Geological support for response and damage reduction in the Earth's critical zone under coal mining
-
摘要:研究目的
破解能源安全兜底保障和生态环境保护的矛盾是当前生态脆弱区煤炭资源开发面临重大难题。煤炭资源大规模、高强度的开采在引起地质条件快速变化的同时,也影响着矿区地球关键带结构和功能。地球关键带是指从地下水底部或者土壤−岩石交界面一直向上延伸至植被冠层顶部的连续体域。
研究方法围绕如何理解地球关键带运行与煤炭开发地质条件演化的关系,基于煤炭采动地质条件解析与关键带响应阐明了煤炭开采影响区地球关键带的响应模式、监控技术、预测方法和保障策略及减损工程。立足“煤炭资源开采地质条件演化与地球关键带保护”,从关键带对煤炭开发响应的科学内涵、科学问题、研究思路和保障方案四个方面,系统剖析了煤炭开发地球关键带减损保障的理论与技术。
研究结果关键带对煤炭开采响应研究思路主线是“煤炭采前地质条件和关键带结构及要素→地质条件变化和关键带响应模式及演化状态判识→全时空主被动多源信息响应及动态监控→关键带结构−功能动态演化模型及智能预测评价→关键带减损地质保障策略及修复−重构一体化技术方法”。研究内容包括:(1)查明煤炭赋存的地质结构、水文地质、岩层组合、地应力等开采地质条件因素综合特征,揭示地球关键带和下部煤层、岩层及地下水的空间关系特征,进行对关键带多要素、多模态、多场景的精细表征,形成包括环境承载力指标体系、评价模型和承载力分区在内的快速查询、智能分析数字化平台;(2)解析开采影响下岩(土)层裂隙场与关键带水文循环的连通关系,揭示地质条件和关键带的协同演化机制,提出地球关键带对煤炭开发响应模式的判识方法;(3)研究开采因素下岩层结构、裂隙网络、渗流通道、应力−能量集中特征、物质循环、能量交换与多源信息场的时空演化关系,构建煤炭开发全生命周期下的地球关键带全时空信息响应映射模型;(4)构建煤炭开采全生命周期条件下地球关键带空−天−地−钻(孔)−井(下)的全空间、多方位的多源信息量融合监测体系,形成煤炭开采影响下地球关键带界面结构和运行过程要素监控分析系统,预测分析煤炭开发区地球关键带的结构变化、响应模式、运行过程和生态环境效应;(5)提出煤及煤系资源协同开发、矿井水综合利用、煤炭开发地下空间规模化利用等技术,建立基于多源信息的地质条件和关键带结构监控技术,实现“地质结构条件透明化、损害关键要素数字化、演化过程监控信息化、模型预测智能化、关键带保障技术精准化”。
结论地球关键带地质保障涵盖地质条件、开采模式、监控系统、预测方法和减损技术等方面,追求煤炭安全开采与地质环境保护协调发展,破解资源开发与地质环境制约之间矛盾,完善生态脆弱区煤及煤系资源综合开发和地球关键带功能减损保护及修复重构的理论与技术,为建设资源节约型和环境友好型社会提供地质、力学、物理基础的科学依据,推动煤炭工程实践与安全理论深入发展。
创新点:(1)阐述了地球关键带对煤炭开发响应的科学内涵、科学问题、研究思路和保障方案,揭示地质条件和地球关键带的协同演化机制,提出了煤炭减损开采技术体系;(2)构建了煤炭开发地球关键带减损保障的理论与技术,为破解国家能源需求与环境保护之间矛盾提供战略思考。
Abstract:This paper is the result of mineral exploration engineering.
ObjectiveCracking the contradiction between energy security and ecological environment protection is a major challenge for the development of coal resources in ecologically fragile areas. The large−scale and intensive extraction of coal resources not only triggers rapid changes in geological conditions but also impacts the structure and function of the Earth's critical zone in mining areas. The Earth's critical zone refers to a continuous domain that extends upwards from the bottom of groundwater or soil rock interface to the top of vegetation canopy.
