 +0.25~+7.27 Coelho et al., 2023
    斯洛文尼亚 − 8.24~4.31 Ogrinc et al., 2001
    奥地利 1.3 Horacek et al., 2021
    中国云川藏 −10.148~−4.468 Su et al., 2020
    中国河西走廊 +2.054~+6.428
    牛奶 斯洛文尼亚 −9.2~−0.04 Hamzić et al., 2020
    立陶宛 −7.275 Garbaras et al., 2019
    加拿大 −13.5~−5.7 Stevenson et al., 2015
    美国 −7.8~−6.5 Chesson et al., 2010
    澳大利亚和新西兰 −11.457~−10.747 Luo et al., 2016
    中国 −13.658~−12.462
    下载: 导出CSV
  • [1]

    Agterhuis T, Ziegler M, de Winter N J, Lourens L J. 2022. Warm deep−sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry[J]. Communications Earth & Environment, 3(1): 39.

    [2]

    Acha E M, Mianzan H, Guerrero R, Carreto J, Giberto D, Montoya N, Carignan M. 2008. An overview of physical and ecological processes in the Rio de la Plata Estuary[J]. Continental Shelf Research, 28(13): 1579−1588. doi: 10.1016/j.csr.2007.01.031

    [3]

    Affek H P, Eiler J M. 2006. Abundance of mass 47 CO2 in urban air, car exhaust, and human breath[J]. Geochimica et Cosmochimica Acta, 70(1): 1−12. doi: 10.1016/j.gca.2005.08.021

    [4]

    Alexander B, Thiemens M, Farquhar J, Kaufman A, Savarino J, Delmas R. 2003. East Antarctic ice core sulfur isotope measurements over a complete glacial‐interglacial cycle[J]. Journal of Geophysical Research: Atmospheres, 108(D24): 4786.

    [5]

    Alley R, Shuman C, Meese D, Gow A, Taylor K, Cuffey K, Fitzpatrick J, Grootes P, Zielinski G, Ram M. 1997. Visual‐stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application[J]. Journal of Geophysical Research: Oceans, 102(C12): 26367−26381. doi: 10.1029/96JC03837

    [6]

    Al–Ramadan K, Koeshidayatullah A, Cantrell D, Swart P K. 2020. Impact of basin architecture on diagenesis and dolomitization in a fault–bounded carbonate platform: outcrop analogue of a pre–salt carbonate reservoir, Red Sea rift, NW Saudi Arabia[J]. Petroleum Geoscience, 26(3): 448−461. doi: 10.1144/petgeo2018-125

    [7]

    Amberger A, Schmidt H–L. 1987. Natürliche isotopengehalte von Nitrat als Indikatoren für dessen Herkunft[J]. Geochimica et Cosmochimica Acta, 51(10): 2699−2705. doi: 10.1016/0016-7037(87)90150-5

    [8]

    Amekawa S, Kashiwagi K, Hori M, Sone T, Kato H, Okumura T, Yu T–L, Shen C–C, Kano A. 2021. Stalagmite evidence for East Asian winter monsoon variability and 18O–depleted surface water in the Japan Sea during the last glacial period[J]. Progress in Earth and Planetary Science, 8: 1−15. doi: 10.1186/s40645-020-00388-2

    [9]

    Anderson T F, Arthur M A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems[C]//MAArthur, TFAnderson, IRKaplan, JVeizer, LSLand. Stable Isotopes in Sedimentary Geology (Vol. 10). SEPM Society for Sedimentary Geology.

    [10]

    Angert A, Weiner T, Mazeh S, Sternberg M. 2012. Soil phosphate stable oxygen isotopes across rainfall and bedrock gradients[J]. Environmental Science & Technology, 46(4): 2156−2162.

    [11]

    Aron P G, Levin N E, Beverly E J, Huth T E, Passey B H, Pelletier E M, Poulsen C J, Winkelstern I Z, Yarian D A. 2021. Triple oxygen isotopes in the water cycle[J]. Chemical Geology, 565: 120026. doi: 10.1016/j.chemgeo.2020.120026

    [12]

    Assonov S, Brenninkmeijer C. 2005. Reporting small Δ17O values: existing definitions and concepts[J]. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 19(5): 627−636.

    [13]

    Augustin L, Barbante C, Barnes P R F, Barnola J M, Bigler M, Castellano E, Cattani O, Chappellaz J, DahlJensen D, Delmonte B, Dreyfus G, Durand G, Falourd S, Fischer H, Flückiger J, Hansson M E, Huybrechts P, Jugie R, Johnsen S J, Jouzel J, Kaufmann P, Kipfstuhl J, Lambert F, Lipenkov V Y, Littot G V C, Longinelli A, Lorrain R, Maggi V, Masson–Delmotte V, Miller H, Mulvaney R, Oerlemans J, Oerter H, Orombelli G, Parrenin F, Peel D A, Petit J R, Raynaud D, Ritz C, Ruth U, Schwander J, Siegenthaler U, Souchez R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tabacco I E, Udisti R, van de Wal R S W, van den Broeke M, Weiss J, Wilhelms F, Winther J G, Wolff E W, Zucchelli M, Members E C. 2004. Eight glacial cycles from an Antarctic ice core[J]. Nature, 429(6992): 623−628. doi: 10.1038/nature02599

    [14]

    Bao H, Cao X, Hayles J A. 2016. Triple oxygen isotopes: fundamental relationships and applications[J]. Annual Review of Earth and Planetary Sciences, 44: 463−492. doi: 10.1146/annurev-earth-060115-012340

    [15]

    Bao Rui, Sheng Xuefen, Chen Jun. 2021. Carbon and oxygen isotopic composition of land snail shells and climate[J]. Quaternary Sciences, 41(4): 903−915 (in Chinese with English abstract).

    [16]

    Barbour M M, Andrews T J, Farquhar G D. 2001. Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world[J]. Australian Journal of Plant Physiology, 28(5): 335−348.

    [17]

    Barkan E, Luz B. 2005. High precision measurements of 17O/16O and 18O/16O ratios in H2O[J]. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 19(24): 3737−3742.

    [18]

    Barkan E, Luz B. 2007. Diffusivity fractionations of H216O H217O and H216O/H218O in air and their implications for isotope hydrology[J]. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 21(18): 2999−3005.

    [19]

    Bat K B, Eler K, Mazej D, Vodopivec B M, Mulič I, Kump P, Ogrinc N. 2016. Isotopic and elemental characterisation of Slovenian apple juice according to geographical origin: Preliminary results[J]. Food Chemistry, 203: 86−94. doi: 10.1016/j.foodchem.2016.02.039

    [20]

    Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain M A, Baldocchi D, Bonan G B. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[J]. Science, 329(5993): 834−838. doi: 10.1126/science.1184984

    [21]

    Belem A L, Caricchio C, Albuquerque A L S, Venancio I M, ZUCCHI M, SANTOS T H R, Alvarez Y G. 2019. Salinity and stable oxygen isotope relationship in the Southwestern Atlantic: constraints to paleoclimate reconstructions[J]. Anais da Academia Brasileira de Ciências, 91: e20180226.

    [22]

    Bender M, Sowers T, Labeyrie L. 1994. The Dole effect and its variations during the last 130, 000 years as measured in the Vostok ice core[J]. Global Biogeochemical Cycles, 8(3): 363−376. doi: 10.1029/94GB00724

    [23]

    Bergé A, Imbrie J, Hays J, Kukla G, Salzman B. 1984. Milankovitch and Climate[M]. D. In: Reidel Publishing Company, Dordrecht.

    [24]

    Bershaw J, Hansen D D, Schauer A J. 2020. Deuterium excess and 17O–excess variability in meteoric water across the Pacific Northwest, USA[J]. Tellus B: Chemical and Physical Meteorology, 72(1): 1−17.

    [25]

    Beverly E J, Levin N E, Passey B H, Aron P G, Yarian D A, Page M, Pelletier E M. 2021. Triple oxygen and clumped isotopes in modern soil carbonate along an aridity gradient in the Serengeti, Tanzania[J]. Earth and Planetary Science Letters, 567: 116952. doi: 10.1016/j.jpgl.2021.116952

    [26]

    Bhatia M P, Das S B, Kujawinski E B, Henderson P B, Burke A, Charette M A. 2011. Seasonal evolution of water source contributions to subglacial outflow: Insight from a new isotope–mixing model[J]. Journal of Glaciology, 57(205): 929−941. doi: 10.3189/002214311798043861

    [27]

    Bintanja R, Van De Wal R S, Oerlemans J. 2005. Modelled atmospheric temperatures and global sea levels over the past million years[J]. Nature, 437(7055): 125−128. doi: 10.1038/nature03975

    [28]

    Blake R E, O’Neil J R, Surkov A V. 2005. Biogeochemical cycling of phosphorus: insights from oxygen isotope effects of phosphoenzymes[J]. American Journal of Science, 305(6−8): 596−620. doi: 10.2475/ajs.305.6-8.596

    [29]

    Blunier T, Bender M L, Barnett B, Von Fischer J C. 2012. Planetary fertility during the past 400 ka based on the triple isotope composition of O2 in trapped gases from the Vostok ice core[J]. Climate of the Past, 8(5): 1509−1526. doi: 10.5194/cp-8-1509-2012

    [30]

    Boering K, Jackson T, Hoag K, Cole A, Perri M, Thiemens M, Atlas E. 2004. Observations of the anomalous oxygen isotopic composition of carbon dioxide in the lower stratosphere and the flux of the anomaly to the troposphere[J]. Geophysical Research Letters, 31(3): L03109.

    [31]

    Borzenko S V. 2021. The main formation processes for different types of salt lakes: Evidence from isotopic composition with case studies of lakes in Transbaikalia, Russia[J]. Science of the Total Environment, 782: 146782. doi: 10.1016/j.scitotenv.2021.146782

    [32]

    Borzenko S, Zamana L, Posokhov V. 2022. The Isotope Composition, Nature, and Main Mechanisms of Formation of Different Types and Subtypes of Salt Lakes in Transbaikalia[J]. Russian Geology and Geophysics, 63(6): 706−725. doi: 10.2113/RGG20214272

    [33]

    Bose T, Sengupta S, Chakraborty S, Borgaonkar H. 2016. Reconstruction of soil water oxygen isotope values from tree ring cellulose and its implications for paleoclimate studies[J]. Quaternary International, 425: 387−398. doi: 10.1016/j.quaint.2016.07.052

    [34]

    Bowen G J, Cai Z, Fiorella R P, Putman A L. 2019. Isotopes in the water cycle: regional–to global–scale patterns and applications[J]. Annual Review of Earth and Planetary Sciences, 47: 453−479. doi: 10.1146/annurev-earth-053018-060220

    [35]

    Bowen G J. 2010. Isoscapes: spatial pattern in isotopic biogeochemistry[J]. Annual Review of Earth and Planetary Sciences, 38: 161−187. doi: 10.1146/annurev-earth-040809-152429

    [36]

    Brooks J R, Gibson J J, Birks S J, Weber M H, Rodecap K D, Stoddard J L. 2014. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments[J]. Limnology and Oceanography, 59(6): 2150−2165. doi: 10.4319/lo.2014.59.6.2150

    [37]

    Büntgen U, Urban O, Krusic P J, Rybníček M, Kolář T, Kyncl T, Ač A, Koňasová E, Čáslavský J, Esper J. 2021. Recent European drought extremes beyond Common Era background variability[J]. Nature Geoscience, 14(4): 190−196. doi: 10.1038/s41561-021-00698-0

    [38]

    Came R E, Eiler J M, Veizer J, Azmy K, Brand U, Weidman C R. 2007. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era[J]. Nature, 449(7159): 198−201. doi: 10.1038/nature06085

    [39]

    Cao Chao, Lei Huaiyan. 2021. Respondence between carbon and oxygen isotopic characteristics of foraminifera from the Northern South China Sea and Late Quaternary hydrate released[J]. Journal of Jilin University (Earth Science Edition), 42(S1): 162–171 (in Chinese with English abstract).

    [40]

    Cao J, Xie C, Hou Z. 2022. Ecological evaluation of heavy metal pollution in the soil of Pb–Zn mines[J]. Ecotoxicology, 31(2): 259−270. doi: 10.1007/s10646-021-02505-3

    [41]

    Cao Jialu, NiuZhenchuan, Liang Dan, Feng Xue, LüMengni, Wang Guowei, Liu Wanyu. 2023. Progress on mass independent fractionation of oxygen isotope in CO2 related researches[J]. Journal of Earth Environment, 14(6): 714−724 (in Chinese with English abstract).

    [42]

    Cappa C D, Hendricks M B, DePaolo D J, et al. 2003. Isotopic fractionation of water during evaporation[J]. Journal of Geophysical Research: Atmospheres, 108(D16): 4525.

    [43]

    Capuano R M. 1992. The temperature dependence of hydrogen isotope fractionation between clay minerals and water: Evidence from a geopressured system[J]. Geochimica et Cosmochimica Acta, 56(6): 2547−2554. doi: 10.1016/0016-7037(92)90208-Z

    [44]

    Cavalcante H, Araújo F, Noyma N, Becker V. 2018. Phosphorus fractionation in sediments of tropical semiarid reservoirs[J]. Science of the Total Environment, 619: 1022−1029.

    [45]

    Cerling T E. 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 71(2): 229−240. doi: 10.1016/0012-821X(84)90089-X

    [46]

    Chang Fengqin, Zhang Hucai, Lei Guoliang, Pu Yang, Chen Guangjie, Zhang Wenxiang, Yang Lunqing. 2010. Geochemical behaviors of strontium isotope and related elements of the lacustrine deposits and their application to paleoenvironment reconstruction[J]. Quaternary Sciences, 30(5): 962−971 (in Chinese with English abstract).

    [47]

    Chen J, Chen F, Feng S, Huang W, Liu J, Zhou A. 2015. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 107: 98−111. doi: 10.1016/j.quascirev.2014.10.012

    [48]

    Chen J, Rao Z, Liu J, Huang W, Feng S, Dong G, Hu Y, Xu Q, Chen F. 2016. On the timing of the East Asian summer monsoon maximum during the Holocene—Does the speleothem oxygen isotope record reflect monsoon rainfall variability?[J]. Science China Earth Sciences, 59: 2328−2338. doi: 10.1007/s11430-015-5500-5

    [49]

    Chen Luwang, GuiHerong, Xu Guangquan, Song Xiaomei, Yuan Wenhua. 2003. Characteristics of the hydrogen and oxygen stable isotopes in karst water of seam floor in the mining district of the northern Anhui Province[J]. Journal of Hefei University of Technology(Natural Science)(3): 374–378 (in Chinese with English abstract).

    [50]

    Chen X, Jiang C, Zheng L, Dong X, Chen Y, Li C. 2020. Identification of nitrate sources and transformations in basin using dual isotopes and hydrochemistry combined with a Bayesian mixing model: Application in a typical mining city[J]. Environmental Pollution, 267: 115651. doi: 10.1016/j.envpol.2020.115651

    [51]

    Chen Yao, Gou Xiaohua, Liu Wenhuo, Chen Qiaomei, SuJiajia, Lin Wei. 2017. Advances in tree–ring stable oxygen isotope study in Asia[J]. Journal of Glaciology and Geocryology, 39(2): 308−316 (in Chinese with English abstract).

    [52]

    Chen Zhigang, Huang Yipu, Liu Guangshan, Cai Yihua, Lu Yangyang, Liu Run. 2010. Advances in the Measurement Methods and Fractionation Mechanism of the Oxygen Isotope Composition of Phosphate[J]. Advances in Earth Science, 25(10): 1040 (in Chinese with English abstract).

    [53]

    Chen Zhong, Ma Haizhou, Cao Guangchao, Zhou Dujun, Zhang Xiying, Tan Hongbing, Yao yuan. 2006. Study on Carbonates in Loess: A Review[J]. Journal of Salt Lake Research (4): 66–72 (in Chinese with English abstract).

    [54]

    Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X, Wang Y, Zhang R, Wang X. 2009. Ice age terminations[J]. Science, 326(5950): 248−252. doi: 10.1126/science.1177840

    [55]

    Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X. 2016. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 534(7609): 640−646.

    [56]

    Cheng H, Sinha A, Wang X, Cruz F W, Edwards R L. 2012. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 39: 1045−1062. doi: 10.1007/s00382-012-1363-7

    [57]

    Cheng H, Zhang H, Zhao J, Li H, Ning Y, Kathayat G. 2019. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China Earth Sciences, 62: 1489−1513. doi: 10.1007/s11430-019-9478-3

    [58]

    Cheng Hai, R L Edwards, Wang Xianfeng, Wang Yongjin, Kong Xinggong, Yuan Daoxian, Zhang Meiliang, Lin Yushi, Qin Jiaming, Ran Jingcheng. 2005. Oxygen isotope records of stalagmites from Southern China[J]. Quaternary Sciences, 25(2): 157−163 (in Chinese with English abstract).

