高级检索

    内蒙古西乌旗罕乌拉地区白音高老组火山岩特征及其形成构造背景

    张晓飞, 陈国超, 周毅, 李沅柏, 滕超, 王必任, 庞振山, 曹侃, 魏均启

    张晓飞, 陈国超, 周毅, 李沅柏, 滕超, 王必任, 庞振山, 曹侃, 魏均启. 内蒙古西乌旗罕乌拉地区白音高老组火山岩特征及其形成构造背景[J]. 中国地质, 2019, 46(6): 1410-1432. DOI: 10.12029/gc20190612
    引用本文: 张晓飞, 陈国超, 周毅, 李沅柏, 滕超, 王必任, 庞振山, 曹侃, 魏均启. 内蒙古西乌旗罕乌拉地区白音高老组火山岩特征及其形成构造背景[J]. 中国地质, 2019, 46(6): 1410-1432. DOI: 10.12029/gc20190612
    ZHANG Xiaofei, CHEN Guochao, ZHOU Yi, LI Yuanbai, TENG Chao, WANG Biren, PANG Zhenshan, CAO Kan, WEI Junqi. Characteristics and tectonic setting of volcanic rocks of Baiyingaolao Formation in Hanwula of Xi Ujimqin Banner, Inner Mongolia[J]. GEOLOGY IN CHINA, 2019, 46(6): 1410-1432. DOI: 10.12029/gc20190612
    Citation: ZHANG Xiaofei, CHEN Guochao, ZHOU Yi, LI Yuanbai, TENG Chao, WANG Biren, PANG Zhenshan, CAO Kan, WEI Junqi. Characteristics and tectonic setting of volcanic rocks of Baiyingaolao Formation in Hanwula of Xi Ujimqin Banner, Inner Mongolia[J]. GEOLOGY IN CHINA, 2019, 46(6): 1410-1432. DOI: 10.12029/gc20190612

    内蒙古西乌旗罕乌拉地区白音高老组火山岩特征及其形成构造背景

    基金项目: 

    国家自然科学基金 41802222

    中国地质调查局项目“内蒙古1:5万呼格吉勒图、巴彦华、巴彦布拉格、彦吉嘎庙幅区域地质调查” 1212011220453

    “矿集区矿产调查及深部找矿预测” DD20190570

    自然资源部稀土稀有稀散矿产重点实验室开放基金项目 KLRMKF201902

    详细信息
      作者简介:

      张晓飞, 男, 1985年生, 博士, 工程师, 主要从事区域地质矿产调查与研究工作; E-mail:zhangxiaofei521125@163.com

      通讯作者:

      陈国超, 男, 1979年生, 博士, 讲师, 构造地质学专业, 主要从事造山带岩浆作用研究; E-mail:chaoschen@126.com

    • 中图分类号: P597+.3;P588.14

    Characteristics and tectonic setting of volcanic rocks of Baiyingaolao Formation in Hanwula of Xi Ujimqin Banner, Inner Mongolia

    Funds: 

    the National Natural Science Fund 41802222

    China Geological Survey Program 1212011220453

    China Geological Survey Program DD20190570

    the Research Fund Program of Key Laboratory of Rare Mineral, Ministry of Land and Resources KLRMKF201902

    More Information
      Author Bio:

      ZHANG Xiaofei, male, born in 1985, doctor, engineer, engages in regional geological survey and mineral exploration study; E−mail:zhangxiaofei521125@163.com

      Corresponding author:

      CHEN Guochao, male, born in 1979, doctor, lecturer, majors in structural geology, engages in the study of magmatism in orogenic belt; E-mail: chaoschen@126.com

    • 摘要:

      大兴安岭中生代火山岩的成因和构造背景一直存在争议。内蒙古西乌旗地区发育大面积的晚中生代火山岩,是中国东部巨型火山岩带的重要组成部分。本文对西乌旗罕乌拉地区白音高老组火山岩开展了野外地质、岩石学、锆石U-Pb同位素年代学、地球化学研究,以便对其岩石成因和构造背景给予制约。白音高老组火山岩主要由流纹岩及流纹质火山碎屑岩等一套中酸性火山岩组成。采集其中的球粒流纹岩和英安斑岩进行LA-ICP-MS锆石UPb测年,测年锆石的CL图和Th/U值(0.34~1.25)指示其为岩浆成因锆石,测年结果分别为(140±0.8)Ma和(133±0.7)Ma,表明这套火山岩的形成时代为早白垩世早期。岩石地球化学研究表明,白音高老组火山岩属高钾钙碱性系列,具高硅、富碱、贫镁、钙,高FeOT/MgO比值,低Mg#值、Nb/Ta比值的特征;相对富集轻稀土元素,亏损重稀土元素;大部分样品富集LILE,而亏损Ba、Sr和HFSE,具A型花岗岩地球化学特征,形成于伸展构造背景,为地壳部分熔融的结果。结合区域中生代火山岩的空间展布特征,认为该火山岩形成应与蒙古—鄂霍茨克洋闭合碰撞后伸展和古太平洋板块的俯冲作用有关。

      Abstract:

      There exist different opinions concerning the petrogenesis and tectonic background of Mesozoic volcanic rocks developed in the Da Hinggan Mountains. The Late Mesozoic volcanic rocks in the Xi Ujimqin Banner of Inner Mongoliais a very important part of the huge volcanic rock belt in eastern China.The authors studied the volcanic rocks of Baiyingaolao Formation in Hanwula of Xi Ujimqin Banner in such aspects as field occurrence,petrology,zircon U-Pb isotopic geochronology and geochemisty in order to constrain their petrogenesis and tectonic background. The volcanic rocks of Baiyingaolao Formation are composed of rhyolite and volcanic clastic,which are a set of felsic volcanic rocks. The cathodoluminescence (CL) images of analyzed zircons of the pyromeride and dacite porphyry from Baiyingaolao Formation and their Th/U ratios(0.34-1.25) imply the igneous origin. LA-ICP-MS U-Pb dating shows that their ages are about(140±0.8) Ma and(133±0.7) Ma respectively,suggesting the early period of Early Cretaceous. Petrological and geochemical data reveal that the rocks belong to the high potassium calc-alkaline rock series characterized by rich Si and alkali,poor magnesium and calcium,high FeOT/MgO ratio and low Mg#,Nb/Ta ratio. LREE are richer than HREE.The trace element geochemistry is characterized evidently by enrichment of LILE,depletion of Ba,Sr and HFSE. All these geochemical characteristics of rocks show an affinity with the A-type granites,which were most probably formed in an extensional setting and originated from the partial melting of the crust. Combined with spacial distribution of the Mesozoic volcanic rocks,the authors hold that they were probably related to the post-orogenic extension following the closure of the Mongol-Okhotsk orogen,and were also affected by the subduction of the Paleo-Pacific plate.

    • 喀喇昆仑地处青藏高原西北部,西北起于帕米尔高原,东南止于西藏高原西北部,加勒万河地区位于喀喇昆仑山脉西南侧。近年来随着火烧云超大型铅锌矿以及红柳滩一带伟晶岩型锂矿的发现,喀喇昆仑地区近年的地质工作程度得到了大幅提升。火烧云—加勒万河—河尾滩一带岩浆活动极弱,仅见有少量中基性岩脉、岩滴以及侏罗系中见有玄武岩,所以该区域的岩浆岩研究程度较低。团结峰一带的龙山组(J2l)玄武岩获得锆石U–Pb同位素年龄为(174.4±2.7)Ma(菅坤坤等, 2019);而在火烧云北多宝山一带获得巴工布兰莎组(J1bg)中英安岩的锆石U–Pb同位素年龄为(195.5±1.1)Ma(周能武等, 2019);董连慧等(2015)获得火烧云闪锌矿Rb–Sr同位素为(186±6)Ma。