MethodsFocusing on how to understand the relationship between the operation of the Earth's critical zone and the evolution of geological conditions for coal development, based on the analysis of coal mining geological conditions and the response of the Earth's critical zone, this paper elucidates the response mode, monitoring technology, prediction methods, guarantee strategies, and loss reduction work of the Earth's critical zone in coal mining affected areas. Based on the evolution of geological conditions for coal resource extraction and the protection of the Earth's critical zone, this paper systematically analyzes the theory and technology of reducing losses and ensuring coal development in the Earth's critical zone from four aspects: Scientific connotation, scientific problems, research ideas, and guarantee plans.
ResultsThe overall approach of the research on the response of the Earth's critical zone to coal mining is structured as "Pre−mining geological conditions and key zone structures and elements → Geological condition changes and the Earth's critical zone response modes and evolution status identification → Full time and space active and passive multi−source information response and dynamic monitoring → The Earth's critical zone structure functional dynamic evolution model and intelligent prediction evaluation → The Earth's critical zone loss reduction geological guarantee strategy and restoration reconstruction integrated technical method". The research content includes: (1) Identify the comprehensive characteristics of mining geological conditions such as geological structure, hydrogeology, rock layer combination, and crustal stress with coal occurrence, reveal the spatial relationship characteristics of the Earth's critical and lower coal seams, rock layers, and groundwater, and finely characterize the critical zone with multiple elements, modes, and scenarios, forming a fast query and intelligent analysis digital platform including environmental bearing capacity indicator system, evaluation model, and bearing capacity zoning. (2) Analyze the connection between fracture fields of rock (soil) layers under the impact of mining and the hydrological cycle of critical zones, revealing the synergistic evolution mechanism of geological conditions and critical zones and proposes methods for identifying the response patterns of the Earth's critical zone to coal development. (3) Investigate the temporal and spatial evolution of rock layer structures, fracture networks, seepage channels, stress−energy concentration characteristics, material cycles, energy exchanges, and the multi−source information field under mining factors and construct the spatial−temporal information response model of the Earth’s critical zone under the whole life cycle of coal development. (4) Construct a spatial and multi−directional multi−source information fusion monitoring system for the space−sky−earth−drill−well under the conditions of the whole life cycle of coal mining, form a monitoring and analysis system for the interfacial structure and operation process elements of the Earth's critical zone under the influence of coal mining and predict the structural changes, response patterns, operational processes and ecological and environmental effects of the Earth's critical zone in the coal development zone. (5) Propose technologies such as collaborative development of coal and coal measures resources, comprehensive utilization of mine water, and large−scale utilization of underground space in coal development, functional reconstruction. Establish a geological condition and critical zone structure monitoring technology based on multi−source information, achieving "transparency of geological structural conditions, digitization of key damage elements, informatization of evolution process monitoring, intelligent model prediction, and precision of critical zones protection technology".
ConclusionsThe geological guarantee of the Earth's critical zone covers geological conditions, mining modes, monitoring systems, prediction methods, and loss reduction technologies. It pursues the coordinated development of coal safety mining and geological environment protection, solves the contradiction between resource development and geological environment constraints, improves the theory and technology of comprehensive development of coal and coal bearing resources in ecologically fragile areas, and the protection, restoration, and reconstruction of the Earth's critical zone functions. It provides a scientific basis for geological, mechanical, and physical foundations to build a resource−saving and environmentally friendly society, and promotes the in−depth development of coal engineering practice and safety theory.