    [59]

    Chesson L A, Valenzuela L O, O’Grady S P, Cerling T E, Ehleringer J R. 2010. Hydrogen and oxygen stable isotope ratios of milk in the United States[J]. Journal of Agricultural and Food Chemistry, 58(4): 2358−2363. doi: 10.1021/jf904151c

    [60]

    Chiba H, Sakai H. 1985. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures[J]. Geochimica et Cosmochimica Acta, 49(4): 993−1000. doi: 10.1016/0016-7037(85)90314-X

    [61]

    Clark I D, Fritz P. 1997. Environmental Isotopes in Hydrogeology[M]. CRC press: London, UK.

    [62]

    Clayton D. 2003. Handbook of Isotopes in the Cosmos: Hydrogen to Gallium[M]. Cambridge, UK: Cambridge Univ. Press.

    [63]

    Clayton R N, Grossman L, Mayeda T K. 1973. A component of primitive nuclear composition in carbonaceous meteorites[J]. Science, 182(4111): 485−488. doi: 10.1126/science.182.4111.485

    [64]

    Clementz M T, Koch P L. 2001. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel[J]. Oecologia, 129: 461−472. doi: 10.1007/s004420100745

    [65]

    Cliff S S, Brenninkmeijer C A M, Thiemens M H. 1999. First measurement of the 18O/16O and 17O/16O ratios in stratospheric nitrous oxide: A mass‐independent anomaly[J]. Journal of Geophysical Research: Atmospheres, 104(D13): 16171−16175. doi: 10.1029/1999JD900152

    [66]

    Coelho I, Matos A S, Epova E N, Barre J, Cellier R, Ogrinc N, Castanheira I, Bordado J, Donard O F. 2023. Multi–element and multi–isotopic profiles of Port and Douro wines as tracers for authenticity[J]. Journal of Food Composition and Analysis, 115: 104988. doi: 10.1016/j.jfca.2022.104988

    [67]

    Cong F, Tian J, Hao F, Licht A, Liu Y, Cao Z, Eiler J M. 2021. A thermal pulse induced by a Permian mantle plume in the Tarim Basin, Northwest China: Constraints from clumped isotope thermometry and In situ calcite U‐Pb dating[J]. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB020636. doi: 10.1029/2020JB020636

    [68]

    Conroy J L, Cobb K M, Lynch–Stieglitz J, Polissar P J. 2014. Constraints on the salinity–oxygen isotope relationship in the central tropical Pacific Ocean[J]. Marine Chemistry, 161: 26−33. doi: 10.1016/j.marchem.2014.02.001

    [69]

    Cook G, Lauer C. 1968. The encyclopedia of the chemical elements[M]. Reinhold B. Corp. , New York.

    [70]

    Coplen T B, Kendall C, Hopple J. 1983. Comparison of stable isotope reference samples[J]. Nature, 302: 236−238. doi: 10.1038/302236a0

    [71]

    Coplen, TylerB. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report)[J]. Pure & Applied Chemistry, 66(2): 273−276.

    [72]

    Corliss B H. 1985. Microhabitats of benthic foraminifera within deep–sea sediments[J]. Nature, 314(6010): 435−438. doi: 10.1038/314435a0

    [73]

    Costa D P, 2018. Osmoregulation. In: Würsig B, Thewissen J G M, Kovacs K M. Encyclopedia of Marine Mammals[M], third ed. ed. Academic Press, San Diego, pp. 659–664.

    [74]

    Coulthard B L, George S S, Meko D M. 2020. The limits of freely–available tree–ring chronologies[J]. Quaternary Science Reviews, 234: 106264. doi: 10.1016/j.quascirev.2020.106264

    [75]

    Craig H, Gordon L I. 1964. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere[C]. Symposium on Marine Geochemistry.

    [76]

    Craig H. 1961. Standard for reporting concentrations of deuterium and oxygen–18 in natural waters[J]. Science, 133(3467): 1833−1834. doi: 10.1126/science.133.3467.1833

    [77]

    Cramer B, Toggweiler J, Wright J, Katz M, Miller K. 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 24(4): PA4216.

    [78]

    Criss R E, Farquhar J. 2008. Abundance, notation, and fractionation of light stable isotopes[J]. Reviews in Mineralogy and Geochemistry, 68(1): 15−30. doi: 10.2138/rmg.2008.68.3

    [79]

    Cui Jingwei, Huang Junhua, Hu Chaoyong. 2008. Environment Substitute Indexes and the Paleoclimate and Paleoenvironment Contained in Stalagmite[J]. Bulletin of Geological Science and Technology (1): 93–98 (in Chinese with English abstract).

    [80]

    Cui Y D, Liu X Q, Wang H Z. 2008. Macrozoobenthic community of Fuxian Lake, the deepest lake of southwest China[J]. Limnologica, 38(2): 116−125. doi: 10.1016/j.limno.2007.10.003

    [81]

    Cui Rui, Wang Ji, Zhang Chengfu, Shi Xiaohong, Han Zhiming. 2019. Analysis on Hydrogen and Oxygen Isotopes and Lake Water Source in Girantai Saline Lake[J]. Journal of Inner Mongolia Forestry ScienceandTechnology, 45(1): 17−21 (in Chinese with English abstract).

    [82]

    Cutler K, Edwards R, Taylor F, Cheng H, Adkins J, Gallup C, Cutler P, Burr G, Bloom A. 2003. Rapid sea–level fall and deep–ocean temperature change since the last interglacial period[J]. Earth and Planetary Science Letters, 206(3−4): 253−271. doi: 10.1016/S0012-821X(02)01107-X

    [83]

    Dahl–Jensen D, Albert M R, Aldahan A, Azuma N, Balslev–Clausen D, Baumgartner M, Berggren A M, Bigler M, Binder T, Blunier T, Bourgeois J C, Brook E J, Buchardt S L, Buizert C, Capron E, Chappellaz J, Chung J, Clausen H B, Cvijanovic I, Davies S M, Ditlevsen P, Eicher O, Fischer H, Fisher D A, Fleet L G, Gfeller G, Gkinis V, Gogineni S, Goto–Azuma K, Grinsted A, Gudlaugsdottir H, Guillevic M, Hansen S B, Hansson M, Hirabayashi M, Hong S, Hur S D, Huybrechts P, Hvidberg C S, Iizuka Y, Jenk T, Johnsen S J, Jones T R, Jouzel J, Karlsson N B, Kawamura K, Keegan K, Kettner E, Kipfstuhl S, Kjær H A, Koutnik M, Kuramoto T, Köhler P, Laepple T, Landais A, Langen P L, Larsen L B, Leuenberger D, Leuenberger M, Leuschen C, Li J, Lipenkov V, Martinerie P, Maselli O J, Masson–Delmotte V, McConnell J R, Miller H, Mini O, Miyamoto A, Montagnat–Rentier M, Mulvaney R, Muscheler R, Orsi A J, Paden J, Panton C, Pattyn F, Petit J R, Pol K, Popp T, Possnert G, Prié F, Prokopiou M, Quiquet A, Rasmussen S O, Raynaud D, Ren J, Reutenauer C, Ritz C, Röckmann T, Rosen J L, Rubino M, Rybak O, Samyn D, Sapart C J, Schilt A, Schmidt A M Z, Schwander J, Schüpbach S, Seierstad I, Severinghaus J P, Sheldon S, Simonsen S B, Sjolte J, Solgaard A M, Sowers T, Sperlich P, Steen–Larsen H C, Steffen K, Steffensen J P, Steinhage D, Stocker T F, Stowasser C, Sturevik A S, Sturges W T, Sveinbjörnsdottir A, Svensson A, Tison J L, Uetake J, Vallelonga P, van de Wal R S W, van der Wel G, Vaughn B H, Vinther B, Waddington E, Wegner A, Weikusat I, White J W C, Wilhelms F, Winstrup M, Witrant E, Wolff E W, Xiao C, Zheng J, Community N. 2013. Eemian interglacial reconstructed from a Greenland folded ice core[J]. Nature, 493(7433): 489−494. doi: 10.1038/nature11789

    [84]

    Dansgaard W. 1953. The abundance of O18 in atmospheric water and water vapour[J]. Tellus, 5(4): 461−469. doi: 10.3402/tellusa.v5i4.8697

    [85]

    Dansgaard W. 1964. Stable isotopes in precipitation[J]. Tellus, 16(4): 436−468. doi: 10.1111/j.2153-3490.1964.tb00181.x

    [86]

    del Rio–Lavín A, Weber J, Molkentin J, Jiménez E, Artetxe–Arrate I, Pardo M A. 2022. Stable isotope and trace element analysis for tracing the geographical origin of the Mediterranean mussel (Mytilus galloprovincialis) in food authentication[J]. Food Control, 139: 109069. doi: 10.1016/j.foodcont.2022.109069

    [87]

    Delaygue G, Bard E, Rollion C, Jouzel J, Stiévenard M, Duplessy J C, Ganssen G. 2001. Oxygen isotope/salinity relationship in the northern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 106(C3): 4565−4574. doi: 10.1029/1999JC000061

    [88]

    Delgado A, Reyes E. 1996. Oxygen and hydrogen isotope compositions in clay minerals: a potential single–mineral geothermometer[J]. Geochimica et Cosmochimica Acta, 60(21): 4285−4289. doi: 10.1016/S0016-7037(96)00260-8

    [89]

    Dettman D L, Fang X, Garzione C N, Li J. 2003. Uplift–driven climate change at 12 Ma: a long δ18O record from the NE margin of the Tibetan plateau[J]. Earth and Planetary Science Letters, 214(1−2): 267−277. doi: 10.1016/S0012-821X(03)00383-2

    [90]

    Ding Y, Wang Z, Sun Y. 2008. Inter‐decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(9): 1139−1161.

    [91]

    Ding Z L, Yang S L. 2000. C3/C4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau: evidence from pedogenic carbonate δ13C[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(3–4): 291–299.

    [92]

    Dompierre K A, Barbour S L. 2016. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi–tracer study[J]. Journal of Contaminant Hydrology, 189: 12−26. doi: 10.1016/j.jconhyd.2016.03.006

    [93]

    Dong J, Shen C–C, Kong X, Wang H–C, Jiang X. 2015. Reconciliation of hydroclimate sequences from the Chinese Loess Plateau and low–latitude East Asian Summer Monsoon regions over the past 14, 500 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 127–135.

    [94]

    Dong Qinming, Hu Zhonggui, Chen Shiyue, Li Shilin, Cai Jialan, Zhu Yixin, Zhang Yuying. 2021. Isotope Geochemical Responses and Their Geological Significance of Changxing–Feixianguan Formation Carbonates, Northeastern Sichuan Basin[J]. Oil Gas Geology, 42(6): 1307−1320 (in Chinese with English abstract).

    [95]

    Dou Yanguang, Li Qing, Wu Yonghua, Zhao Jingtao, Sun Chenghui, Cai Feng, Chen Xiaohui, Zhang Yong, Fan Jiahui, Shi Xuefa. 2022. Carbon and oxygen isotopic characteristics of benthic foraminifera in the Okinawa Trough since MIS6 and their palaeoceanographical significance[J]. Earth Science Frontiers, 29(4): 84−92 (in Chinese with English abstract).

    [96]

    Doveri M, Stenni B, Petrini R, Giannecchini R, Dreossi G, Menichini M, Ghezzi L. 2019. Oxygen and hydrogen isotopic composition of waters in a past–mining area of southern Apuan Alps (Italy): hydrogeological characterization and implications on the fate of potentially toxic elements[J]. Journal of Geochemical Exploration, 205: 106338. doi: 10.1016/j.gexplo.2019.106338

    [97]

    Drago M, Valdivia M, Bragg D, González E M, Aguilar A, Cardona L. 2020. Stable oxygen isotopes reveal habitat use by marine mammals in the Río de la Plata estuary and adjoining Atlantic Ocean[J]. Estuarine, Coastal and Shelf Science, 238: 106708.

    [98]

    Drummond C N, Patterson W P, Walker J C. 1995. Climatic forcing of carbon–oxygen isotopic covariance in temperate–region marl lakes[J]. Geology, 23(11): 1031−1034.

    [99]

    Dubicka Z, Wierzbowski H, Pałczyńska A. 2021. Can oxygen and carbon isotope ratios of Jurassic foraminifera be used in palaeoenvironmental reconstructions?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110554.

    [100]

    Duplessy J C, Shackleton N J. 1985. Response of global deep–water circulation to Earth's climatic change 135, 000–107, 000 years ago[J]. Nature, 316(6028): 500−507.

    [101]

    Dütsch M, Pfahl S, Sodemann H. 2017. The impact of nonequilibrium and equilibrium fractionation on two different deuterium excess definitions[J]. Journal of Geophysical Research: Atmospheres, 122(23): 12,732−12,746.

    [102]

    Ehtesham E, Hayman A, Van Hale R, Frew R. 2015. Influence of feed and water on the stable isotopic composition of dairy milk[J]. International Dairy Journal, 47: 37−45. doi: 10.1016/j.idairyj.2015.02.008

    [103]

    Eiler J M, Schauble E. 2004. 18O13C16O in Earth’s atmosphere[J]. Geochimica et Cosmochimica Acta, 68(23): 4767−4777. doi: 10.1016/j.gca.2004.05.035

    [104]

    Eiler J M. 2007. “Clumped–isotope” geochemistry—The study of naturally–occurring, multiply–substituted isotopologues[J]. Earth and Planetary Science Letters, 262(3−4): 309−327. doi: 10.1016/j.jpgl.2007.08.020

    [105]

    Elliott E, Kendall C, Burns D, Boyer E, Harlin K, Wankel S, Butler T, Carlton R. 2006. Nitrate isotopes in precipitation to distinguish NOx sources, atmospheric processes, and source areas in the United States[C]. In: American Geophysical Union, Fall Meeting 2007. San Francisco, AGU.

    [106]

    Emiliani C. 1955. Pleistocene temperatures[J]. The Journal of Geology, 63(6): 538−578. doi: 10.1086/626295

    [107]

    Emsley J. 2011. Nature's Building Blocks: an AZ Guide to the Elements[M]. Oxford University Press, USA.

    [108]

    Epstein S, Buchsbaum R, Lowenstam H A, Urey H C. 1953. Revised carbonate–water isotopic temperature scale[J]. Geological Society of America Bulletin, 64(11): 1315−1326. doi: 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2

    [109]

    Epstein S, Sharp R P, Gow A J. 1965. Six‐year record of oxygen and hydrogen isotope variations in South Pole firn[J]. Journal of Geophysical Research, 70(8): 1809−1814. doi: 10.1029/JZ070i008p01809

    [110]

    Eren M, Akgöz M, Kadir S, Kapur S. 2021. Primary characteristics of selected stalagmites from four caves located between Erdemli and Silifke (Mersin), southern Turkey—implications on their formation[J]. Carbonates and Evaporites, 36(2): 20. doi: 10.1007/s13146-021-00684-y

    [111]

    European Commission. 2008. COMMISSION REGULATION (EC) No 555/2008 of 27 June 2008 [WWW Document].

    [112]

    Falzoni F, Petrizzo M R, Clarke L J, MacLeod K G, Jenkyns H C. 2016. Long–term Late Cretaceous oxygen–and carbon–isotope trends and planktonic foraminiferal turnover: A new record from the southern midlatitudes[J]. Bulletin, 128(11−12): 1725−1735.

    [113]

    Fan Juan, Nan Shenghui, Liu Yingfeng, Zhou Tianwei, Zhang Guangming. 2021. Water–filling conditions of Xiaotun Coal Mine based on hydrochemical and isotopic characteristics[J]. Safety and Environmental Engineering (4): 80–87 (in Chinese with English abstract).

    [114]

    Farquhar G D, Ehleringer J R, Hubick K T. 1989. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Biology, 40(1): 503−537. doi: 10.1146/annurev.pp.40.060189.002443

    [115]

    Fiebig J, Daëron M, Bernecker M, Guo W, Schneider G, Boch R, Bernasconi S M, Jautzy J, Dietzel M. 2021. Calibration of the dual clumped isotope thermometer for carbonates[J]. Geochimica et Cosmochimica Acta, 312: 235−256. doi: 10.1016/j.gca.2021.07.012

    [116]

    Frau F, Cidu R, Ghiglieri G, Caddeo G A. 2020. Characterization of low–enthalpy geothermal resources and evaluation of potential contaminants. RendicontiLincei[J]. ScienzeFisiche e Naturali, 31(4): 1055−1070.