      喀喇昆仑地区已发现有众多的铅锌矿床,有火烧云、萨岔口、加勒万河、兴山北、红山湖南、甜水海、化石山、豹子山、团结峰等(图1)。其中火烧云估算铅+锌资源量为1895.0万t(范廷宾等, 2019),已成为国内探明储量最大的超大型铅锌矿床;萨岔口铅锌矿床估算铅+锌资源量已大于150万t,达到大型规模(范廷宾等, 2019)。笔者2015—2018年在火烧云西北约50 km的加勒万河谷中新发现了加勒万河铅锌矿以及加岔口铜矿。加勒万河铅锌矿与火烧云及萨岔口铅锌矿在同一地层构造带上(图1),成矿地质条件极为相似。范廷宾等(2019)对甜水海地区近39处不同大小的铅锌矿床特征进行了归纳总结,划分了密西西比河谷型(MVT)和沉积喷流型(SEDEX)两大类型,二者的主要典型矿床为多宝山铅锌矿与火烧云铅锌矿。高永宝等(2019)从矿物学、地球化学及同位素示踪对火烧云铅锌矿进行了详细的研究与分析,提出了盆地边缘褶皱逆冲+构造流体+次生交代3阶段成矿模式。

      图  1  喀喇昆仑区域地质矿产图(据高永宝等, 2019修改)
      1—上更新统;2—始新统;3—上白垩统;4—上侏罗统;5—中侏罗统;6—中—下侏罗统;7—上三叠统;8—中三叠统;9—早二叠统;10—中二叠统;11—上石炭统;12—中泥盆统;13—下—中奥陶统;14—长城系;15—三叠纪二长花岗岩;16—三叠纪石英闪长岩;17—侏罗纪花岗闪长岩;18—地质界线/角度不整合界线;19—断裂/大断裂;20—地理位置;21—研究区范围
      Figure  1.  Regional geological map of the Karakoram (modified from Gao Yongbao et al., 2019)
      1–Upper Pleistocene; 2–Eocene series; 3–Upper Cretaceous; 4–Upper Jurassic; 5–Middle Jurassic; 6–Middle–Lower Jurassic; 7–Upper Triassic; 8–Middle Triassic; 9–Upper Permian; 10–Middle Permian; 11–Upper Carboniferous; 12–Middle Devonian; 13–Lower/Middle Ordovician; 14–Changchengian System;15–Triassic monzogranite; 16–Triassic quartz diorite; 17–Jurassic granodiorite; 18–Geological boundary or angular unconformity boundary; 19–Large fault or fault; 20–Geographical position; 21–Study area

      不同学者提出的不同成矿模式略有不同,但基本上都反映出该区域铅锌矿床是由区域地层、构造、岩浆共同演化的产物。以往的研究主要针对区域内矿床的地质特征、矿物成因、控矿构造、成矿阶段与模式(高永宝等, 2019),虽然都提出成矿流体、金属矿元素来源与深部的岩浆活动有着重要的关系,但由于岩浆出露的局限性,对区域内的岩浆活动了解十分有限。本次工作在研究地层、构造以及找矿的基础上,对加勒万河区域内的各类岩脉以及火山岩进行地球化学及年代学研究,以期为区域的地质演化及成矿理论研究提供宝贵的依据。

      加勒万河地区位于红山湖—乔尔天山断裂以南,班公湖—怒江断裂以北地区,属于特提斯构造域西藏—三江造山系(Ⅰ级)、羌塘多岛弧盆系(Ⅱ级)、塔什库尔干—甜水海地块(Ⅲ级)中的乔尔天山—红南山前陆盆地(图2)(潘桂棠等, 2009; 范廷宾等, 2019)。出露地层有加温达坂组、空喀山口组、河尾滩组、克勒青河组、巴工布兰莎组、龙山组(何国建等, 2020)。区域内岩浆活动弱,未见岩体,仅见少量的辉绿岩、辉绿辉长岩等中—基性岩脉,主要侵入于二叠系加温达坂组深色系碎屑岩之中;火山岩主要见于西南峡谷一带侏系纪巴工布兰莎组之中,岩性为杏仁状辉石玄武岩。