Highlights:(1) The paper expounded the scientific connotation, scientific problems, research ideas and guarantee schemes of the response of the Earth's critical zone to coal development, reveal the co−evolution mechanism of geological conditions and the Earth's critical zone, and propose the technical system of coal loss reduction mining; (2) The paper constructed a theory and technology for reducing losses in coal development in the Earth's critical zone, providing strategic thinking for solving the contradiction between national energy demand and environmental protection
-
1. 研究目的(Objective)
近年来,新疆阿尔金西段萤石找矿取得的重大突破。萤石矿主要分布于卡尔恰尔—阔什区域性大断裂(阿中断裂)以南的晚奥陶世碱长花岗岩侵入体内及其外接触带附近的富钙质岩系中,圈定了卡尔恰尔—小白河沟、盖吉克—亚干布阳、布拉克北—皮亚孜达坂、托盖里克东南—阿其克南4条沿北东向断裂分布的萤石矿带,整个远景区CaF2资源量已达3500万t以上。中国地质调查局西安矿产资源调查中心于2021—2023年对阿尔金西段小白河沟—克鲁求干道班一带开展了矿产调查评价,在小白河沟地区新发现热液充填型萤石矿产地1处,估算萤石的潜在资源达大型规模,对于拓展阿尔金地区萤石矿床具有借鉴意义。
2. 研究方法(Methods)
在对小白河沟地区以往地物化遥成果资料综合研究基础上,结合本次遥感蚀变异常提取和构造解译圈定了重点工作区,通过开展1∶10000地质草测、1∶10000岩石地球化学剖面测量、1∶500地质剖面测量、槽探及钻探等工作,在小白河沟共圈定萤石矿体21条,实现了找矿突破。通过典型矿床对比,总结了区内萤石矿成矿规律,初步建立了找矿模式,分析了区域萤石成矿潜力及找矿前景。
3. 研究结果(Results)
研究区出露地层基底主要为古元古界阿尔金岩群a岩组和b岩组,二者呈构造面理接触关系。阿尔金岩群a岩组为萤石主要赋矿地层,该岩组出露的岩石类型主要为黑云斜长片麻岩、黑云二长片麻岩、斜长变粒岩、石英岩、大理岩,局部夹有角闪斜长片麻岩(图1b)。区内断裂较为发育,期次较多,主要呈北北东向、北东向、南东东向,南东东向断裂主要与区内的萤石矿化关系密切。地层中岩脉极为发育,在接触带可见岩石具萤石化、钾长石化、碳酸盐化、绿帘石化、硅化等围岩蚀变。
在小白河沟共圈定萤石矿体21条(图1c),长100~1130 m,厚度0.7~4.68 m,矿体沿走向延续性较好,沿倾向呈透镜体状,断续产出,斜切岩体和变质岩,有“膨大缩小”变化,部分呈“透镜体”、“扁豆体”断续分布,主矿体旁侧发育少数分枝。矿体品位23.2%~82.4%,平均品位32.2%,钻孔深部验证效果良好。矿石主要以块状、纹层状为主,主要矿物为萤石,局部发育方解石、带云母和少量石英。萤石以紫色、紫黑色为主,少量呈白色或绿色,具粗晶结构、自形—半自形及他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变以碳酸盐化、带云母化、钾化、黄铁矿化、绿帘石化、角闪石化等为主。初步估算CaF2资源量117.42万t,具大型萤石矿床远景。
4. 结论(Conclusions)
(1)小白河沟萤石矿是阿尔金西段萤石找矿新发现,这一发现拓展了区内萤石矿向西延伸的空间,同时本次工作区内多数矿体走向和深部延伸均未封边,仍具有较大找矿潜力。
(2)本工作发现了品位较富的大型萤石矿,拓宽了区域找矿思路,具有重要借鉴意义,同时为阿尔金瓦石峡南—卡尔恰尔萤石锂大型资源基地建设提供了有力支撑。
5. 基金项目(Fund support)
本文为中国地质调查局项目(DD20190143、DD20211551、DD20243309)、陕西省自然科学基础研究计划项目(2023−JC−YB−241)、中国地质调查局自然资源综合调查指挥中心科技创新基金项目(KC20230011)联合资助的成果。
-
表 1 不同地球圈层对煤炭开发的响应(据张甘霖等,2023修改)
Table 1 Responses of different earth sphere to coal development (modified from Zhang Ganlin et al., 2023)
圈层名称 煤炭开发影响 岩石圈 岩层结构/接触关系、埋深/高程、裂隙(孔隙)度、渗透系数等 水圈 存储、循环、蒸发量、水量、水质、水温、pH、TDS等 土壤圈 土壤结构/接触关系、坡度、容重、矿物、含水率、热导率、渗透系数等 大气圈 温度、湿度、降雨、气压、能见度、CO2/CH4/ SO2/ H2S/N2O等 生物圈 生物量、微生物量、多样性指数、光合作用、蒸腾量等 表 2 地球关键带监测技术(据朱永官等,2015;吕玉香等,2019修改)
Table 2 Monitoring technology of Earth’s critical zone (modified from Zhu Yongguan et al., 2015;Lü Yuxiang et al., 2019)
监测对象 监测指标 监测技术 气象参数 风速、风向 通量塔、传感器 气温、气压、辐射强度 传感器 湿度、污染情况、干燥度 通量塔、传感器 降雨量、蒸发量 通量塔、传感器 地表及