    [117]

    FriedmanI, O'NeiJR. 1977. Compilation of stable isotope fractionation factors of geochemical interest[M]. Data of Geochemistry.

    [118]

    Friedrich O, Norris R D, Erbacher J. 2012. Evolution of middle to Late Cretaceous oceans—a 55 my record of Earth's temperature and carbon cycle[J]. Geology, 40(2): 107−110. doi: 10.1130/G32701.1

    [119]

    Fu Changchang, Liu Cong. 2022. Hydrochemical characteristics and formation mechanism of saline lakes in Hoh Xil region[J]. Yangtze River, 53(7): 36−41 (in Chinese with English abstract).

    [120]

    Galewsky J, Steen‐Larsen H C, Field R D, Worden J, Risi C, Schneider M. 2016. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 54(4): 809−865. doi: 10.1002/2015RG000512

    [121]

    Galili N, Sade Z, Halevy I. 2022. Equilibrium fractionation of triple–oxygen and hydrogen isotopes between ice and water[J]. Earth and Planetary Science Letters, 595: 117753. doi: 10.1016/j.jpgl.2022.117753

    [122]

    Gammons C H, Brown A, Poulson S R, Henderson T H. 2013. Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage[J]. Applied Geochemistry, 31: 228−238. doi: 10.1016/j.apgeochem.2013.01.008

    [123]

    Garbaras A, Skipitytė R, Šapolaitė J, Ežerinskis Ž, Remeikis V. 2019. Seasonal variation in stable isotope ratios of cow milk in Vilnius region, Lithuania[J]. Animals, 9(3): 69. doi: 10.3390/ani9030069

    [124]

    Gasse F, Fontes J C, Plaziat J, Carbonel P, Kaczmarska I, De Deckker P, Soulié–Marsche I, Callot Y, Dupeuble P. 1987. Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 60: 1–46.

    [125]

    Gat J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences, 24(1): 225−262. doi: 10.1146/annurev.earth.24.1.225

    [126]

    Gat J. 1981. Paleoclimate conditions in the Levant as revealed by the isotopic composition of paleowaters[J]. Israel Meteorological Research Papers, 3: 13−28.

    [127]

    Gatzert X, Chun K P, Boner M, Hermanowski R, Mäder R, Breuer L, Gattinger A, Orlowski N. 2021. Assessment of multiple stable isotopes for tracking regional and organic authenticity of plant products in Hesse, Germany[J]. Isotopes in Environmental and Health Studies, 57(3): 281−300. doi: 10.1080/10256016.2021.1905635

    [128]

    Gedney N, Cox P M, Betts R A, Boucher O, Huntingford C, Stott P. 2006. Detection of a direct carbon dioxide effect in continental river runoff records[J]. Nature, 439(7078): 835−838. doi: 10.1038/nature04504

    [129]

    Gessler A, Ferrio J P, Hommel R, Treydte K, Werner R A, Monson R K. 2014. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood[J]. Tree Physiology, 34(8): 796−818. doi: 10.1093/treephys/tpu040

    [130]

    Gonfiantini R. 1978. Standards for stable isotope measurements in natural compounds[J]. Nature, 271(5645): 534−536. doi: 10.1038/271534a0

    [131]

    Gonfiantini R. 1984. Stable isotope reference samples for geochemicaland hydrological investigations[J]. International Journal of AppliedRadiation and Isotopes, 35(5): 426−426.

    [132]

    Grant K, Rohling E, Bar–Matthews M, Ayalon A, Medina–Elizalde M, Ramsey C B, Satow C, Roberts A. 2012. Rapid coupling between ice volume and polar temperature over the past 150, 000 years[J]. Nature, 491(7426): 744−747. doi: 10.1038/nature11593

    [133]

    Gross A, Angert A. 2015. What processes control the oxygen isotopes of soil bio–available phosphate?[J]. Geochimica et Cosmochimica Acta, 159: 100−111. doi: 10.1016/j.gca.2015.03.023

    [134]

    Gross A, Nishri A, Angert A. 2013. Use of phosphate oxygen isotopes for identifying atmospheric–P sources: a case study at Lake Kinneret[J]. Environmental Science & Technology, 47(6): 2721−2727.

    [135]

    Gross A, Turner B L, Wright S J, Tanner E V, Reichstein M, Weiner T, Angert A. 2015. Oxygen isotope ratios of plant available phosphate in lowland tropical forest soils[J]. Soil Biology and Biochemistry, 88: 354−361. doi: 10.1016/j.soilbio.2015.06.015

    [136]

    Gruau G, Legeas M, Riou C, Gallacier E, Martineau F, Hénin O. 2005. The oxygen isotope composition of dissolved anthropogenic phosphates: a new tool for eutrophication research?[J]. Water Research, 39(1): 232−238. doi: 10.1016/j.watres.2004.08.035

    [137]

    Gu G H. 2008. Water temperature record and trend analysis of Fuxian Lake[R]. Yuxi City Water Resources District.

    [138]

    Guo H, Yu X, Lin M. 2022. Kinetic isotope effects in H2O2 self–decomposition: Implications for triple oxygen isotope systematics of secondary minerals in the solar system[J]. Earth and Planetary Science Letters, 594: 117722. doi: 10.1016/j.jpgl.2022.117722

    [139]

    Guo Q, Li B, Voelker A H, Kim J–K. 2020. Mediterranean Outflow Water dynamics across the middle Pleistocene transition based on a 1.3 million–year benthic foraminiferal record off the Portuguese margin[J]. Quaternary Science Reviews, 247: 106567. doi: 10.1016/j.quascirev.2020.106567

    [140]

    Guo Qimei, Li Baohua, Wang Xiaoyan, Yu Zhoufei, Xu Ye, Zhang Kai. 2020. Applications of benthic foraminifera in paleoceanography[J]. Acta Palaeontologica Sinica, 59(3): 365−379 (in Chinese with English abstract).

    [141]

    Guo Qimei, Liu Jing, Li Baohua. 2023. Single/Multi–shell benthic foraminiferal stable oxygen and carbon isotopic composition, difference and its significance[J]. Acta Micropalaeontologica Sinica, 40(1): 53−65 (in Chinese with English abstract).

    [142]

    Hamzić Gregorčič S, Potočnik D, Camin F, Ogrinc N. 2020. Milk authentication: Stable isotope composition of hydrogen and oxygen in milks and their constituents[J]. Molecules, 25(17): 4000. doi: 10.3390/molecules25174000

    [143]

    Han Jiamao, Jiang Wenying, Liu Dongsheng, LüHouyuan, Guo Zhengtang, Wu Naiqin. 1996. The isotopic record of paleoclimate change in loess carbonates[J]. Scientia Sinica (Terrae), (5): 399−404 (in Chinese).

    [144]

    Han Jiamao, Jiang Wenying, LüHouyuan, Wu Naiqin, Guo Zhengtang. 1995a. Carbon and oxygen isotope compositions of carbonate concretions in loess part 2: carbon isotope and paleo–aridity[J]. Quaternary Sciences(4): 367–377 (in Chinese with English abstract).

    [145]

    Han Jiamao, Jiang Wenying, Wu Naiqin, Guo Zhengtang. 1995b. Carbon and oxygen isotope compositions of carbonate concretions in loss part 1: oxygen isotope and paleotemperature[J]. Quaternary Sciences(2): 130–138 (in Chinese with English abstract).

    [146]

    Hao Z, Singh V P, Xia Y. 2018. Seasonal drought prediction: Advances, challenges, and future prospects[J]. Reviews of Geophysics, 56(1): 108−141. doi: 10.1002/2016RG000549

    [147]

    Haubrich F, Tichomirowa M. 2002. Sulfur and oxygen isotope geochemistry of acid mine drainage—the polymetallic sulfide deposit “HimmelfahrtFundgrube” in Freiberg (Germany)[J]. Isotopes in Environmental and Health Studies, 38(2): 121−138.

    [148]

    Hayes J M. 1982. An introduction to isotopic measurements and terminology[J]. Spectr, 8: 3−8.

    [149]

    Hayles J A, Killingsworth B A. 2022. Constraints on triple oxygen isotope kinetics[J]. Chemical Geology, 589: 120646. doi: 10.1016/j.chemgeo.2021.120646

    [150]

    HAYS I J. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record[J]. Milankouitch and Climate, NATO ASI Series, Series C: Mathematical and Physical Sciences, 126: 269–305.

    [151]

    Helfenstein J, Tamburini F, von Sperber C, Massey M S, Pistocchi C, Chadwick O A, Vitousek P M, Kretzschmar R, Frossard E. 2018. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil[J]. Nature Communications, 9(1): 3226. doi: 10.1038/s41467-018-05731-2

    [152]

    Helle G, Schleser G H. 2004. Interpreting Climate Proxies from Tree–rings[M]. In The Climate in Historical Times: Towards a Synthesis of Holocene Proxy Data and Climate Models (pp. 129–148): Springer.

    [153]

    Hendy C H. 1971. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 35(8): 801−824. doi: 10.1016/0016-7037(71)90127-X

    [154]

    Henkes G A, Passey B H, Grossman E L, Shenton B J, Pérez–Huerta A, Yancey T E. 2014. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures[J]. Geochimica et Cosmochimica Acta, 139: 362−382. doi: 10.1016/j.gca.2014.04.040

    [155]

    Henkes G A, Passey B H, Wanamaker Jr A D, Grossman E L, Ambrose Jr W G, Carroll M L. 2013. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells[J]. Geochimica et Cosmochimica Acta, 106: 307−325. doi: 10.1016/j.gca.2012.12.020

    [156]

    Hesse T, Butzin M, Bickert T, Lohmann G. 2011. A model‐data comparison of δ13C in the glacial Atlantic Ocean[J]. Paleoceanography, 26(3): 3220.

    [157]

    Hoag K, Still C, Fung I, Boering K. 2005. Triple oxygen isotope composition of tropospheric carbon dioxide as a tracer of terrestrial gross carbon fluxes[J]. Geophysical Research Letters, 32(2): L02802.

    [158]

    Hobson K A, Koehler G. 2015. On the use of stable oxygen isotope (δ18O) measurements for tracking avian movements in North America[J]. Ecology and Evolution, 5(3): 799−806. doi: 10.1002/ece3.1383

    [159]

    Hoefs J. 1997. Stable Isotope Geochemistry[M]. Berlin: Springer: 58–66.

    [160]

    Horacek M, Ogrinc N, Magdas D A, Wunderlin D, Sucur S, Maras V, Misurovic A, Eder R, ˇCuˇs F, Wyhlidal S, Papesch W. 2021. Isotope analysis (13C, 18O) of wine from central and eastern europe and argentina, 2008 and 2009 vintages: differentiation of origin, environmental indications, and variations within countries[J]. Frontiers in Sustainable Food Systems, 5: 638941. doi: 10.3389/fsufs.2021.638941

    [161]

    Hori M, Ishikawa T, Nagaishi K, Lin K, Wang B–S, You C–F, Shen C–C, Kano A. 2013. Prior calcite precipitation and source mixing process influence Sr/Ca, Ba/Ca and 87Sr/86Sr of a stalagmite developed in southwestern Japan during 18.0–4.5 ka[J]. Chemical Geology, 347: 190−198. doi: 10.1016/j.chemgeo.2013.03.005

    [162]

    Horváth B, Hofmann M, Pack A. 2012. On the triple oxygen isotope composition of carbon dioxide from some combustion processes[J]. Geochimica et Cosmochimica Acta, 95: 160−168. doi: 10.1016/j.gca.2012.07.021

    [163]

    Hou Zhanfang, Zhang Jun, Song Chunhui, Li Jijun, Liu Jia, Liu Shanpin, Hui Zhengchuang, Peng Tingjiang. 2011. The oxygen and carbon isotopic records of Miocene sediments in the Tianshui Basin of the Northestern Tibetan Plateau and their paleoclimatic implications[J]. Marine Geology & Quaternary Geology, 31(3): 69−78 (in Chinese with English abstract).

    [164]

    Hsieh J C, Chadwick O A, Kelly E F, Savin S M. 1998. Oxygen isotopic composition of soil water: quantifying evaporation and transpiration[J]. Geoderma, 82(1−3): 269−293. doi: 10.1016/S0016-7061(97)00105-5

    [165]

    Hu M, Wang Y, Du P, Shui Y, Cai A, Lv C, Bao Y, Li Y, Li S, Zhang P. 2019. Tracing the sources of nitrate in the rivers and lakes of the southern areas of the Tibetan Plateau using dual nitrate isotopes[J]. Science of the Total Environment, 658: 132−140. doi: 10.1016/j.scitotenv.2018.12.149

    [166]

    Hu Quanxu, Wang Xianyan, Meng Xianqiang, Liu Quanyu, Lu Huayu. 2018. Paleoclimatic implications of oxygen isotope from authigenic carbonates in loess deposit of northeastern Tibetan Plateau[J]. Earth Science, 43(11): 4128−4137 (in Chinese with English abstract).

    [167]

    Huang R, Zhu H, Liang E, Bräuning A, Zhong L, Xu C, Feng X, Asad F, Sigdel S R, Li L. 2022. Contribution of winter precipitation to tree growth persists until the late growing season in the Karakoram of northern Pakistan[J]. Journal of Hydrology, 607: 127513. doi: 10.1016/j.jhydrol.2022.127513

    [168]

    Huang Sijing, Shi He, Mao Xiaodong, Zhang Meng, Shen Licheng, Wu Wenhui. 2003. Diagenetic alteration of earlier Palaeozoic marine carbonate and preservation for the information of sea water[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 30(1): 9−18 (in Chinese with English abstract).

    [169]

    Hullar I, Brand A. 1993. Nutritional factors affecting milk quality, with special regard to milk protein: a review[J]. Acta VeterinariaHungarica, 41(1−2): 11−32.

    [170]

    Hulston J R, Thode H G. 1965. Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects[J]. Journal of Geophysical Research, 70(14): 3475−3484. doi: 10.1029/JZ070i014p03475

    [171]

    Hundey E J, Russell S, Longstaffe F J, Moser K A. 2016. Agriculture causes nitrate fertilization of remote alpine lakes[J]. Nature Communications, 7(1): 10571. doi: 10.1038/ncomms10571

    [172]

    Ishida–Fujii K, Goto S, Uemura R, Yamada K, Sato M, Yoshida N. 2005. Botanical and geographical origin identification of industrial ethanol by stable isotope analyses of C, H, and O[J]. Bioscience, Biotechnology, and Biochemistry, 69(11): 2193–2199.

    [173]

    Ishino S, Hattori S, Savarino J, Jourdain B, Preunkert S, Legrand M, Caillon N, Barbero A, Kuribayashi K, Yoshida N. 2017. Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica[J]. Atmospheric Chemistry and Physics, 17(5): 3713−3727. doi: 10.5194/acp-17-3713-2017

    [174]

    Jaisi D P, Blake R E. 2010. Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates[J]. Geochimica et Cosmochimica Acta, 74(11): 3199−3212. doi: 10.1016/j.gca.2010.02.030

    [175]

    Jameel Y, Brewer S, Good S P, Tipple B J, Ehleringer J R, Bowen G J. 2016. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area[J]. Water Resources Research, 52(8): 5891−5910. doi: 10.1002/2016WR019104

    [176]

    Ji S, Nie J, Breecker D O, Luo Z, Song Y. 2017. Intensified aridity in northern China during the middle Piacenzian warm period[J]. Journal of Asian Earth Sciences, 147: 222−225. doi: 10.1016/j.jseaes.2017.07.016

    [177]

    Ji X, Shu L, Li J, Zhao C, Chen W, Chen Z, Shang X, Dahlgren R A, Yang Y, Zhang M. 2022. Tracing nitrate sources and transformations using Δ17O, δ15N, and δ18O–NO3 in a coastal plain river network of eastern China[J]. Journal of Hydrology, 610: 127829. doi: 10.1016/j.jhydrol.2022.127829

    [178]

    Jin Z, Wang J, Zhang R, Liao P, Liu Y, Yang J, Chen J. 2023. Identification of the sources of different phosphorus fractions in lake sediments by oxygen isotopic composition of phosphate[J]. Applied Geochemistry, 151: 105627. doi: 10.1016/j.apgeochem.2023.105627

    [179]

    Johnsen S J, Dahl‐Jensen D, Gundestrup N, et al. 2001. Oxygen isotope and palaeotemperature records from six Greenland ice‐core stations: Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP[J]. Journal of Quaternary Science: Published for the Quaternary Research Association, 16(4): 299−307.