      图  2  喀喇昆仑加勒万河地区地质图(a)、大地构造分区图(b)(据范廷宾等, 2019
      1—第四系冲积;2—第四系冲洪积;3—龙山组;4—巴工布兰莎组上段;5—巴工布兰莎组下段;6—克勒青河组上段;7—克勒青河组下段;8—河尾滩组上段;9—河尾滩组下段;10—空喀山口组上段;11—空喀山口组下段;12—加温达坂组上段;13—加温达坂组下段;14—玄武岩;15—花岗闪长岩;16—辉绿玢岩;17—断层;18—整合接触;19—角度不整合接触;20—国界线;21—冰川;22—Ⅲ秦祁昆造山系;23—Ⅳ康西瓦—玛沁对接带;24—Ⅴ羌塘—三江造山系;25—Ⅵ班公湖—怒江结合带;26—Ⅶ冈底斯—喜马拉雅造山系;27—西昆仑湖盆系;28—康西瓦—苏巴什结合带;29—南羌塘增生弧盆系;30—北羌塘—甜水海地块;31—奥依塔格—塔木其岛弧带;32—柳什塔格—上其汗岩浆弧带;33—康西瓦结合带;34—塔什库尔干—甜水海地块;35—北羌塘地块;36—多玛增生地块;37—拉达克—冈底斯—下察隅岩浆弧带;38—同位素样品/硅酸盐样品;39—研究区
      Figure  2.  Geological map of the Galwan Valley area in Karakoram (a) and tectonic division map (b) (modified from Fan Tingbin et al., 2019)
      1–Quaternary alluvial; 2–Quaternary alluvial proluvial; 3–Longshan Formation; 4–Upper member of Bagongbulansha Formation; 5–Lower member of Bagongbulansha Formation; 6–Upper member of Keleqinghe Formation; 7–Lower member of Keleqinghe Formation; 8–Upper member of Heweitan Formation; 9–Lower member of Heweitan Formation; 10–Upper member of Kongkashankou Formation; 11–Lower member of Kongkashankou Formation; 12–Upper member of Jiawendaban Formation; 13–Lower member of Jiawendaban Formation; 14–Basalt; 15–Granodiorite; 16–Diabase porphyrite; 17–Fault; 18–Conformal contact; 19–Angular unconformity contact; 20–Boundary; 21–Glacier; 22–Ⅲ Qinqikun orogenic system; 23–Ⅳ Kangxiwa–Maqin junction zone; 24–Ⅴ Qiangtang–Sanjiang orogenic system; 25–Ⅵ Bangong–Nujiang junction zone; 26–Ⅶ Gangdise–Himalayan orogenic system; 27–West Kunlun lacustrine system; 28–Kangxiwa–Subashi junction zone; 29–South Qiangtang accretionary arc basin system; 30–North Qiangtang–Tianshuihai block; 31–Oytag–Tamuqi island arc zone; 32–Liushitag–Shangqihan magmatic arc zone; 33–Kangxiwa junction zone; 34–Tashkergan–Tianshuihai block; 35–North Qiangtang block; 36–Duoma accretionary block; 37–Ladak–Gangdise–Xiachayu magmatic arc zone; 38–Isotopic samples/silicate samples; 39–Study area

      分布于河尾滩西南侧清水沟—长岭一带早侏罗世巴工布兰莎组上段地层之中(图3),呈夹层出现,岩石类型单一,岩性为杏仁状辉石玄武岩。杏仁状辉石玄武岩呈暗灰绿色、墨绿色(图4a、b),无斑间粒结构,块状构造,由斜长石、辉石、角闪石及少量磷灰石组成。斜长石含量为65%,呈细长条状,斜长石无规则排列,间粒间隐结构,未见次生变化(图4d、e);辉石含量为26%,粒度大多在0.05~0.1 mm,主要为普通辉石,呈粒状或短柱状,局部辉石矿物颗粒蚀变为绿帘石,具环带状结构;角闪石含量为4%,呈粒状,大小在0.2 mm以下,碎屑状分布,岩石中分布不均匀;磷灰石少量,呈柱状,长径在0.01~0.1 mm,岩石中分布不均匀。