浅层地下结构地形地貌 卫星遥感、无人机、CCD相机 地表覆盖物信息 卫星遥感、无人机、实地调查 地层结构、水文地质结构 三维激电仪、GEO−PROBE 钻机 河床结构、湖泊底部结构 多普勒河道扫描 深部地质 岩层组合 煤−岩层组合和采空区结构 钻探、瞬变电磁、地质雷达、三维地震 水循环 裂隙网络连及地下水循环 核磁、电法勘探、水压水量水质传感器 地应力 岩层应力及形变 光纤传感器、地应力测试、矿压计 其他 地温、放射性、气体(H2S,CH4等) 光纤传感器、放射性测试、气体分析仪 水 大气水 雨水水化学 雨量计、室内分析测试 地表水 水温、流量、流速、径流深度等 流量/流速仪、声呐 地表水水化学、放射性、悬浮物 传感器、室内分析测试 土壤水 土壤水负压 土壤负压计 土壤含水率 TDR探头 土壤水水化学、放射性 土壤水采样器、室内分析测试 浅层
地下水地下水水位、水压 关键带多水平监测点、传感器 地下水流速、流向 地下水流速流向仪 地下水水温、水化学组分 关键带多水平监测点、室内分析测试 土 土壤 土壤剖面结构 包气带剖面观测点 土壤温度、湿度 传感器 物理特性(孔隙、粒径、热导率等) 土壤采样器、激光粒度仪、CT扫描 矿物组成、有机质及放射性 土壤采样器、XRD、XRF 沉积物 河流沉积物 原状沉积物采样器 物理特性(孔隙度、渗透系数等) 水文地质试验、饱和渗透试验 元素组成与有机质含量 GEO−PROBE钻机、XRF、元素分析仪 气 大气 地表−大气界面气体通量 静态气体箱 土壤气 土壤剖面气体含量、组分、放射性 土壤气体采样器 生 地表植被 植被类型、丰度、结构 无人机、野外实地调查 根系、蒸发量 根系观察仪 微生物 土壤酶含量 化学提取法 微生物类型(水、土) 高通量测测序 -
[1] An P J, Zhang Z Q, Wang L W. 2016. Review of Earth critical zone research[J]. Advances in Earth Science, 31(12): 1228−1234.
[2] Bian Zhengfu, Lei Shaogang. 2020. Green exploitation of coal resources and its environmental effects and protecting strategy in Xinjiang[J]. Coal Sciences and Technology, 48(4): 43−51 (in Chinese with English abstract).
[3] Chen Xi, Zhang Zhicai. 2022. An overview on the development of science and ecological hydrology of the earth critical zones in karst area[J]. Carsologica sinica, 41(3): 356−364 (in Chinese with English abstract).
[4] Chinese Academy of Engineering. 2011. Research on Medium – Long Term (2030, 2050) Development Strategy of China's Energy: Energy Saving, Coal Roll [M]. Beijing: Science Press.
[5] Fan Limin, Xiang Maoxi, Peng Jie, Li Cheng, Li Yonghong, Wu Boyun, Bian Huiying, Gao Shuai, Qiao Xiaoying. 2016. Groundwater response to intensive mining in ecologically fragile area[J]. Joural of China Coal Society, 41(11): 2672−2678 (in Chinese with English abstract).
[6] Gu Dazhao, Zhang Yong, Cao Zhiguo. 2016. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology, 44(1): 1−7 (in Chinese with English abstract).
[7] Huang Yanli, Guo Yachao, Qi Wenyue, Li Junmeng, Wang Jiaqi, Ouyang Shenyang, Wu Laiwei. 2022. Evolution and degradation mechanism of surface vegetation coverage in typical ecologically fragile mining areas in western China[J]. Journal of China Coal Society, 47(12): 4217−4227 (in Chinese with English abstract).
[8] Jiao Huazhe, Chen Xi, Zhang Tiegang, Yang Liuhua, Chen Xinming, Honaker Rick, Ma Junwei, Yu Yang. 2024. Cause analysis of groundwater pollution in coal development zone of Yellow River Basin and prevention suggestions[J]. Geology in China, 51(1): 143−156 (in Chinese with English abstract).