    [180]

    Joshi S R, Kukkadapu R K, Burdige D J, Bowden M E, Sparks D L, Jaisi D P. 2015. Organic matter remineralization predominates phosphorus cycling in the mid–bay sediments in the Chesapeake Bay[J]. Environmental Science & Technology, 49(10): 5887−5896.

    [181]

    Joussaume S, Jouzel J, Sadourny R. 1984. Erratum: A general circulation model of water isotope cycles in the atmosphere[J]. Nature, 311(5987): 680−680.

    [182]

    Jouzel J, Merlivat L. 1984. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation[J]. Journal of Geophysical Research: Atmospheres, 89(D7): 11749−11757. doi: 10.1029/JD089iD07p11749

    [183]

    Junghans M, Tichomirowa M. 2009. Using sulfur and oxygen isotope data for sulfide oxidation assessment in the Freiberg polymetallic sulfide mine[J]. Applied Geochemistry, 24(11): 2034−2050. doi: 10.1016/j.apgeochem.2009.08.001

    [184]

    Kamezaki K, Hattori S, Iwamoto Y, Ishino S, Furutani H, Miki Y, Miura K, Uematsu M, Yoshida N. 2017. Nitrogen and Triple Oxygen Isotopic Analyses of Atmospheric Particulate Nitrate over the Pacific Ocean[C]. Paper presented at the EGU General Assembly Conference Abstracts.

    [185]

    Kamiloglu S. 2019. Authenticity and traceability in beverages[J]. Food Chemistry, 277: 12−24. doi: 10.1016/j.foodchem.2018.10.091

    [186]

    Kato H, Amekawa S, Hori M, Shen C–C, Kuwahara Y, Senda R, Kano A. 2021. Influences of temperature and the meteoric water δ18O value on a stalagmite record in the last deglacial to middle Holocene period from southwestern Japan[J]. Quaternary Science Reviews, 253: 106746. doi: 10.1016/j.quascirev.2020.106746

    [187]

    Kelly S, Heaton K, Hoogewerff J. 2005. Tracing the geographical origin of food: The application of multi–element and multi–isotope analysis[J]. Trends in Food Science & Technology, 16(12): 555−567.

    [188]

    Kendall C, Elliott E M, Wankel S D. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems[J]. Stable Isotopes in Ecology and Environmental Science, 2(1): 375−449.

    [189]

    Kendall C, McDonnell J J. 1998. Isotope Tracers in Catchment Hydrology[M]. Amsterdam: Elsevier.

    [190]

    Killingsworth B A, Bao H. 2015. Significant human impact on the flux and δ34S of sulfate from the Largest River in North America[J]. Environmental Science & Technology, 49(8): 4851−4860.

    [191]

    Kim D M, Yun S T, Yoon S, Mayer B. 2019. Signature of oxygen and sulfur isotopes of sulfate in ground and surface water reflecting enhanced sulfide oxidation in mine areas[J]. Applied Geochemistry, 100: 143−151. doi: 10.1016/j.apgeochem.2018.11.018

    [192]

    Kim S T, O’Neil J R, Hillaire–Marcel C, Mucci A. 2007. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration[J]. Geochimica et Cosmochimica Acta, 71(19): 4704−4715. doi: 10.1016/j.gca.2007.04.019

    [193]

    Kluge T, John C M, Jourdan A–L, Davis S, Crawshaw J. 2015. Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25–250 C temperature range[J]. Geochimica et Cosmochimica Acta, 157: 213−227. doi: 10.1016/j.gca.2015.02.028

    [194]

    Kolodny Y, Luz B, Navon O. 1983. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game[J]. Earth and Planetary Science Letters, 64(3): 398−404. doi: 10.1016/0012-821X(83)90100-0

    [195]

    Korenaga T, Musashi M, Nakashita R, Suzuki Y. 2010. Statistical analysis of rice samples for compositions of multiple light elements (H, C, N, and O) and their stable isotopes[J]. Analytical Sciences, 26(8): 873−878. doi: 10.2116/analsci.26.873

    [196]

    Kortelainen N. 2009. Isotopic composition of atmospheric precipitation and shallow groundwater in Olkiluoto: O–18, H–2 and H–3[R]. Posiva Oy.

    [197]

    Krouse H R, Grinenko V A. 1991. Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment[M]. New York: John Wiley and Sons Ltd, 1991: 1–40.

    [198]

    Kukusamude C, Sola P, Kongsri S. 2018. Stable isotope ratio of local rice samples in Thailand[C]//Journal of Physics: Conference Series. IOP Publishing, 1144(1): 012168.

    [199]

    Kuwano D, Tsuchiya Y, Kameo K, Hayashi H, Kubota Y, Mantoku K, Oura Y. 2022. Early Pleistocene (Marine Isotope Stage 40–36) paleoceanography in the northwestern Pacific: Evidence from faunal and oxygen isotope analyses of planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 592: 110873.

    [200]

    Labeyrie L, Duplessy J C, Blanc P. 1987. Variations in mode of formation and temperature of oceanic deep waters over the past 125, 000 years[J]. Nature, 327(6122): 477−482. doi: 10.1038/327477a0

    [201]

    Landais A, Barkan E, Yakir D, Luz B. 2006. The triple isotopic composition of oxygen in leaf water[J]. Geochimica et Cosmochimica Acta, 70(16): 4105−4115. doi: 10.1016/j.gca.2006.06.1545

    [202]

    Landais A, Risi C, Bony S, Vimeux F, Descroix L, Falourd S, Bouygues A. 2010. Combined measurements of 17Oexcess and d–excess in African monsoon precipitation: Implications for evaluating convective parameterizations[J]. Earth and Planetary Science Letters, 298(1/2): 104−112.

    [203]

    Larkins C, Turunen K, Mänttäri I, Lahaye Y, Hendriksson N, Forsman P, Backnäs S. 2018. Characterization of selected conservative and non–conservative isotopes in mine effluent and impacted surface waters: implications for tracer applications at the mine–site scale[J]. Applied Geochemistry, 91: 1−13. doi: 10.1016/j.apgeochem.2018.01.005

    [204]

    Laskar A H, Maurya A S, Singh V, Gurjar B R, Liang M–C. 2020. A new perspective of probing the level of pollution in the megacity Delhi affected by crop residue burning using the triple oxygen isotope technique in atmospheric CO2[J]. Environmental Pollution, 263: 114542. doi: 10.1016/j.envpol.2020.114542

    [205]

    Lawrence J R, Gedzelman S D, Dexheimer D, Cho H K, Carrie G D, Gasparini R, Anderson C R, Bowman K P, Biggerstaff M I. 2004. Stable isotopic composition of water vapor in the tropics[J]. Journal of Geophysical Research: Atmospheres, 109(D6): D06115.

    [206]

    Lea D W, Martin P A, Pak D K, Spero H J. 2002. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 21(1−3): 283−293. doi: 10.1016/S0277-3791(01)00081-6

    [207]

    Leavitt S W, Danzer S R. 1993. Method for batch processing small wood samples to holocellulose for stable–carbon isotope analysis[J]. Analytical Chemistry, 65(1): 87−89. doi: 10.1021/ac00049a017

    [208]

    LeGrande A N, Schmidt G A. 2006. Global gridded data set of the oxygen isotopic composition in seawater[J]. Geophysical research letters, 33(12): L12604.

    [209]

    Li A, Keely B, Chan S, Baxter M, Rees G, Kelly S. 2015. Verifying the provenance of rice using stable isotope ratio and multi–element analyses: A feasibility study[J]. Quality Assurance and Safety of Crops & Foods, 7(3): 343−354.

    [210]

    Li C, Ren J, Shi G, Pang H, Wang Y, Hou S, Li Z, Du Z, Ding M, Ma X. 2021. Spatial and temporal variations of fractionation of stable isotopes in East–Antarctic snow[J]. Journal of Glaciology, 67(263): 523−532. doi: 10.1017/jog.2021.5

    [211]

    Li H C, Ku T L. 1997. δ13C–δ18C covariance as a paleohydrological indicator for closed–basin lakes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 133(1–2): 69–80.

    [212]

    Li J, Li Z, Brandis K J, Bu J, Sun Z, Yu Q, Ramp D. 2020a. Tracing geochemical pollutants in stream water and soil from mining activity in an alpine catchment[J]. Chemosphere, 242: 125167. doi: 10.1016/j.chemosphere.2019.125167

    [213]

    Li Jiansen, Cai Jinfu, Fan Qishun, Shan Fashou, Ling Zhiyong, Han Yuanhong, Zhang Yongxing. 2022. Metallogenic geochemical system of K, B and Li resources in salt lakes of Qaidam Basin[J]. Journal of Salt Lake Research, 30(3): 12−20 (in Chinese with English abstract).

    [214]

    Li S L, Liu C Q, Li J, Liu X, Chetelat B, Wang B, Wang F. 2010. Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approach[J]. Environmental Science & Technology, 44(5): 1573−1578.

    [215]

    Li Siyuan, Hou Qingye, Yang Zhongfang, Yu Tao. 2024. Nitrogen isotope fractionation mechanism, analysis measurement tracer technology and itsapplication in ecological environment[J]. Geology in China, 51(5): 1617−1643 (in Chinese with English abstract).

    [216]

    Li Tong, Qiu Guoyu. 2018. Hydrogen and oxygen stable isotope study on the difference of evaporation between salt and pure water[J]. Tropical Geography, 38(6): 857−865 (in Chinese with English abstract).

    [217]

    Li X, Pan G, Zhou A, Fang L, He N. 2022. Stable sulfur and oxygen isotopes of sulfate as tracers of antimony and arsenic pollution sources related to antimony mine activities in an impacted river[J]. Applied Geochemistry, 142: 105351. doi: 10.1016/j.apgeochem.2022.105351

    [218]

    Li X, Wang Y, Stern J, Gu B. 2011. Isotopic evidence for the source and fate of phosphorus in Everglades wetland ecosystems[J]. Applied Geochemistry, 26(5): 688−695. doi: 10.1016/j.apgeochem.2011.01.027

    [219]

    Li Xiaoqian, Zhang Bin, Zhou Aiguo, LiuYunde. 2014. Using sulfur and oxygen isotopes of sulfate to track groundwater contamination from coal mine drainage in Heshan[J]. Hydrogeology & Engineering Geology, 41(6): 103−109 (in Chinese with English abstract).

    [220]

    Li Y, Liu T, Wu W, Hna J, Hong Y. 2003. Paleoenvironment in chinese loess plateau during mis 3: evidence from malan loess[J]. Quaternary Sciences, 23(1): 69−76.

    [221]

    Li Y, Zeng X, Liu X, Evans M N, Xu G, Szejner P, Ni P. 2023. A Seasonally Varying Tree Physiological Response to Environmental Conditions: Results From Semi‐Arid China[J]. Journal of Geophysical Research: Biogeosciences, 128(7): e2023JG007455. doi: 10.1029/2023JG007455

    [222]

    Li Yue, Wang Rujian, Li Wenbao. 2016. Review on research on paleo–sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments[J]. Advances in Earth Science, 31(3): 310−319 (in Chinese with English abstract).

    [223]

    Li Z, Ou J, Chen X, Li F, Wang X, Tan X. 2017. Characteristics and main development controlling factors for lower Permian dolomite reservoirs in Chuanzhong region[J]. Petroleum Geology & Oilfield Development in Daqing, 36(4): 1−8.

    [224]

    Li Z, Zhang R, Liu C, Zhang R, Chen F, Liu Y. 2020b. Phosphorus spatial distribution and pollution risk assessment in agricultural soil around the Danjiangkou reservoir, China[J]. Science of the Total Environment, 699: 134417. doi: 10.1016/j.scitotenv.2019.134417

    [225]

    Li Zhitao, Xiao Hongwei, Wu Zuoting, Ma Yan, Xiao Yangning, Chen Zhenping, Tao Jihua. 2022. Hydrochemistry, nitrogen and oxygen isotope composition of nitrate to trace its source in Poyang Lake wetland[J]. China Environmental Science, 42(9): 4315−4322 (in Chinese with English abstract).

    [226]

    Liang M C, Laskar A H, Barkan E, Newman S, Thiemens M H, Rangarajan R. 2023. New constraints of terrestrial and oceanic global gross primary productions from the triple oxygen isotopic composition of atmospheric CO2 and O2[J]. Scientific Reports, 13(1): 2162. doi: 10.1038/s41598-023-29389-z

    [227]

    Liang M C, Mahata S, Laskar A H, Bhattacharya S K. 2017. Spatiotemporal variability of oxygen isotope anomaly in near surface air CO2 over urban, semi–urban and ocean areas in and around Taiwan[J]. Aerosol and Air Quality Research, 17(3): 706−720. doi: 10.4209/aaqr.2016.04.0171

    [228]

    Liang M C, Mahata S. 2015. Oxygen anomaly in near surface carbon dioxide reveals deep stratospheric intrusion[J]. Scientific Reports, 5(1): 11352. doi: 10.1038/srep11352

    [229]

    Liang M C, Yung Y L. 2007. Sources of the oxygen isotopic anomaly in atmospheric N2O[J]. Journal of Geophysical Research: Atmospheres, 112(D13): D13307.

    [230]

    Lin M, Thiemens M H. 2024. 40 years of theoretical advances in mass–independent oxygen isotope effects and applications in atmospheric chemistry: A critical review and perspectives[J]. Applied Geochemistry, 161: 105860. doi: 10.1016/j.apgeochem.2023.105860

    [231]

    Lisiecki L E, Raymo M E. 2005. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 20(2): PA2007.

    [232]

    Liu C L, Wang M L, Jiao P C. 1999. Hydrogen, oxygen, strontium and sulfur isotopic geochemistry and potash–forming material sources of lop salt lake, Xinjiang[J]. Mineral Deposits, 18(3): 268−275.

    [233]

    Liu J, Chen J, Zhang X, Li Y, Rao Z, Chen F. 2015. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth–Science Reviews, 148: 194−208.

    [234]

    Liu J, Han G. 2021. Tracing riverine sulfate source in an agricultural watershed: constraints from stable isotopes[J]. Environmental Pollution, 288: 117740. doi: 10.1016/j.envpol.2021.117740

    [235]

    Liu Ke, Hou Shugui, Pang Hongxi, Shi Guitao, Geng Lei, Hu Huanting, Song Jing, Zhang Wangbin, Zou Xiang, An Chunlei, Yu Jinhai. 2022. Polar ice core–based climate and environmental research: A review and perspective[J]. Chinese Journal of Polar Research, 34(4): 530−545 (in Chinese with English abstract).

    [236]

    Liu S, Zhang R, Kang R, Meng J, Ao C. 2016. Milk fatty acids profiles and milk production from dairy cows fed different forage quality diets[J]. Animal Nutrition, 2(4): 329−333. doi: 10.1016/j.aninu.2016.08.008

    [237]

    Liu T, Wang F, Michalski G, Xia X, Liu S. 2013. Using 15N, 17O, and 18O to determine nitrate sources in the Yellow River, China[J]. Environmental Science & Technology, 47(23): 13412−13421.

    [238]

    Liu X F, Xue C H, Wang Y M, Li Z J, Xue Y, Xu J. 2011. Principal component analysis and cluster analysis of inorganic elements in sea cucumber Apostichopus japonicus[J]. Spectroscopy and Spectral Analysis, 31(11): 3119−3122.

    [239]

    Liu X, Chen B. 2000. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(14): 1729−1742.

    [240]

    Liu Y, Wang Y, Li Q, Song H, Linderholm H W, Leavitt S W, Wang R, An Z. 2014. Tree–ring stable carbon isotope–based May–July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th century warming[J]. Quaternary Science Reviews, 93: 67−76. doi: 10.1016/j.quascirev.2014.03.023

    [241]

    Loader N, Robertson I, McCarroll D. 2003. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree–rings[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 196(3/4): 395–407.

    [242]

    Lü Fenglin, Liu Chenglin, Jiao Pengcheng, Zhang Hua, Sun Xiaohong, Zhang Yongming. 2018. Carbon and oxygen isotopic compositions of the lacustrine carbonate in Lop Nur since the Mid–Pleistocene and their paleoenvironment significance[J]. Acta GeologicaSinica, 92(8): 1589−1604 (in Chinese with English abstract).