      图  3  喀喇昆仑西南达坂一带地质图
      Figure  3.  Geological map of southwest Daban area in Karakoram

      闪长岩分布于加勒万河加岔口冰洞南东部,面积接近1 km2,呈脉状产出,出露宽度1~3 m,与二叠系加温达坂组呈侵入接触。呈灰绿色、灰色,细粒结构、细粒斑状结构,块状构造、微定向构造(图4c、f)。斜长石含量70%左右,普遍具中度绿泥石化、高岭土化、隐晶帘石化;暗色矿物含量15%~30%,均绿泥石化、绿帘石化、阳起石化,仅残留片柱状形态,个别见有鳞片状黑云母;石英闪长岩内见有石英,含量5%左右,呈波状消光。

      加勒万河谷区域内杏仁状辉石玄武岩采集2件样品PM101-RZ1、PM102-RZ1;闪长岩采集了1件样品PM201-RZ1;对这3件样品进行U–Pb同位素年龄测定、主量与微量及稀土元素的分析测试。在区域其他地区采集4件中—基性岩脉样品进行主量与微量元素的分析测试,其中辉绿辉长岩采集了2件样品PM307-HQ9、Pdh1-HQ4,辉绿岩采集了1件样品PM304-HQ1,角闪辉石岩采集了1件样品Pdh1-HQ48。样品采集位置如图2所示。样品均在剖面测制过程中采集的基岩,确保原地采集以及挑选风化蚀变较弱的岩块。

      样品的薄片鉴定、主量元素、微量元素分析测试在新疆地矿局第三地质大队实验室完成。主量元素由原子吸收分光光度仪与紫外可见分光光度仪完成测试;微量元素由电感耦合等离子体质谱仪(ICP–MS)分析测试。

      锆石的挑选在自然资源部南昌矿产资源监督检测中心(江西省地质调查研究院)完成。对样品进行粉碎、重液分离和单辊干式强磁选机磁选,最后通过双目镜进行锆石的挑选。锆石U–Pb同位素分析由武汉上谱科技有限责任公司实验室完成。将已挑选好的锆石使用环氧树脂中制靶,随后进行阴极发光(CL)照相。测年所用等离子体质谱仪为Agilent7700,激光剥蚀系统为GeoLas Pro,激光能量密度80 mJ,频率5 Hz,激光束斑直径32 µm,微量元素校正标准样品为NIST 610,同位素比值校正标准样品为91500,同位素比值监控标准样品采用GJ-1。具体分析条件及流程详见文献Liu et al.(2008),数据采用ICPMS DataCal10.0进行处理。

      岩浆岩中的继承锆石或捕获锆石对研究深部岩石圈结构和演化具有十分重要的意义,被认为是“天然超深样”(赵越等, 2006; 郑建平等, 2008; 李兴奎等, 2018)。虽然加勒万河地区的闪长岩和玄武岩发生了风化或区域变质,但都是浅变质作用,熔融温度大于900℃的锆石基本不受影响,仍可以作为U–Pb的封闭系统,锆石U–Pb同位素年龄依然具有参考价值。

      阴极发光图像(图5a、b)显示,所分析的锆石颗粒晶形整体较好,大部分晶体棱角分明、边界平直,呈长柱状自形—半自形晶,少数呈不规则状。所选测试锆石均发育岩浆韵律环带,PM101-RZ1-01锆石呈长柱状,环带呈扇形、面状构造。岩浆振荡环带较宽显示高温成因的特点,PM101-RZ1-06锆石CL图像显示十分明亮,推测应是后期锆石中U、REE、Th等微量元素含量变化所致,其U–Pb同位素年龄谐和度也只有86%,所以其年龄值不做参考。其他大部分锆石的特征表明锆石为原生的岩浆锆石。