[9] Li Quansheng. 2023. Key technologies for damage reduction mining and ecological restoration of large−scale open pit coal mines in grassland area of eastern Inner Mongolia[J]. Journal of Mining and Safety Engineering, 40(5): 905−915 (in Chinese with English abstract).
[10] Li Xiaoyan, Ma Yujun. 2016. Advances in Earth’s Critical Zone science and hydropedology[J]. Journal of Beijing Normal University (Natural Science), 52(6): 731−737 (in Chinese with English abstract).
[11] Li Yong, Pan Songqi, Ning Shuzheng, Shao Longyi, Jing Zhenhua, Wang Zhuangsen. 2022. Coal measure metallogeny: Metallogenic system and implication for resource and environment[J]. Science China (Earth Sciences), 65(7): 1211−1228 (in Chinese with English abstract). doi: 10.1007/s11430-021-9920-4
[12] Liu Haiping, Wang Yi. 2023. Research and practices of countermeasures for resource and environment management in Shendong mining area[J]. China Coal, 49(S1): 6−14 (in Chinese with English abstract).
[13] Liu Jintao, Han Xiaole, Liu Jianli, Liang Zhongmin, He Ruimin. 2019. Understanding of critical zone structures and hydrological connectivity: A review[J]. Advances in Water Science, 30(1): 112−122 (in Chinese with English abstract).
[14] Luo Zhanbin, Fan Jun, Shao Mingan. 2022. Progresses of weathered bedrock ecohydrology in the Earth’s critical zone[J]. Chinese Science Bulletin, 67(27): 3311−3323 (in Chinese with English abstract).
[15] Lü Yuxiang, Hu Wei, Yang Yan. 2019. Research progress of hydrological cycle in karst critical zone[J]. Advances in Water Science, 30(1): 123−138 (in Chinese with English abstract).
[16] Ma Teng, Shen Shuai, Deng Yamin, Du Yao, Liang Xing, Wang Zhiqiang, Yu Haotian. 2020. Theoretical approaches of survey on Earth’s Critical Zone in basin: An example from Jianghan Plain, Central Yangtze River[J]. Earth Science, 45(12): 4498−4511 (in Chinese with English abstract).
[17] Pu Junbing. 2022. Earth's critical zone and karst−critical zone: Structure, characteristic and bottom boundary[J]. Bulletin of Geological Science and Technology, 41(5): 230−241 (in Chinese with English abstract).
[18] Research Group of National Key Basic Research Program of China (2013CB227900) (Basic Study on Geological Hazard Prevention and Environmental Protection in High Intensity Mining of Western Coal Area). 2017. Theory and method research of geological disaster prevention on high−intensity coal exloitation in the west areas[J]. Journal of China Coal Society, 42(2): 267−275 (in Chinese with English abstract).
[19] Riebe C S, Hahm W J, Brantley S L. 2017. Controls on deep critical zone architecture: A historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 42: 128−156. doi: 10.1002/esp.4052
[20] Sun Qiang, Zhang Weiqiang, Geng Jishi, Hu Jianjun, Zhang Yuliang, Lyu Chao, Ge Zhenlong, Li Pengfei, Jia Hailiang, Liu Yabin, Li Yuxiang. 2023. Technological path and geological guarantee for energy storage in underground space formed by coal mining[J]. Coal Geology and Exporlation, 51(2): 229−242 (in Chinese with English abstract).
[21] Wang Guofa, Ren Shihua, Pang Yihui, Qu Sijian, Zheng Dezhi. 2021. Development achievements of China’s coal industry during the 13th Five−Year plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology, 2(4): 2−9 (in Chinese with English abstract).
[22] Wang Junwei, Ming Shengping, Xu Min, La Qiong. 2023. Diversity pattern and phylogenetic structure of plant communities in Alpine Ecological Key Zone[J]. Acta Agrestia Sinica, 31(9): 2777−2786 (in Chinese with English abstract).
[23] Wang Shuangming, Geng Jishi, Li Pengfei, Sun Qiang, Fan Zhangqun, Li Dan. 2023. Construction of geological guarantee system for green coal mining[J]. Coal Geology and Exporlation, 51(1): 33−43 (in Chinese with English abstract).