    [243]

    Luo D, Dong H, Luo H, Xian Y, Guo X, Wu Y. 2016. Multi–element (C, N, H, O) stable isotope ratio analysis for determining the geographical origin of pure milk from different regions[J]. Food Analytical Methods, 9: 437−442. doi: 10.1007/s12161-015-0204-9

    [244]

    Luo X, Wang H, An Z, Zhang Z, Liu W. 2020. Carbon and oxygen isotopes of calcified root cells, carbonate nodules and total inorganic carbon in the Chinese loess–paleosol sequence: The application of paleoenvironmental studies[J]. Journal of Asian Earth Sciences, 201: 104515. doi: 10.1016/j.jseaes.2020.104515

    [245]

    Luz B, Barkan E, Bender M L, Thiemens M H, Boering K A. 1999. Triple–isotope composition of atmospheric oxygen as a tracer of biosphere productivity[J]. Nature, 400(6744): 547−550. doi: 10.1038/22987

    [246]

    Luz B, Barkan E. 2010. Variations of 17O/16O and 18O/16O in meteoric waters[J]. Geochimica et Cosmochimica Acta, 74(22): 6276−6286. doi: 10.1016/j.gca.2010.08.016

    [247]

    Ma Zhengming, Jiang Panwu, Li Qingkuan, Wei Haicheng, Li Yongshou, Shan Fashou. 2021. Hydrogen and Oxygen Isotope Characteristics and Origin of Hadahexiu Salt Lake Brine[J]. Journal of Salt Lake Research, 29(1): 80−87 (in Chinese with English abstract).

    [248]

    MacDonald G K, Bennett E M, Potter P A, Ramankutty N. 2011. Agronomic phosphorus imbalances across the world's croplands[J]. Proceedings of the National Academy of Sciences, 108(7): 3086−3091. doi: 10.1073/pnas.1010808108

    [249]

    MacDonald J M, John C M, Girard J–P. 2018. Testing clumped isotopes as a reservoir characterization tool: a comparison with fluid inclusions in a dolomitized sedimentary carbonate reservoir buried to 2–4 km[J]. Geological Society, London, Special Publications, 468(1): 189–202.

    [250]

    MacLeod K G, Huber B T, Berrocoso Á J, Wendler I. 2013. A stable and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera[J]. Geology, 41(10): 1083−1086. doi: 10.1130/G34510.1

    [251]

    Magdas DA, Dehelean A, Puscas R. 2012. Isotopic and elemental determination in some Romanian apple fruit juices[J]. Scientific World Journal, 2012: 1−7.

    [252]

    Mahecha M D, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne S I, Vargas R, Ammann C, Arain M A, Cescatti A. 2010. Global convergence in the temperature sensitivity of respiration at ecosystem level[J]. Science, 329(5993): 838−840. doi: 10.1126/science.1189587

    [253]

    Maher B A, Hu M. 2006. A high–resolution record of Holocene rainfall variations from the western Chinese Loess Plateau: antiphase behaviour of the African/Indian and East Asian summer monsoons[J]. The Holocene, 16(3): 309−319. doi: 10.1191/0959683606hl929rp

    [254]

    Maiorano P, Marino M, Balestra B, Flores J–A, Hodell D, Rodrigues T. 2015. Coccolithophore variability from the Shackleton Site (IODP Site U1385) through MIS 16–10[J]. Global and Planetary Change, 133: 35−48. doi: 10.1016/j.gloplacha.2015.07.009

    [255]

    Majoube M. 1971. Fractionnementenoxygène–18 et endeutérium entre l’eau et savapeur[J]. Journal de Chimie Physique, 68: 1423−1436. doi: 10.1051/jcp/1971681423

    [256]

    Mangenot X, Deçoninck J F, Bonifacie M, Rouchon V, Collin P Y, Quesne D, Gasparrini M, Sizun J P. 2019. Thermal and exhumation histories of the northern subalpine chains (Bauges and Bornes—France): Evidence from forward thermal modeling coupling clay mineral diagenesis, organic maturity and carbonate clumped isotope (Δ47) data[J]. Basin Research, 31(2): 361−379. doi: 10.1111/bre.12324

    [257]

    Mangenot X, Gasparrini M, Gerdes A, Bonifacie M, Rouchon V. 2018. An emerging thermochronometer for carbonate–bearing rocks: ∆ 47/(U–Pb)[J]. Geology, 46(12): 1067−1070. doi: 10.1130/G45196.1

    [258]

    Mao Jianying, Zhu Jianping, Xiao Jianjun. 2003. The relationship between nitrogen contamination and dissolved oxygen in mainstream of the Huaihe River[J]. Environmental Monitoring in China, (5): 41−43 (in Chinese with English abstract).

    [259]

    Maqsoud A, Neculita C M, Bussière B, Benzaazoua M, Dionne J. 2016. Impact of fresh tailing deposition on the evolution of groundwater hydrogeochemistry at the abandoned Manitou mine site, Quebec, Canada[J]. Environmental Science and Pollution Research, 23: 9054−9072. doi: 10.1007/s11356-016-6111-9

    [260]

    Marcus R. 2008. Mass–independent oxygen isotope fractionation in selected systems. Mechanistic considerations[J]. Advances in Quantum Chemistry, 55: 5−19.

    [261]

    Marrero T R, Mason E A. 1972. Gaseous diffusion coefficients[J]. Journal of Physical and Chemical Reference Data, 1(1): 3−118.

    [262]

    Martino J C, Mazumder D, Gadd P, Doubleday Z A. 2022. Tracking the provenance of octopus using isotopic and multi–elemental analysis[J]. Food Chemistry, 371: 131133. doi: 10.1016/j.foodchem.2021.131133

    [263]

    Masud Z, Vallet C, Martin G J. 1999. Stable isotope characterization of milk components and whey ethanol[J]. Journal of Agricultural and Food Chemistry, 47(11): 4693−4699.

    [264]

    Mayer B, Bollwerk S M, Mansfeldt T, Hütter B, Veizer J. 2001. The oxygen isotope composition of nitrate generated by nitrification in acid forest floors[J]. Geochimica et Cosmochimica Acta, 65(16): 2743−2756.

    [265]

    Mayer B, Boyer E W, Goodale C, Jaworski N A, Van Breemen N, Howarth R W, Seitzinger S, Billen G, Lajtha K, Nadelhoffer K. 2002. Sources of nitrate in rivers draining sixteen watersheds in the northeastern US: Isotopic constraints[J]. Biogeochemistry, 57: 171−197.

    [266]

    McCarroll D, Loader N J. 2004. Stable isotopes in tree rings[J]. Quaternary Science Reviews, 23(7−8): 771−801.

    [267]

    McCorkle D C, Keigwin L D, Corliss B H, Emerson S R. 1990. The influence of microhabitats on the carbon isotopic composition of deep‐sea benthic foraminifera[J]. Paleoceanography, 5(2): 161−185.

    [268]

    McLaughlin K, Kendall C, Silva S R, Young M, Paytan A. 2006. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California[J]. Journal of Geophysical Research: Biogeosciences, 111(G3): 03003.

    [269]

    Meijer H A J, Li W J. 1998. The use of electrolysis for accurate δ17O and δ18O isotope measurements in water[J]. Isotopes in Environmental and Health Studies, 34(4): 349−369.

    [270]

    Merlivat L, Coantic M. 1975. Study of mass transfer at the air‐water interface by an isotopic method[J]. Journal of Geophysical Research, 80(24): 3455−3464. doi: 10.1029/JC080i024p03455

    [271]

    Merlivat L, Jouzel J. 1979. Global climatic interpretation of the deuterium‐oxygen 18 relationship for preci–pitation[J]. Journal of Geophysical Research: Oceans, 84(C8): 5029−5033. doi: 10.1029/JC084iC08p05029

    [272]

    Miall A D. 2013. Principles of Sedimentary Basin Analysis[M]. Springer Science & Business Media.

    [273]

    Miao Qing, Hou Xianhua, Yang Zhenjing. 2021. Application of several commonly used paleoclimate proxies in paleoenvironmental studies of salt lakes[J]. Scientific and Technological Innovation, (5): 31−32 (in Chinese).

    [274]

    Miao Tian, JinYaqi, Wang Lei, Wu Gaoyang, Chen Zhong. 2021. Research progress on the paleoclimate significance of loess carbonate[J]. Journal of Salt Lake Research, 29(4): 90−99 (in Chinese with English abstract).

    [275]

    Michalski G, Meixner T, Fenn M, Hernandez L, Sirulnik A, Allen E, Thiemens M. 2004. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using Δ17O[J]. Environmental Science & Technology, 38(7): 2175−2181.

    [276]

    Michalski G, Scott Z, Kabiling M, Thiemens M H. 2003. First measurements and modeling of Δ17O in atmospheric nitrate[J]. Geophysical Research Letters, 30(16): 1870.

    [277]

    Michalski G, Thiemens M. 2006. The use of multi–isotope ratio measurements as a new and unique technique to resolve NOx transformation, transport and nitrate deposition in the Lake Tahoe Basin[J]. California Air Resources Board, Sacramento,CA: 03−317.

    [278]

    Miller K G, Browning J V, Schmelz W J, Kopp R E, Mountain G S, Wright J D. 2020. Cenozoic sea–level and cryospheric evolution from deep–sea geochemical and continental margin records[J]. Science advances, 6(20): eaaz1346. doi: 10.1126/sciadv.aaz1346

    [279]

    Miller K G, Wright J D, Browning J V, Kulpecz A, Kominz M, Naish T R, Cramer B S, Rosenthal Y, Peltier W R, Sosdian S. 2012. High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation[J]. Geology, 40(5): 407−410. doi: 10.1130/G32869.1

    [280]

    Miller M F. 2002. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three–isotope system: an appraisal and geochemical significance[J]. Geochimica et Cosmochimica Acta, 66(11): 1881−1889. doi: 10.1016/S0016-7037(02)00832-3

    [281]

    Miller M F. 2018. Precipitation regime influence on oxygen triple–isotope distributions in Antarctic precipitation and ice cores[J]. Earth and Planetary Science Letters, 481: 316−327. doi: 10.1016/j.jpgl.2017.10.035

    [282]

    Mimmo T, Camin F, Bontempo L, Capici C, Tagliavini M, Cesco S, Scampicchio M. 2015. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data[J]. Rapid Communications in Mass Spectrometry, 29(21): 1984−1990. doi: 10.1002/rcm.7306

    [283]

    Mix A C, Ruddiman W F. 1984. Oxygen–isotope analyses and Pleistocene ice volumes[J]. Quaternary Research, 21(1): 1−20. doi: 10.1016/0033-5894(84)90085-1

    [284]

    Mosley–Thompson E, Thompson L G, Grootes P M, Gundestrup N. 1990. Little ice age (neoglacial) paleoenvironmental conditions at siple station, Antarctica[J]. Annals of Glaciology, 14: 199−204. doi: 10.3189/S0260305500008570

    [285]

    Moyé J, Picard–Lesteven T, Zouhri L, El Amari K, Hibti M, Benkaddour A. 2017. Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco)[J]. Environmental Pollution, 231: 899−907. doi: 10.1016/j.envpol.2017.07.044

    [286]

    Naylor H N, Defliese W F, Grossman E L, Maupin C R. 2020. Investigation of the thermal history of the Delaware Basin (West Texas, USA) using carbonate clumped isotope thermometry[J]. Basin Research, 32(5): 1140−1155. doi: 10.1111/bre.12419

    [287]

    Nestler A, Berglund M, Accoe F, Duta S, Xue D, Boeckx P, Taylor P. 2011. Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies[J]. Environmental Science and Pollution Research, 18: 519−533. doi: 10.1007/s11356-010-0422-z

    [288]

    Newman C P, Poulson S R, Hanna B. 2020. Regional isotopic investigation of evaporation and water–rock interaction in mine pit lakes in Nevada, USA[J]. Journal of Geochemical Exploration, 210: 106445. doi: 10.1016/j.gexplo.2019.106445

    [289]

    Newsome S D, Clementz M T, Koch P L. 2010. Using stable isotope biogeochemistry to study marine mammal ecology[J]. Marine Mammal Science, 26(3): 509−572.

    [290]

    Nishimoto N, Yamamoto Y, Yamagata S, Igarashi T, Tomiyama S. 2021. Acid mine drainage sources and impact on groundwater at the osarizawa mine, Japan[J]. Minerals, 11(9): 998. doi: 10.3390/min11090998

    [291]

    O'driscoll M, DeWalle D, McGuire K, Gburek W. 2005. Seasonal 18O variations and groundwater recharge for three landscape types in central Pennsylvania, USA[J]. Journal of Hydrology, 303(1/4): 108−124.

    [292]

    Oerter E J, Bowen G. 2017. In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems[J]. Ecohydrology, 10(4): e1841. doi: 10.1002/eco.1841

    [293]

    Ogrinc N, Košir I J, Kocjančič M, Kidrič J. 2001. Determination of authenticy, regional origin, and vintage of Slovenian wines using a combination of IRMS and SNIF–NMR analyses[J]. Journal of Agricultural and Food Chemistry, 49(3): 1432−1440. doi: 10.1021/jf000911s

    [294]

    O'Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates[J]. The Journal of Chemical Physics, 51(12): 5547−5558. doi: 10.1063/1.1671982

    [295]

    Orellana S, Johansen A M, Gazis C. 2019. Geographic classification of US Washington State wines using elemental and water isotope composition[J]. Food Chemistry: X, 1: 100007. doi: 10.1016/j.fochx.2019.100007

    [296]

    Passey B H, Henkes G A. 2012. Carbonate clumped isotope bond reordering and geospeedometry[J]. Earth and Planetary Science Letters, 351: 223−236.

    [297]

    Passey B H, Ji H. 2019. Triple oxygen isotope signatures of evaporation in lake waters and carbonates: A case study from the western United States[J]. Earth and Planetary Science Letters, 518: 1−12. doi: 10.1016/j.jpgl.2019.04.026

    [298]

    Perini M, Thomas F, Ortiz A I C, Simoni M, Camin F. 2022. Stable isotope ratio analysis of lactose as a possible potential geographical tracer of milk[J]. Food Control, 139: 109051. doi: 10.1016/j.foodcont.2022.109051

    [299]

    Peters M, Guo Q, Strauss H, Wei R, Li S, Yue F. 2019. Contamination patterns in river water from rural Beijing: A hydrochemical and multiple stable isotope study[J]. Science of the Total Environment, 654: 226−236. doi: 10.1016/j.scitotenv.2018.10.423

    [300]

    Petit J–R, Jouzel J, Raynaud D, Barkov N I, Barnola J–M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G. 1999. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica[J]. Nature, 399(6735): 429−436. doi: 10.1038/20859

    [301]

    Pistocchi C, Mészáros É, Frossard E, Bünemann E K, Tamburini F. 2020. In or out of equilibrium? How microbial activity controls the oxygen isotopic composition of phosphate in forest organic horizons with low and high phosphorus availability[J]. Frontiers in Environmental Science, 8: 564778. doi: 10.3389/fenvs.2020.564778

    [302]

    Porter T J, Pisaric M F, Field R D, Kokelj S V, Edwards T W, deMontigny P, Healy R, LeGrande A N. 2014. Spring–summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree–rings from the Mackenzie Delta, northwestern Canada[J]. Climate Dynamics, 42: 771−785. doi: 10.1007/s00382-013-1674-3

    [303]

    Prell W L, Imbrie J, Martinson D G, Morley J J, Pisias N G, Shackleton N J, Streeter H F. 1986. Graphic correlation of oxygen isotope stratigraphy application to the late Quaternary[J]. Paleoceanography, 1(2): 137−162. doi: 10.1029/PA001i002p00137

    [304]

    Pritchard H D. 2019. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 569(7758): 649−654. doi: 10.1038/s41586-019-1240-1

    [305]

    Prud'Homme C, Lécuyer C, Antoine P, Moine O, Hatté C, Fourel F, Martineau F, Rousseau D–D. 2016. Palaeotemperature reconstruction during the Last Glacial from δ18O of earthworm calcite granules from Nussloch loess sequence, Germany[J]. Earth and Planetary Science Letters, 442: 13−20. doi: 10.1016/j.jpgl.2016.02.045

    [306]

    Qiao Zhanfeng, Yu Zhou, She Min, Pan Liyin, Zhang Tianfu, Li Wenzheng, Shen Anjiang. 2023. Progresses on ancient ultra–deeply buried marine carbonate reservoir in China.[J]. Journal of Palaeogeography(Chinese Edition), 25(6): 1257−1276 (in Chinese with English abstract).

    [307]

    Qiu Nansheng, Liu Xin, XiongYujie, Liu Yuchen, Xu Qiuchen, Chang Qing. 2023. Progress in the study of carbonate clumped isotope in the thermal history of marine basins[J]. Petroleum Geology & Experiment, 45(5): 891−903 (in Chinese with English abstract).