[24] Wang Shuangming, Hou Enke, Xie Xiaoshen, Yang Fan, Liu Ying, Xiao Xucai, Shi Zengwu, Huang Yongan, Yang Zheng, Xie Yongli. 2021. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration[J]. Coal Sciences and Technology, 49(1): 19−31 (in Chinese with English abstract).
[25] Wang Shuangming, Shen Yanjun, Sun Qiang, Hou Enke. 2020. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of Western China[J]. Journal of Mining and Strata Control Engineering, 2(4): 5−19 (in Chinese with English abstract).
[26] Wang Shuangming, Sun Qiang, Gu Chao, Li Pengfei, Geng Jishi. 2024. The development of geoscientific research promoted by coal exploitation[J]. China Coal, 50(1): 2−8 (in Chinese with English abstract).
[27] Wang Shuangming, Sun Qiang, Hu Xin, Geng Jishi, Xue Shengze. 2024. Geological guarantee for in−situ development of coal[J]. Journal of Xi’an University of Science and Technology, 44(1): 1−11 (in Chinese with English abstract).
[28] Wang Tong, Shao Longyi, Xia Yucheng, Fu Xuehai, Sun Yuzhuang, Sun Yajun, Ju Yiwen, Bi Yinli, Yu Jingchun, Xie Zhiqing, Ma Guodong, Wang Qinwei, Zhou Jin, Jiang Tao. 2017. Major achievements and future research directions of the coal geology in China[J]. Geology in China, 44(2): 242−262 (in Chinese with English abstract).
[29] Wu Qiang, Tu Kun, Zeng Yifan, Liu Shouqiang. 2019. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society, 44(6): 1625−1636 (in Chinese with English abstract).
[30] Yang Jianfeng, Zhang Cuiguang. 2014. Earth’s critical zone: A holistic framework for geo−environmental researches[J]. Hydoheology & Engineering Geology, 41(3): 98−104,110 (in Chinese with English abstract).
[31] Yang Jianfeng, Zuo Liyan, Zhang Cuiguang, Yao Xiaofeng. 2023. Progress on groundwater’s role in the earth system and groundwater modeling for earth system models[J]. Mineral Exploration, 14(8): 1473−1483 (in Chinese with English abstract).
[32] Yang Shunhua, Song Xiaodong, Wu Huayong, Wu Kening, Zhang Ganlin. 2023. A review and discussion on the Earth’s Critical Zone research: Status Quo and prospect[J]. Acta Pedologica Sinica, 6(2): 308−318 (in Chinese with English abstract).
[33] Zhang Dongsheng, Li Wenping, Lai Xingping, Fan Gangwei, Liu Weiqun. 2017. Development on basic theory of water protection during coal mining in Northwest of China[J]. Journal of China Coal Society, 42(1): 36−43 (in Chinese with English abstract).
[34] Zhang Ganlin, Shi Zhou, Wang Qiubing, Zhao Yongcun, Liu Feng, Yang Lin, Song Xiaodong, Yang Fei, Jiang Zhuodong, Zeng Rong, Chen Songchao, Yang Shunhua. 2023. Development of soil geography in the new era and its future[J]. Acta Pedologica Sinica, 60(5): 1264−1276 (in Chinese with English abstract).
[35] Zhang Ganlin, Song Xiaodong, Wu Kening. 2012. A classification scheme for Earth’s Critical Zones and its application in China[J]. Science China (Earth Sciences), 64(10): 1709−1720 (in Chinese with English abstract).
[36] Zhang Jun, Chen Hongsong, Nie Yunpeng, Fu Zhiyong, Lian Jinjiao, Wang Fa, Luo Zidong, Wang Kelin. 2024. Research progress on structure and hydrological processes in the karst critical zone, southwest China[J]. Chinese Journal of Applied Ecology, 35(4): 985−996 (in Chinese with English abstract).
[37] Zhao Ping, Tan Kelong, Han Xiaozong, Lin Zhongyue, Sun Hongjun, Xie Zhiqing, Huang Yong, Liu Yaran, Sun Jie. 2021. Research for energy and ecological security in China under new situation[J]. Coal Gology of China, 33(1): 1−7 (in Chinese with English abstract).
[38] Zhou Changsong, Zou Shengzhang, Feng Qiyan. Zhu Danni, Li Jun, Wang Jia, Xie Hao, Deng Rixin. 2022. Progress in hydrogeochemical study of Karst Critical Zone: A critical review[J]. Earth Science Frontiers, 29(3): 37−50 (in Chinese with English abstract).