    [308]

    Rao Z, Liu X, Hua H, Gao Y, Chen F. 2015. Evolving history of the East Asian summer monsoon intensity during the MIS5: inconsistent records from Chinese stalagmites and loess deposits[J]. Environmental Earth Sciences, 73: 3937−3950. doi: 10.1007/s12665-014-3681-z

    [309]

    Rasmussen S O, Abbott P M, Blunier T, Bourne A, Brook E, Buchardt S L, Buizert C, Chappellaz J, Clausen H, Cook E. 2013. A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core[J]. Climate of the Past, 9(6): 2713−2730. doi: 10.5194/cp-9-2713-2013

    [310]

    Rech J A, Currie B S, Jordan T E, Riquelme R, Lehmann S B, Kirk–Lawlor N E, Li S, Gooley J T. 2019. Massive middle Miocene gypsic paleosols in the Atacamadesert and the formation of the Central Andean rain–shadow[J]. Earth and Planetary Science Letters, 506: 184−194. doi: 10.1016/j.jpgl.2018.10.040

    [311]

    Ren J, Xiao C, Hou S, Li Y, Sun B. 2009. New focuses of polar ice–core study: NEEM and Dome A[J]. Chinese Science Bulletin, 54(6): 1009−1011. doi: 10.1007/s11434-009-0012-y

    [312]

    Ren K, Zeng J, Liang J, Yuan D, Jiao Y, Peng C, Pan X. 2021. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes[J]. Science of the Total Environment, 761: 143223. doi: 10.1016/j.scitotenv.2020.143223

    [313]

    Ren Kun, Pan Xiaodong, Lan Ganjiang, Peng Cong, Liang Jiapeng, Zeng Jie. 2021. Seasonal variation and sources identification of dissolved sulfate in a typical karst subterranean stream basin using sulfur and oxygen isotopes[J]. Environmental Science, 42(9): 4267−4274 (in Chinese with English abstract).

    [314]

    Ridley H E, Asmerom Y, Baldini J U, Breitenbach S F, Aquino V V, Prufer K M, Culleton B J, Polyak V, Lechleitner F A, Kennett D J. 2015. Aerosol forcing of the position of the intertropical convergence zone since AD 1550[J]. Nature Geoscience, 8(3): 195−200. doi: 10.1038/ngeo2353

    [315]

    Roberts K, Defforey D, Turner B L, Condron L M, Peek S, Silva S, Kendall C, Paytan A. 2015. Oxygen isotopes of phosphate and soil phosphorus cycling across a 6500 year chronosequence under lowland temperate rainforest[J]. Geoderma, 257: 14−21.

    [316]

    Rockmann T, Brenninkmeijer C, Saueressig G, Bergamaschi P, Crowley J, Fischer H, Crutzen P. 1998. Mass–independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO+ OH[J]. Science, 281(5376): 544−546. doi: 10.1126/science.281.5376.544

    [317]

    Roe L J, Thewissen J, Quade J, O’Neil J R, Bajpai S, Sahni A, Hussain S T. 1998. Isotopic approaches to understanding the terrestrial–to–marine transition of the earliest cetaceans[J]. The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea, 399–422.

    [318]

    Rohling E J, Grant K, Bolshaw M, Roberts A, Siddall M, Hemleben C, Kucera M. 2009. Antarctic temperature and global sea level closely coupled over the past five glacial cycles[J]. Nature Geoscience, 2(7): 500−504. doi: 10.1038/ngeo557

    [319]

    Rohling E J. 2013. Oxygen isotope composition of seawater[J]. The Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2: 915−922.

    [320]

    Rossmann A, Reniero F, Moussa I, Schmidt H L, Versini G, Merle M H. 1999. Stable oxygen isotope content of water of EU data–bank wines from Italy, France and Germany[J]. Zeitschrift Fur Lebensmittel–Untersuchung Und–Forschung a–Food Research and Technology, 208(5/6): 400−407.

    [321]

    Roy R, Wang Y, Jiang S. 2019. Growth pattern and oxygen isotopic systematics of modern freshwater mollusks along an elevation transect: Implications for paleoclimate reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 532: 109243.

    [322]

    Ruhela M, Sharma K, Bhutiani R, Chandniha S K, Kumar V, Tyagi K, Ahamad F, Tyagi I. 2022. GIS–based impact assessment and spatial distribution of air and water pollutants in mining area[J]. Environmental Science and Pollution Research, 29(21): 31486−31500. doi: 10.1007/s11356-021-18009-w

    [323]

    Ryu Y, Baldocchi D D, Kobayashi H, Van Ingen C, Li J, Black T A, Beringer J, Van Gorsel E, Knohl A, Law B E. 2011. Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales[J]. Global Biogeochemical Cycles, 25: GB4017.

    [324]

    Sanci R, Panarello H O, Gozalvez M R. 2020. Environmental isotopes as tracers of mining activities and natural processes: A case study of San Antonio de los Cobres River Basin, Puna Argentina[J]. Journal of Geochemical Exploration, 213: 106517. doi: 10.1016/j.gexplo.2020.106517

    [325]

    Santesteban L, Miranda C, Barbarin I, Royo J. 2015. Application of the measurement of the natural abundance of stable isotopes in viticulture: a review[J]. Australian Journal of Grape and Wine Research, 21(2): 157−167. doi: 10.1111/ajgw.12124

    [326]

    Savarino J, Kaiser J, Morin S, Sigman D M, Thiemens M. 2007. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica[J]. Atmospheric Chemistry and Physics, 7(8): 1925−1945. doi: 10.5194/acp-7-1925-2007

    [327]

    Savarino J, Thiemens M H. 1999. Analytical procedure to determine both δ18O and δ17O of H2O2 in natural water and first measurements[J]. Atmospheric Environment, 33(22): 3683−3690. doi: 10.1016/S1352-2310(99)00122-3

    [328]

    Savin S M, Lee M. 1988. Isotopic studies of phyllosilicates[J]. Reviews in Mineralogy and Geochemistry, 19(1): 189−223.

    [329]

    Schauble E A, Ghosh P, Eiler J M. 2006. Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first–principles lattice dynamics[J]. Geochimica et Cosmochimica Acta, 70(10): 2510−2529. doi: 10.1016/j.gca.2006.02.011

    [330]

    Schilt A, Baumgartner M, Blunier T, Schwander J, Spahni R, Fischer H, Stocker T F. 2010. Glacial–interglacial and millennial–scale variations in the atmospheric nitrous oxide concentration during the last 800, 000 years[J]. Quaternary Science Reviews, 29(1/2): 182−192.

    [331]

    Schönbeck L C, Santiago L S. 2022. Time will tell: towards high–resolution temporal tree–ring isotope analyses[J]. Tree Physiology, 42(12): 2401−2403. doi: 10.1093/treephys/tpac121

    [332]

    Schubert B A, Jahren A H. 2015. Seasonal temperature and precipitation recorded in the intra–annual oxygen isotope pattern of meteoric water and tree–ring cellulose[J]. Quaternary Science Reviews, 125: 1−14. doi: 10.1016/j.quascirev.2015.07.024

    [333]

    Shackleton N J, Opdyke N D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28–238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale[J]. Quaternary Research, 3(1): 39−55. doi: 10.1016/0033-5894(73)90052-5

    [334]

    Shackleton N J. 1967. Oxygen isotope analyses and Pleistocene temperatures re–assessed[J]. Nature, 215(5096): 15−17. doi: 10.1038/215015a0

    [335]

    Shackleton N J. 1974. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial[J]. Colloques International du Centre National du Recherche Scientifique, 219: 203−210.

    [336]

    Shackleton N J. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281[J]. Initial Reports Deep Sea Drilling Project, 29: 743−755.

    [337]

    Shao H M, Lu X, Gao B, Hong S X, Pan H F, Xu Z Y, Bai X J. 2019. Geochemical analyzing technique of the microzone’s normal position and its application: A case study on the diagenetic evolution of the carbonate reservoir in Gucheng area[J]. Petroleum Geology & Oilfield Development in Daqing, 38(5): 160−168.

    [338]

    Sharp Z D, Wostbrock J A G, Pack A. 2018. Mass–dependent triple oxygen isotope variations in terrestrial materials[J]. Geochemical Perspectives Letters, 7: 27−31.

    [339]

    Shen C C, Kano A, Hori M, Lin K, Chiu T C, Burr G S. 2010. East Asian monsoon evolution and reconciliation of climate records from Japan and Greenland during the last deglaciation[J]. Quaternary Science Reviews, 29(23−24): 3327−3335. doi: 10.1016/j.quascirev.2010.08.012

    [340]

    Shen Zhaoli, Wang Yanxin, Guo Huaming. 2012. Opportunities and challenges of water–rock interaction studies[J]. Earth Science, 37(2): 207−219 (in Chinese with English abstract).

    [341]

    Sheng Xuefen, Chen Jun, Yang Jiedong, Ji Junfeng, Chen Yang. 2002. Carbon and oxygen isotopic composition of carbonate in different grain size fractions from loess–paleosol sequences, China[J]. Geochimica, 31(2): 105−112 (in Chinese with English abstract).

    [342]

    Shi X, Zhang F, Tian L, Joswiak D R, Zeng C, Qu D. 2014. Tracing contributions to hydro‐isotopic differences between two adjacent lakes in the southern Tibetan Plateau[J]. Hydrological Processes, 28(22): 5503−5512. doi: 10.1002/hyp.10051

    [343]

    Shi Y, Yu G, Liu X, Li B, Yao T. 2001. Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1/2): 69–83.

    [344]

    Siddall M, Rohling E J, Almogi–Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed D. 2003. Sea–level fluctuations during the last glacial cycle[J]. Nature, 423(6942): 853−858. doi: 10.1038/nature01690

    [345]

    Siegenthaler M B, Tamburini F, Frossard E, Chadwick O, Vitousek P, Pistocchi C, Mészáros É, Helfenstein J. 2020. A dual isotopic (32P and 18O) incubation study to disentangle mechanisms controlling phosphorus cycling in soils from a climatic gradient (Kohala, Hawaii)[J]. Soil Biology and Biochemistry, 149: 107920. doi: 10.1016/j.soilbio.2020.107920

    [346]

    Sierra C, Álvarez Saiz J R, Gallego J L R. 2013. Nanofiltration of acid mine drainage in an abandoned mercury mining area[J]. Water, Air, & Soil Pollution, 224: 1–12.

    [347]

    Siler N, Bailey A, Roe G H, Buizert C, Markle B, Noone D. 2021. The large–scale, long–term coupling of temperature, hydrology, and water isotopes[J]. Journal of Climate, 34(16): 6725−6742.

    [348]

    Sone T, Kano A, Okumura T, Kashiwagi K, Hori M, Jiang X, Shen C–C. 2013. Holocene stalagmite oxygen isotopic record from the Japan Sea side of the Japanese Islands, as a new proxy of the East Asian winter monsoon[J]. Quaternary Science Reviews, 75: 150−160. doi: 10.1016/j.quascirev.2013.06.019

    [349]

    Song K, Wang F, Peng Y, Liu J, Liu D. 2022. Construction of a hydrogeochemical conceptual model and identification of the groundwater pollution contribution rate in a pyrite mining area[J]. Environmental Pollution, 305: 119327. doi: 10.1016/j.envpol.2022.119327

    [350]

    Southon J. 2002. A first step to reconciling the GRIP and GISP2 ice–core chronologies, 0–14, 500 yr BP[J]. Quaternary Research, 57(1): 32−37. doi: 10.1006/qres.2001.2295

    [351]

    Springer A E, Boldt E M, Junghans K M. 2017. Local vs. regional groundwater flow delineation from stable isotopes at western North America springs[J]. Groundwater, 55(1): 100−109. doi: 10.1111/gwat.12442

    [352]

    Stevenson R, Desrochers S, Hélie J F. 2015. Stable and radiogenic isotopes as indicators of agri–food provenance: Insights from artisanal cheeses from Quebec, Canada[J]. International Dairy Journal, 49: 37−45. doi: 10.1016/j.idairyj.2015.04.003

    [353]

    Su Y Y, Gao J, Zhao Y F, Wen H S, Zhang J J, Zhang A, Yuan C L. 2020. Geographical origin classification of Chinese wines based on carbon and oxygen stable isotopes and elemental profiles[J]. Journal of Food Protection, 83(8): 1323−1334. doi: 10.4315/JFP-19-499

    [354]

    Suzuki Y, Nakashita R, Huque R, Khatun M A, Othman Z B, Salim N A B A, Thantar S, Pabroa P C, Kong P Y K, Waduge V A. 2022. Effects of processing on stable isotope compositions (δ13C, δ15N, and δ18O) of rice (Oryza sativa) and stable isotope analysis of asian rice samples for tracing their geographical origins[J]. Japan Agricultural Research Quarterly: JARQ, 56(1): 95−103. doi: 10.6090/jarq.56.95

    [355]

    Swart P K, Murray S T, Staudigel P T, Hodell D A. 2019. Oxygen isotopic exchange between CO2 and phosphoric acid: Implications for the measurement of clumped isotopes in carbonates[J]. Geochemistry, Geophysics, Geosystems, 20(7): 3730–3750.

    [356]

    Syed T H, Famiglietti J S, Rodell M, Chen J, Wilson C R. 2008. Analysis of terrestrial water storage changes from GRACE and GLDAS[J]. Water Resources Research, 44(2): W02433.

    [357]

    Szymczak S, Joachimski M M, Bräuning A, Hetzer T, Kuhlemann J. 2012. Are pooled tree ring δ13C and δ18O series reliable climate archives?—A case study of Pinus nigra spp. laricio (Corsica/France)[J]. Chemical Geology, 308: 40−49.

    [358]

    Tachikawa K, Elderfield H. 2002. Microhabitat effects on Cd/Ca and δ13C of benthic foraminifera[J]. Earth and Planetary Science Letters, 202(3−4): 607−624. doi: 10.1016/S0012-821X(02)00796-3

    [359]

    Tan L, An Z, Huh C–A, Cai Y, Shen C–C, Shiau L–J, Yan L, Cheng H, Edwards R L. 2014. Cyclic precipitation variation on the western Loess Plateau of China during the past four centuries[J]. Scientific Reports, 4(1): 6381. doi: 10.1038/srep06381

    [360]

    Tan M. 2016. Circulation background of climate patterns in the past millennium: Uncertainty analysis and re–reconstruction of ENSO–like state[J]. Science China Earth Sciences, 59: 1225−1241. doi: 10.1007/s11430-015-5256-6

    [361]

    Thiemens M H, Chakraborty S, Jackson T L. 2014. Decadal Δ17O record of tropospheric CO2: Verification of a stratospheric component in the troposphere[J]. Journal of Geophysical Research: Atmospheres, 119(10): 6221−6229. doi: 10.1002/2013JD020317

    [362]

    Thiemens M H, Heidenreich III J E. 1983. The mass–independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications[J]. Science, 219(4588): 1073−1075. doi: 10.1126/science.219.4588.1073

    [363]

    Thiemens M H. 2006. History and applications of mass–independent isotope effects[J]. Annual Review of Earth and Planetary Sciences, 34: 217−262. doi: 10.1146/annurev.earth.34.031405.125026

    [364]

    Thompson L G, Mosley–Thompson E, Dansgaard W, Grootes P M. 1986. The little ice age as recorded in the stratigraphy of the tropical Quelccaya ice cap[J]. Science, 234(4774): 361−364. doi: 10.1126/science.234.4774.361

    [365]

    Thompson L o, Yao T, Davis M, Henderson K, Mosley Thompson E, Lin P N, Beer J, Synal H A, Cole Dai J, Bolzan J. 1997. Tropical climate instability: The last glacial cycle from a Qinghai–Tibetan ice core[J]. Science, 276(5320): 1821−1825. doi: 10.1126/science.276.5320.1821

    [366]

    Tian L, Guo Q, Yu G, Zhu Y, Lang Y, Wei R, Hu J, Yang X, Ge T. 2020. Phosphorus fractions and oxygen isotope composition of inorganic phosphate in typical agricultural soils[J]. Chemosphere, 239: 124622. doi: 10.1016/j.chemosphere.2019.124622

    [367]

    Tian L, Guo Q, Zhu Y, He H, Lang Y, Hu J, Zhang H, Wei R, Han X, Peters M. 2016. Research and application of method of oxygen isotope of inorganic phosphate in Beijing agricultural soils[J]. Environmental Science and Pollution Research, 23: 23406−23414. doi: 10.1007/s11356-016-7482-7

    [368]

    Tian Lide, Yao Tandong. 2016. High–resolution climatic and environmental records from the Tibetan Plateau ice cores[J]. Chinese Science Bulletin, 61: 926−937 (in Chinese with English abstract). doi: 10.1360/N972015-00779

    [369]

    Tichomirowa M, Heidel C, Junghans M, Haubrich F, Matschullat J. 2010. Sulfate and strontium water source identification by O, S and Sr isotopes and their temporal changes (1997–2008) in the region of Freiberg, central–eastern Germany[J]. Chemical Geology, 276(1−2): 104−118. doi: 10.1016/j.chemgeo.2010.06.004

    [370]

    Tomiyama S, Igarashi T, Tabelin C B, Tangviroon P, Ii H. 2019. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study[J]. Journal of Contaminant Hydrology, 225: 103502. doi: 10.1016/j.jconhyd.2019.103502

    [371]

    Touzeau A, Landais A, Stenni B, Uemura R, Fukui K, Fujita S, Guilbaud S, Ekaykin A, Casado M, Barkan E. 2016. Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters[J]. The Cryosphere, 10(2): 837−852. doi: 10.5194/tc-10-837-2016

    [372]

    Treydte K S, Schleser G H, Helle G, Frank D C, Winiger M, Haug G H, Esper J. 2006. The twentieth century was the wettest period in northern Pakistan over the past millennium[J]. Nature, 440(7088): 1179−1182. doi: 10.1038/nature04743

    [373]

    Trofimova T, Andersson C, Bonitz F G, Pedersen L E R, Schöne B R. 2021. Reconstructing early Holocene seasonal bottom–water temperatures in the northern North Sea using stable oxygen isotope records of Arctica islandica shells[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110242.

    [374]

    Trueman C N, Glew K S J. 2019. Isotopic Tracking of Marine Animal Movement[M]. In Tracking animal migration with stable isotopes (pp. 137–172): Elsevier.

    [375]

    Trueman C N, MacKenzie K, Palmer M. 2012. Identifying migrations in marine fishes through stable‐isotope analysis[J]. Journal of Fish Biology, 81(2): 826−847. doi: 10.1111/j.1095-8649.2012.03361.x

    [376]

    Tuli S. 1985. Nuclear Wallet Cards. Natural Nuclear Data Center[M]. Brookhaven National Laboratory, 35pp.

    [377]

    Turpin M, Gressier V, Bahamonde J R, Immenhauser A. 2014. Component–specific petrographic and geochemical characterization of fine–grained carbonates along Carboniferous and Jurassic platform–to–basin transects[J]. Sedimentary Geology, 300: 62−85. doi: 10.1016/j.sedgeo.2013.11.004

    [378]

    Vander Zanden H B, Soto D X, Bowen G J, Hobson K A. 2016. Expanding the isotopic toolbox: applications of hydrogen and oxygen stable isotope ratios to food web studies[J]. Frontiers in Ecology and Evolution, 4: 20.

    [379]

    Wang Chunlian, Liu Chenglin, Xu Haiming, Wang Licheng, Zhang Linbing. 2013. Carbon and oxygen isotopes characteristics of Palaeocene saline lake facies carbonates in Jiangling Depression and their environmental significance[J]. Acta Geoscientica Sinica, 34(5): 567−576 (in Chinese with English abstract).

    [380]

    Wang Jingzhong, Wu Jinglu, Zeng Haiao, Bai Ruidong. 2013. Characteristics of water isotope and hydrochemistry in Hetao Plain of Inner Mongolia[J]. Journal of Earth Sciences and Environment, 35(4): 104−112 (in Chinese with English abstract).

    [381]

    Wang Mili, Yang Zhichen, Liu Chenglin, XieZhichao, Jiao Pengcheng, Li Changhua. 1996. Potassium Deposits in Salt Lakes in the Northern Part of the Qaidam Basin and Their Development Prospects [M]. Beijing: Geology Press, 33–51 (in Chinese with English abstract).

    [382]

    Wang W, Yu Z, Song X, Wu Z, Yuan Y, Zhou P, Cao X. 2017. Characteristics of the δ15 NNO3 distribution and its drivers in the Changjiang River estuary and adjacent waters[J]. Chinese Journal of Oceanology and Limnology, 35: 367−382. doi: 10.1007/s00343-016-5276-x

    [383]

    Wang X T, Wang Y, Auderset A, Sigman D M, Ren H, Martínez–García A, Haug G H, Su Z, Zhang Y G, Rasmussen B. 2022a. Oceanic nutrient rise and the late Miocene inception of Pacific oxygen–deficient zones[J]. Proceedings of the National Academy of Sciences, 119(45): e2204986119. doi: 10.1073/pnas.2204986119

    [384]

    Wang Y J, Cheng H, Edwards R L, An Z, Wu J, Shen C C, Dorale J A. 2001. A high–resolution absolute–dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 294(5550): 2345−2348. doi: 10.1126/science.1064618

    [385]

    Wang Y, Cheng H, Edwards R L, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z. 2008. Millennial–and orbital–scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 451(7182): 1090−1093. doi: 10.1038/nature06692

    [386]

    Wang Yongjin, Liu Dianbing. 2016. Speleothem records of Asian paleomonsoon variability and mechanisms[J]. Chinese Science Bulletin, 61(9): 938−951 (in Chinese with English abstract). doi: 10.1360/N972015-01022

    [387]

    Wang Z, Guo Q, Tian L. 2022b. Tracing phosphorus cycle in global watershed using phosphate oxygen isotopes[J]. Science of The Total Environment, 829: 154611. doi: 10.1016/j.scitotenv.2022.154611

    [388]

    Wang Z, Tian L, Zhao C, Du C, Zhang J, Sun F, Tekleab T Z, Wei R, Fu P, Gooddy D C. 2023. Source partitioning using phosphate oxygen isotopes and multiple models in a large catchment[J]. Water Research, 244: 120382. doi: 10.1016/j.watres.2023.120382

    [389]

    Werner C, Meredith L K, Ladd S N, Ingrisch J, Kübert A, van Haren J, Bahn M, Bailey K, Bamberger I, Beyer M. 2021. Ecosystem fluxes during drought and recovery in an experimental forest[J]. Science, 374(6574): 1514−1518. doi: 10.1126/science.abj6789

    [390]

    Wheatley P V, Peckham H, Newsome S D, Koch P L. 2012. Estimating marine resource use by the American crocodile Crocodylusacutus in southern Florida, USA[J]. Marine Ecology Progress Series, 447: 211−229. doi: 10.3354/meps09503

    [391]

    Worden J, Noone D, Bowman K. 2007. Importance of rain evaporation and continental convection in the tropical water cycle[J]. Nature, 445(7127): 528−532. doi: 10.1038/nature05508

    [392]

    Wu H, Tian L, Chen B, Jin B, Tian B, Xie L, Rogers K M, Lin G. 2019. Verification of imported red wine origin into China using multi isotope and elemental analyses[J]. Food Chemistry, 301: 125137. doi: 10.1016/j.foodchem.2019.125137

    [393]

    Xia X, Li S, Wang F, Zhang S, Fang Y, Li J, Michalski G, Zhang L. 2019. Triple oxygen isotopic evidence for atmospheric nitrate and its application in source identification for river systems in the Qinghai–Tibetan Plateau[J]. Science of the Total Environment, 688: 270−280. doi: 10.1016/j.scitotenv.2019.06.204

    [394]

    Xiong Zhifang, Hu Chaoyong, Huang Junhua, Xie Shucheng, Gan Yiqun. 2007. Mass–Independent oxygen isotope fractionation and its application to earth sciences[J]. Bulletin of Geological Science and Technology (2): 51–58 (in Chinese with English abstract).

    [395]

    Xu S, Kang P, Sun Y A. 2016. A stable isotope approach and its application for identifying nitrate source and transformation process in water[J]. Environmental Science and Pollution Research, 23: 1133−1148. doi: 10.1007/s11356-015-5309-6

    [396]

    Yamaguchi K, Tomiyama S, Metugi H, Ii H, Ueda A. 2015. Flow and geochemical modeling of drainage from Tomitaka mine, Miyazaki, Japan[J]. Journal of Environmental Sciences, 36: 130−143. doi: 10.1016/j.jes.2015.05.012

    [397]

    Yancheva G, Nowaczyk N R, Mingram J, Dulski P, Schettler G, Negendank J F, Liu J, Sigman D M, Peterson L C, Haug G H. 2007. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 445(7123): 74−77. doi: 10.1038/nature05431

    [398]

    Yao T D, Qin D H, Wang N L, Liu Y Q, Xu B Q. 2020. Study on Climatic and Environmental Changes Recorded in Ice Cores: From Science to Policy[J]. Bulletin of Chinese Academy of Sciences(4): 466–474.

    [399]

    Yao T, Guo X, Thompson L, Duan K, Wang N, Pu J, Xu B, Yang X, Sun W. 2006. δ18O record and temperature change over the past 100 years in ice cores on the Tibetan Plateau[J]. Science in China Series D, 49: 1−9.

    [400]

    Yao T. 1999. Abrupt climatic changes on the Tibetan Plateau during the Last Ice Age–Comparative study of the Guliya ice core with the Greenland GRIP ice core[J]. Science in China, Ser.D,42: 358−368.

    [401]

    Yao Tandong, Qin Dahe, Tian Lide, Jiao Keqin, Yang Zhihong, Xie Chao, L G Thompson. 1996. Temperature and precipitation changes on the Tibetan Plateau over a 2–ka period–Guria ice core record[J]. Scientia Sinica(Terrae) (4): 348–353 (in Chinese).

    [402]

    Ye F, Ni Z, Xie L, Wei G, Jia G. 2015. Isotopic evidence for the turnover of biological reactive nitrogen in the Pearl River Estuary, south China[J]. Journal of Geophysical Research: Biogeosciences, 120(4): 661−672. doi: 10.1002/2014JG002842

    [403]

    Yiou F, Raisbeck G, Baumgartner S, Beer J, Hammer C, Johnsen S, Jouzel J, Kubik P, Lestringuez J, Stievenard M. 1997. Beryllium 10 in the Greenland ice core project ice core at summit, Greenland[J]. Journal of Geophysical Research: Oceans, 102(C12): 26783−26794. doi: 10.1029/97JC01265

    [404]

    Young E D, Galy A, Nagahara H. 2002. Kinetic and equilibrium mass–dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance[J]. Geochimica et Cosmochimica Acta, 66(6): 1095−1104. doi: 10.1016/S0016-7037(01)00832-8

    [405]

    Yu Shengbo, Qu Junxia. 2021. Characteristics and significance of stable hydrogen and oxygen isotopes in groundwater of Sugan Lake basin[J]. Journal of Arid Land Resources and Environment, 35(1): 169−175 (in Chinese with English abstract).

    [406]

    Yu Z, Li B, Li H, Zhang J, Chen J. 2022. The influence of seasonal calcification depth change on the planktonic foraminiferal stable oxygen isotope signal[J]. Geochimica et Cosmochimica Acta, 327: 34−52. doi: 10.1016/j.gca.2022.04.014

    [407]

    Yuan D, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M, Qing J, Lin Y, Wang Y, Wu J. 2004. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 304(5670): 575−578. doi: 10.1126/science.1091220

    [408]

    Yuan H, Li Q, Kukkadapu R K, Liu E, Yu J, Fang H, Li H, Jaisi D P. 2019. Identifying sources and cycling of phosphorus in the sediment of a shallow freshwater lake in China using phosphate oxygen isotopes[J]. Science of the Total Environment, 676: 823−833. doi: 10.1016/j.scitotenv.2019.04.322

    [409]

    Yuan H, Wang H, Dong A, Zhou Y, Huang R, Yin H, Zhang L, Liu E, Li Q, Jia B. 2022. Tracing the sources of phosphorus in lake at watershed scale using phosphate oxygen isotope (δ18Op)[J]. Chemosphere, 305: 135382. doi: 10.1016/j.chemosphere.2022.135382

    [410]

    Yue F J, Li S L, Hu J. 2015. The contribution of nitrate sources in Liao Rivers, China, based on isotopic fractionation and Bayesian mixing model[J]. Procedia Earth and Planetary Science, 13: 16−20. doi: 10.1016/j.proeps.2015.07.004

    [411]

    Yue F J, Li S L, Liu C Q, Zhao Z Q, Ding H. 2017. Tracing nitrate sources with dual isotopes and long term monitoring of nitrogen species in the Yellow River, China[J]. Scientific Reports, 7(1): 8537. doi: 10.1038/s41598-017-08756-7

    [412]

    Yue F J, Liu C Q, Li S L, Zhao Z Q, Liu X L, Ding H, Liu B J, Zhong J. 2014. Analysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast China[J]. Journal of Hydrology, 519: 329−339. doi: 10.1016/j.jhydrol.2014.07.026

    [413]

    Yuntseover Y, Gat J R. 1981. Atmospheric Waters[M]. IAEA technical reports series 210–stable isotope hydrology (pp. 103–142).

    [414]

    Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686−693. doi: 10.1126/science.1059412

    [415]

    Zahn R, Winn K, Sarnthein M. 1986. Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoideswuellerstorfi[J]. Paleoceanography, 1(1): 27−42. doi: 10.1029/PA001i001p00027

    [416]

    Zeng Y, Zhu J, Wang Y, Hu W. 2018. Changes of water temperature and heat flux at water–sediment interface, East Lake Taihu[J]. Journal of Lake Sciences, 30(6): 1599−1609. doi: 10.18307/2018.0611

    [417]

    Zenteno L, Crespo E, Goodall N, Aguilar A, de Oliveira L, Drago M, Secchi E R, Garcia N, Cardona L. 2013. Stable isotopes of oxygen reveal dispersal patterns of the S outh A merican sea lion in the southwestern A tlantic O cean[J]. Journal of Zoology, 291(2): 119−126. doi: 10.1111/jzo.12051

    [418]

    Zhang Chi, Ji Hongbing, Chen Zhigang. 2018. The application of phosphate oxygen isotope in organophosphorus degradation[J]. Journal of Shandong Agricultural University, 49(6): 1008−1014 (in Chinese with English abstract).

    [419]

    Zhang Cuiyun, Zhong Zuo, Shen Zhaoli. 2003. The progress in the study of oxygen isotopes in groundwater nitrate[J]. Earth Science Frontiers, 10(2): 287−291 (in Chinese with English abstract).

    [420]

    Zhang Fangfang, Zheng Yonghong, Pan Guoyan, Yuan Shuai, Kong Fanxi, Qi Yongdong, Wang Dan. 2018. Climatic significance of tree–ring δ18O in Shennongjia Mountain[J]. Progress in Geography, 37(7): 946−953 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2018.07.008

    [421]

    Zhang J, Chen L, Hou X, Lin M, Ren X, Li J, Zhang M, Zheng X. 2021. Multi–isotopes and hydrochemistry combined to reveal the major factors affecting Carboniferous groundwater evolution in the Huaibei coalfield, North China[J]. Science of the Total Environment, 791: 148420. doi: 10.1016/j.scitotenv.2021.148420

    [422]

    Zhang Xin, Zhang Yan, Bi Zhilei, Shan Zexuan, Ren Lijiang, Li Qi. 2020. Distribution and source analysis of nitrate in surface waters of China[J]. Environmental Science, 41(4): 1594−1606 (in Chinese with English abstract).

    [423]

    Zhang Y, Shi P, Li F, Wei A, Song J, Ma J. 2018. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model[J]. Chemosphere, 208: 493−501. doi: 10.1016/j.chemosphere.2018.05.164

    [424]

    Zhang Yinghua, Wu Yanqing, Wen Xiaohu, SuJianping. 2006. Application of environmental isotopes in water cycle[J]. Advances in Water Science, 17(5): 738−747 (in Chinese with English abstract).

    [425]

    Zhang Ziyang, Yan Ming, MULVANEY Robert, Ji Junfeng, Xiao Cunde, Liu Leibao, An Chunlei. 2021. Preliminary study on air temperature records from 1712 to 2001 revealed by LGB69 ice core in East Antarctica[J]. Advances in Earth Science, 36(2): 172−184 (in Chinese with English abstract).

    [426]

    Zhao Huabiao, Xu Baiqing, Wang Ninglian. 2014. Study on the water stable isotopes in Tibetan plateau ice cores as a proxy of temperature[J]. Quaternary Sciences, 34(6): 1215−1226 (in Chinese with English abstract).