[39] Zhu Yongguan, Li Gang, Zhang Ganlin, Fu Bojie. 2015. Soil security: From Earth's critical zone to ecosystem services[J]. Acta Geographica Sinica, 70(12): 1859−1869 (in Chinese with English abstract).
[40] 安培浚, 张志强, 王立伟. 2016. 地球关键带的研究进展[J]. 地球科学进展, 31(12) : 1228−1234, [41] 卞正富, 雷少刚. 2020. 新疆煤炭资源开发的环境效应与保护策略研究[J]. 煤炭科学技术, 48(4): 43−51. [42] 陈喜, 张志才. 2022. 喀斯特地区地球关键带科学与生态水文学发展综述[J]. 中国岩溶, 41(3): 356−364. doi: 10.11932/karst20220303 [43] 范立民, 向茂西, 彭捷, 李成, 李永红, 仵拨云, 卞惠瑛, 高帅, 乔晓英. 2016. 西部生态脆弱矿区地下水对高强度采煤的响应[J]. 煤炭学报, 41(11): 2672−2678. [44] 顾大钊, 张勇, 曹志国. 2016. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术, 44(1): 1−7. [45] 黄艳利, 郭亚超, 齐文跃, 李俊孟, 王佳奇, 欧阳神央, 吴来伟. 2022. 西部典型生态脆弱矿区采损地表植被盖度演化规律与退化机制[J]. 煤炭学报, 47(12): 4217−4227. [46] 焦华喆, 陈曦, 张铁岗, 杨柳华, 陈新明, Honaker Rick, 马俊伟, 余洋. 2024. 黄河流域煤炭开发区地下水污染成因分析及防治建议[J]. 中国地质, 51(1): 143−156. doi: 10.12029/gc20230217001 [47] 973计划(2013CB227900)“西部煤炭高强度开采下地质灾害防治与环境保护基础研究”项目组. 2017. 西部煤炭高强度开采下地质灾害防治理论与方法研究进展[J]. 煤炭学报, 42(2): 267−275. [48] 李全生. 2023. 蒙东草原区大型露天煤矿减损开采与生态修复关键技术[J]. 采矿与安全工程学报, 40(5): 905−915. [49] 李小雁, 马育军. 2016. 地球关键带科学与水文土壤学研究进展[J]. 北京师范大学学报(自然科学版), 52(6): 731−737. [50] 李勇, 潘松圻, 宁树正, 邵龙义, 荆振华, 王壮森. 2022. 煤系成矿学内涵与发展—兼论煤系成矿系统及其资源环境效应[J]. 中国科学: 地球科学, 52(10): 1948−1965. [51] 刘海平, 王义. 2023. 神东矿区资源环境治理对策研究及其具体实践[J]. 中国煤炭, 49(S1): 6−14. [52] 刘金涛, 韩小乐, 刘建立, 梁忠民, 贺瑞敏. 2019. 山坡表层关键带结构与水文连通性研究进展[J]. 水科学进展, 30(1): 112−122. [53] 骆占斌, 樊军, 邵明安. 2022. 地球关键带基岩风化层生态水文研究进展[J]. 科学通报, 67(27): 3311−3323. [54] 吕玉香, 胡伟, 杨琰. 2019. 岩溶关键带水循环过程研究进展[J]. 水科学进展, 30(1): 123−138. [55] 马腾, 沈帅, 邓亚敏, 杜尧, 梁杏, 王志强, 於昊天. 2020. 流域地球关键带调查理论方法: 以长江中游江汉平原为例[J]. 地球科学, 45(12): 4498−4511. [56] 蒲俊兵. 2022. 地球关键带与岩溶关键带: 结构、特征、底界[J]. 地质科技通报, 41(5): 230−241. [57] 孙强, 张卫强, 耿济世, 胡建军, 张玉良, 吕超, 葛振龙, 李鹏飞, 贾海梁, 刘亚斌, 李宇翔. 2023. 利用煤炭开发地下空间储能的技术路径与地质保障[J]. 煤田地质与勘探, 51(2): 229−242. doi: 10.12363/issn.1001-1986.22.10.0799 [58] 王国法, 任世华, 庞义辉, 曲思建, 郑德志. 2021. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术, 49(9): 1−8. [59] 王俊伟, 明升平, 许敏, 拉琼. 2023. 高山生态关键带植物群落多样性格局与系统发育结构[J]. 草地学报, 31(9): 2777−2786. [60] 王双明, 耿济世, 李鹏飞, 孙强, 范章群, 李丹. 2023. 煤炭绿色开发地质保障体系的构建[J]. 煤田地质与勘探, 51(1): 33−43. doi: 10.12363/issn.1001-1986.23.01.0030 [61] 王双明, 侯恩科, 谢晓深, 杨帆, 刘英, 肖绪才, 石增武, 黄永安, 杨征, 谢永利. 2021. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术, 49(1): 19−31. [62] 王双明, 申艳军, 孙强, 侯恩科. 2020. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报, 2(4): 5−19. [63] 王双明, 孙强, 谷超, 李鹏飞, 耿济世. 2024. 煤炭开发推动地学研究发展[J]. 中国煤炭, 50(1): 2−8. [64] 王双明, 孙强, 胡鑫, 耿济世. 薛圣泽. 2024. 煤炭原位开发地质保障[J]. 西安科技大学学报, 44(1): 1−11. [65] 王佟, 邵龙义, 夏玉成, 傅雪海, 孙玉壮, 孙亚军, 琚宜文, 毕银丽, 于景邨, 谢志清, 马国东, 王庆伟, 周兢, 江涛. 2017. 中国煤炭地质研究取得的重大进展与今后的主要研究方向[J]. 中国地质, 44(2): 242−262. [66] 武强, 涂坤, 曾一凡, 刘守强. 2019. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 44(6): 1625−1636. [67] 谢克昌. 2022. 面向2035年我国能源发展的思考与建议[J]. 中国工程科学, 24(6): 1−7. [68] 杨建锋, 张翠光. 2014. 地球关键带: 地质环境研究的新框架[J]. 水文地质工程地质, 41(3): 98−104,110. [69] 杨建锋, 左力艳, 张翠光, 姚晓峰. 2023. 全球尺度地下水作用与地球系统模式地下水过程建模进展[J]. 矿产勘查, 14(8): 1473−1483. [70] 杨顺华, 宋效东, 吴华勇, 吴克宁, 张甘霖. 2023. 地球关键带研究评述: 现状与展望[J]. 土壤学报, 6(2): 308−318. [71] 张东升, 李文平, 来兴平, 范钢伟, 刘卫群. 2017. 我国西北煤炭开采中的水资源保护基础理论研究进展[J]. 煤炭学报, 42(1): 36−43. [72] 张甘霖, 史舟, 王秋兵, 赵永存, 刘峰, 杨琳, 宋效东, 杨飞, 蒋卓东, 曾荣, 陈颂超, 杨顺华. 2023. 新时代土壤地理学的发展现状与趋势[J]. 土壤学报, 60(5): 1264−1276. [73] 张甘霖, 宋效东, 吴克宁. 2021. 地球关键带分类方法与中国案例研究[J]. 中国科学: 地球科学, 51(10): 1681−1692. [74] 张君, 陈洪松, 聂云鹏, 付智勇, 连晋姣, 王发, 罗紫东, 王克林. 2024. 西南喀斯特关键带结构及其水文过程研究进展[J]. 应用生态学报, 35(4): 985−996. [75] 赵平, 谭克龙, 韩效忠, 林中月, 孙红军, 谢志清, 黄勇, 刘亚然, 孙杰. 2021. 新形势下我国能源与生态安全保障研究[J]. 中国煤炭地质, 33(1): 1−7. doi: 10.3969/j.issn.1674-1803.2021.01.01 [76] 中国工程院. 2011. 中国能源中长期(2030、2050)发展战略研究: 节能, 煤炭卷[M]. 北京: 科学出版社. [77] 周长松, 邹胜章, 冯启言, 朱丹尼, 李军, 王佳, 谢浩, 邓日欣. 2022. 岩溶关键带水文地球化学研究进展[J]. 地学前缘, 29(3): 37−50. [78] 朱永官, 李刚, 张甘霖, 傅伯杰. 2015. 土壤安全: 从地球关键带到生态服务系统[J]. 地理学报, 70(12): 1859−1869. doi: 10.11821/dlxb201512001