    [427]

    Zhao Q, Xu C, An W, Liu Y, Xiao G, Huang C. 2023. Increasing tree growth in subalpine forests of central China due to earlier onset of the thermal growing season[J]. Agricultural and Forest Meteorology, 333: 109391. doi: 10.1016/j.agrformet.2023.109391

    [428]

    Zhao Ruihan, Han Zhiwei, Fu Yong. 2022. A review of research progress of isotope technology in tracing pollution process in the mine environment[J]. Rock and Mineral Analysis, 41(6): 947−961 (in Chinese with English abstract).

    [429]

    Zhao Tiantian, Tian Kang, Hu Wenyou, Huang Biao, Zhao Yongcun. 2022. The application of phosphate oxygen isotopes in soil phosphorus cycling[J]. Acta Pedologica Sinica, 59(5): 1204−1214 (in Chinese with English abstract).

    [430]

    Zheng Mianping, Zhao Yuanyi, Liu Junying. 1998. Quaternary saline lake deposition and paleoclimate[J]. Quaternary Sciences, 18(4): 297−307 (in Chinese with English abstract).

    [431]

    Zheng Y F. 2016. Oxygen isotope fractionation in phosphates: the role of dissolved complex anions in isotope exchange[J]. Isotopes in Environmental and Health Studies, 52(1−2): 47−60. doi: 10.1080/10256016.2014.999678

    [432]

    Zheng Yongfei, Chen Jiangfeng. 2000. Stable Isotope Geochemistry[M]. Beijing: Science Press, 6–8, 143–195 (in Chinese).

    [433]

    Zhou J, Chafetz H S. 2009. The genesis of late Quaternary caliche nodules in Mission Bay, Texas: stable isotopic compositions and palaeoenvironmental interpretation[J]. Sedimentology, 56(5): 1392−1410. doi: 10.1111/j.1365-3091.2008.01039.x

    [434]

    Zhu Dayun, Wang Jianli. 2013. Progress in palaeoclimate research on the Tibet Plateau based on ice core records[J]. Progress in Geography, 32(10): 1535−1544 (in Chinese with English abstract).

    [435]

    Zhu Hongyan, Ren Jia, Yang Qiang, Zhou Beibei, Jia Yanwu, LvJiaojiao, Zhou Xiaoping, Nie Weibo. 2021. Sources Analysis of Acid Drainage From Lujiang Alunite Mine Based on Stable Isotope Composition of Hydrogen and Oxygen[J]. Resources and Environment in the Yangtze Basin(12): 2938–2948 (in Chinese with English abstract).

    [436] 鲍睿, 盛雪芬, 陈骏. 2021. 陆生蜗牛壳体碳氧同位素组成与气候[J]. 第四纪研究, 41(4): 903–915.
    [437] 曹超, 雷怀彦. 2012. 南海北部有孔虫碳氧同位素特征与晚第四纪水合物分解的响应关系[J]. 吉林大学学报(地球科学版), 42(S1): 162–171.
    [438] 曹佳璐, 牛振川, 梁单, 冯雪, 吕梦妮, 王国卫, 刘婉玉. 2023. 氧同位素非质量分馏在CO2相关研究中的进展[J]. 地球环境学报, 14(6): 714−724.
    [439] 常凤琴, 张虎才, 雷国良, 蒲阳, 陈光杰, 张文翔, 杨伦庆. 2010. 湖相沉积物锶同位素和相关元素的地球化学行为及其在古气候重建中的应用—以柴达木盆地贝壳堤剖面为例[J]. 第四纪研究, 30(5): 962−971. doi: 10.3969/j.issn.1001-7410.2010.05.14
    [440] 陈陆望, 桂和荣, 许光泉, 宋晓梅, 袁文华. 2003. 皖北矿区煤层底板岩溶水氢氧稳定同位素特征[J]. 合肥工业大学学报(自然科学版), (3): 374–378.
    [441] 陈瑶, 勾晓华, 刘文火, 陈巧湄, 苏佳佳, 林伟. 2017. 亚洲树轮稳定氧同位素研究进展[J]. 冰川冻土, 39(2): 308−316.
    [442] 陈志刚, 黄奕普, 刘广山, 蔡毅华, 卢阳阳, 刘润. 2010. 磷酸盐氧同位素组成的测定方法及分馏机理研究进展[J]. 地球科学进展, 25(10): 1040−1050.
    [443] 陈忠, 马海州, 曹广超, 周笃珺, 张西营, 谭红兵, 姚远. 2006. 黄土碳酸盐的研究[J]. 盐湖研究, (4): 66–72.
    [444] 程海, 艾思本, 王先锋, 汪永进, 孔兴功, 袁道先, 张美良, 林玉石, 覃嘉铭, 冉景丞. 2005. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究, (2): 157–163.
    [445] 崔景伟, 黄俊华, 胡超涌. 2008. 石笋中的环境替代指标及其蕴含的古气候和古环境信息[J]. 地质科技情报, (1): 93–98.
    [446] 崔蕊, 汪季, 张成福, 史小红, 韩知明. 2019. 吉兰泰盐湖氢氧同位素及湖水来源分析[J]. 内蒙古林业科技, 45(1): 17−21. doi: 10.3969/j.issn.1007-4066.2019.01.004
    [447] 董庆民, 胡忠贵, 陈世悦, 李世临, 蔡家兰, 朱宜新, 张玉颖. 2021. 川东北地区长兴组–飞仙关组碳酸盐岩同位素地球化学响应及其地质意义[J]. 石油与天然气地质, 42(6): 1307−1320.
    [448] 窦衍光, 李清, 吴永华, 赵京涛, 孙呈慧, 蔡峰, 陈晓辉, 张勇, 范佳慧, 石学法. 2022. 冲绳海槽MIS6期以来底栖有孔虫碳氧同位素特征及其古海洋指示意义[J]. 地学前缘, 29(4): 84−92.
    [449] 樊娟, 南生辉, 刘英锋, 周天威, 张光明. 2021. 基于水化学和氢氧同位素特征的小屯煤矿充水条件研究[J]. 安全与环境工程, (4), 80–87.
    [450] 付昌昌, 刘聪. 2022. 可可西里盐湖水化学特征及其形成机制[J]. 人民长江, 53(7): 36−41.
    [451] 郭启梅, 李保华, 王晓燕, 俞宙菲, 徐烨, 张楷. 2020. 深海底栖有孔虫在古海洋学研究中的应用[J]. 古生物学报, 59(3): 365−379.
    [452] 郭启梅, 刘静, 李保华. 2023. 沉积物单/多壳体底栖有孔虫稳定氧碳同位素组成、比较及其指示意义[J]. 微体古生物学报, 40(1): 53−65.
    [453] 韩家懋, 姜文英, 刘东生, 吕厚远, 郭正堂, 吴乃琴. 1996. 黄土碳酸盐中古气候变化的同位素记录[J]. 中国科学(地球科学), (5): 399–404.
    [454] 韩家懋, 姜文英, 吕厚远, 吴乃琴, 郭正堂. 1995a. 黄土中钙结核的碳氧同位素研究(二)碳同位素及其古环境意义[J]. 第四纪研究, (4): 367–377.
    [455] 韩家懋, 姜文英, 吴乃琴, 郭正堂. 1995b. 黄土中钙结核的碳氧同位素研究(一)氧同位素及其古环境意义[J]. 第四纪研究, (2): 130–138.
    [456] 侯战方, 张军, 宋春晖, 李吉均, 刘佳, 刘善品, 惠争闯, 彭廷江. 2011. 青藏高原天水盆地中新世沉积物碳氧同位素对古气候演化的指示[J]. 海洋地质与第四纪地质, 31(3): 69−78.
    [457] 胡泉旭, 王先彦, 孟先强, 刘全玉, 鹿化煜. 2018. 青藏高原东北部黄土次生碳酸盐氧同位素的古气候意义[J]. 地球科学, 43(11): 4128−4137.
    [458] 黄思静, 石和, 毛晓冬, 张萌, 沈立成, 武文慧. 2003. 早古生代海相碳酸盐的成岩蚀变性及其对海水信息的保存性[J]. 成都理工大学学报(自然科学版), (1): 9–18.
    [459] 李建森, 蔡进福, 樊启顺, 山发寿, 凌智永, 韩元红, 张永兴. 2022. 柴达木盆地盐湖K、B、Li资源的成矿地球化学系统[J]. 盐湖研究, 30(3): 12−20. doi: 10.12119/j.yhyj.202203002
    [460] 李思远, 侯青叶, 杨忠芳, 余涛. 2024. 氮同位素分馏机制、分析测试与示踪技术及其在生态环境中的应用[J]. 中国地质, 51(5): 1617−1643. doi: 10.12029/gc20230910002
    [461] 李桐, 邱国玉. 2018. 基于稳定氢氧同位素的盐水与纯水蒸发差异分析[J]. 热带地理, 38(6): 857−865.
    [462] 李小倩, 张彬, 周爱国, 刘运德. 2014. 酸性矿山废水对合山地下水污染的硫氧同位素示踪[J]. 水文地质工程地质, 41(6): 103−109.
    [463] 李悦, 王汝建, 李文宝. 2016. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 31(3): 310−319.
    [464] 李智滔, 肖红伟, 伍作亭, 马艳, 肖扬宁, 陈振平, 陶继华. 2022. 基于水化学及氮氧同位素技术的硝酸盐来源解析—以鄱阳湖湿地为例[J]. 中国环境科学, 42(9): 4315−4322. doi: 10.3969/j.issn.1000-6923.2022.09.039
    [465] 刘科, 侯书贵, 庞洪喜, 史贵涛, 耿雷, 胡焕婷, 宋靖, 张王滨, 邹翔, 安春雷, 于金海. 2022. 极地冰芯气候及环境记录指标研究现状与展望[J]. 极地研究, 34(4): 530−545.
    [466] 吕凤琳, 刘成林, 焦鹏程, 张华, 孙小虹, 张永明. 2018. 罗布泊中更新世以来盐湖碳酸盐碳氧同位素组成及其古环境意义[J]. 地质学报, 92(8): 1589−1604. doi: 10.3969/j.issn.0001-5717.2018.08.003
    [467] 马正明, 姜盼武, 李庆宽, 魏海成, 李永寿, 山发寿. 2021. 哈达贺休盐湖卤水氢氧同位素特征及成因分析[J]. 盐湖研究, 29(1): 80−87. doi: 10.12119/j.yhyj.202101009
    [468] 毛剑英, 朱建平, 肖建军. 2003. 近年来淮河干流氮污染状况与变化趋势[J]. 中国环境监测, (5): 41–43.
    [469] 苗青, 侯献华, 杨振京. 2021. 几种常用古气候代用指标在盐湖古环境研究中的应用[J]. 科学技术创新, (5): 31–32.
    [470] 苗甜, 金雅琪, 王磊, 吴高阳, 陈忠. 2021. 黄土碳酸盐古气候意义及其研究展望[J]. 盐湖研究, 29(4): 90−99. doi: 10.12119/j.yhyj.202104010
    [471] 乔占峰, 于洲, 佘敏, 潘立银, 张天付, 李文正, 沈安江. 2023. 中国古老超深层海相碳酸盐岩储集层成因研究新进展[J]. 古地理学报, 25(6): 1257−1276.
    [472] 邱楠生, 刘鑫, 熊昱杰, 刘雨晨, 徐秋晨, 常青. 2023. 碳酸盐团簇同位素在海相盆地热史研究中的进展[J]. 石油实验地质, 45(5): 891−903. doi: 10.11781/sysydz202305891
    [473] 任坤, 潘晓东, 兰干江, 彭聪, 梁嘉鹏, 曾洁. 2021. 硫氧同位素解析典型岩溶地下河流域硫酸盐季节变化特征和来源[J]. 环境科学, 42(9): 4267−4274.
    [474] 沈照理, 王焰新, 郭华明. 2012. 水–岩相互作用研究的机遇与挑战[J]. 地球科学(中国地质大学学报), 37(2): 207−219.
    [475] 盛雪芬, 陈骏, 杨杰东, 季峻峰, 陈旸. 2002. 不同粒级黄土–古土壤中碳酸盐碳氧稳定同位素组成及其古环境意义[J]. 地球化学, (2): 105–112.
    [476] 田立德, 姚檀栋. 2016. 青藏高原冰芯高分辨率气候环境记录研究进展[J]. 科学通报, 61(9): 926−937.
    [477] 汪敬忠, 吴敬禄, 曾海鳌, 白瑞东. 2013. 内蒙古河套平原水体同位素及水化学特征[J]. 地球科学与环境学报, 35(4): 104−112. doi: 10.3969/j.issn.1672-6561.2013.04.012
    [478] 汪永进, 刘殿兵. 2016. 亚洲古季风变率和机制的洞穴石笋档案[J]. 科学通报, 61(9): 938−951.
    [479] 王春连, 刘成林, 徐海明, 王立成, 张林兵. 2013. 江陵凹陷古新世盐湖沉积碳酸盐碳氧同位素组成及其环境意义[J]. 地球学报, 34(5): 567−576.
    [480] 王弭力, 杨智琛, 刘成林, 谢志超, 焦鹏程, 李长华. 1996. 柴达木盆地北部盐湖钾矿床及其开发前景[M]. 北京: 地质出版社, 33–51.
    [481] 熊志方, 胡超涌, 黄俊华, 谢树成, 甘义群. 2007. 氧的非质量同位素分馏及其地学应用[J]. 地质科技情报, (2): 51–58.
    [482] 姚檀栋, 秦大河, 田立德, 焦克勤, 杨志红, 谢超, L. G. Thompson. 1996. 青藏高原2ka来温度与降水变化–古里雅冰芯记录[J]. 中国科学(D辑: 地球科学), (4): 348–353.
    [483] 喻生波, 屈君霞. 2021. 苏干湖盆地地下水氢氧稳定同位素特征及其意义[J]. 干旱区资源与环境, 35(1): 169−175.
    [484] 张弛, 季宏兵, 陈志刚. 2018. 磷酸盐氧同位素在有机磷降解研究中的应用[J]. 山东农业大学学报(自然科学版), 49(6): 1008−1014.
    [485] 张翠云, 钟佐, 沈照理. 2003. 地下水硝酸盐中氧同位素研究进展[J]. 地学前缘, (2): 287–291.
    [486] 张芳芳, 郑永宏, 潘国艳, 袁帅, 孔繁希, 起永东, 王丹. 2018. 神农架地区树轮δ18O序列的气候指示意义[J]. 地理科学进展, 37(7): 946−953.
    [487] 张鑫, 张妍, 毕直磊, 山泽萱, 任丽江, 李琦. 2020. 中国地表水硝酸盐分布及其来源分析[J]. 环境科学, 41(4): 1594−1606.
    [488] 张应华, 仵彦卿, 温小虎, 苏建平. 2006. 环境同位素在水循环研究中的应用[J]. 水科学进展, (5): 738–747.
    [489] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 2021. 东南极LGB69冰芯1712–2001年气温变化记录的初步研究[J]. 地球科学进展, 36(2): 172−184.
    [490] 赵华标, 徐柏青, 王宁练. 2014. 青藏高原冰芯稳定氧同位素记录的温度代用性研究[J]. 第四纪研究, 34(6): 1215−1226.
    [491] 赵睿涵, 韩志伟, 付勇. 2022. 同位素技术应用于示踪矿山环境污染研究进展[J]. 岩矿测试, 41(6): 947−961. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206007
    [492] 赵甜甜, 田康, 胡文友, 黄标, 赵永存. 2022. 磷酸盐氧同位素技术在土壤磷循环中的应用[J]. 土壤学报, (5), 1204–1214.
    [493] 郑绵平, 赵元艺, 刘俊英. 1998. 第四纪盐湖沉积与古气候[J]. 第四纪研究, (4): 297–307.
    [494] 郑永飞, 陈江峰. 2000. 稳定同位素地球化学[M]. 北京: 科学出版社, 6–8, 143–195.
    [495] 朱大运, 王建力. 2013. 青藏高原冰芯重建古气候研究进展分析[J]. 地理科学进展, 32(10): 1535−1544. doi: 10.11820/dlkxjz.2013.10.011
    [496] 朱红艳, 任佳, 杨强, 周蓓蓓, 贾彦武, 吕佼佼, 周晓平, 聂卫波. 2021. 基于氢氧稳定同位素组成解析庐江矾矿酸性废水来源[J]. 长江流域资源与环境, (12): 2938–2948.
图(23)  /  表(7)
计量
  • 文章访问数:  1103
  • HTML全文浏览量:  242
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-09
  • 修回日期:  2024-06-23
  • 网络出版日期:  2025-03-19

目录

/

返回文章
返回
x 关闭 永久关闭