      图  4  加勒万河地区中—基性岩浆岩野外照片和显微照片
      a—杏仁状玄武岩露头;b—气孔状玄武岩露头;c—闪长岩;d—PM101-RZ1杏仁状玄武岩显微镜镜下照片;e—PM102-RZ1气孔状玄武岩显微镜镜下照片;f—P201-RZ1闪长岩显微镜镜下照片
      Figure  4.  Field photographs and microphotographs of intermediate–basic magmatic rocks in the Galwan River area
      a−Amygdaloid basaltic outcrop; b−Vesicular basalt outcrop; c−Diorite; d−Microscopic photograph of PM101-RZ1 amygdaloid basaltic; e−Microscopic photograph of PM102-RZ1 vesicular basalt; f−Microscopic photograph of PM201-RZ1 diorite
      图  5  加勒万河地区玄武岩和闪长岩锆石阴极发光图像
      (年龄大于1000 Ma的锆石采用207Pb/206Pb年龄;年龄小于1000 Ma的锆石采用206Pb/238U年龄)
      Figure  5.  Zircon cathodoluminescence (CL) images of the basalts and diorites in the Galwan Valley area
      (The 207Pb/206Pb age is used to zircons older than 1000 Ma, and the 206Pb/238U age is used to zircons younger than 1000 Ma)

      锆石粒度变化范围较大,除PM101-RZ1-01达220 mm,其他锆石长轴基本在50~120 μm,长短轴比1~4。长柱状锆石可能形成于偏基性高温的岩浆之中。从锆石的长短轴比值、形态特征、生长环带特征可以看出,PM101-RZ1玄武岩中的锆石并不是同一生长环境下形成的,而PM102-RZ1中的锆石形态相近,具有同源的特征。PM101-RZ1中16颗锆石的Th含量在50.2×10−6~366×10−6,U含量为251×10−6~705×10−6,Th/U值为0.11~0.89(表1);PM102-RZ1中20颗锆石的Th含量在35.8×10−6~279×10−6,U含量为275×10−6~969×10−6,Th/U值为0.12~0.48(表1),整体Th/U值较低。综合分析认为早侏罗世巴工布兰莎组中玄武岩的锆石为岩浆成因锆石(吴元保和郑永飞, 2004)。

      表  1  加勒万河地区中基性岩锆石U–Pb同位素测试结果
      Table  1.  Zircon U−Pb isotopic results of the intermediate-basic rocks in Galwan Valley area
      测点号 Pb/10−6 Th/10−6 U/10−6 Th/U 同位素比值 同位素年龄/Ma 协和度
      207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      PM201-RZ1(闪长岩)
      1 63.0 63.5 465 0.14 0.0704 0.0024 1.1109 0.0357 0.1145 0.0016 939 65.7 759 17.2 699 9.1 91%
      2 64.8 294 359 0.82 0.0658 0.0018 1.2216 0.0342 0.1338 0.0017 1200 57.4 811 15.6 810 9.7 99%
      3 53.0 84.0 320 0.26 0.0718 0.0022 1.3639 0.0403 0.1378 0.0018 989 61.4 874 17.3 832 10.4 95%
      4 34.1 400 1983 0.20 0.0494 0.0018 0.1059 0.0041 0.0155 0.0002 169 87.0 102 3.8 98.9 1.2 96%
      5 44.4 44.4 298 0.15 0.0739 0.0023 1.3005 0.0426 0.1268 0.0013 1039 63.0 846 18.8 769 7.6 90%
      6 32.9 90.6 202 0.45 0.0662 0.0023 1.2094 0.0432 0.1322 0.0016 813 73.3 805 19.9 801 9.1 99%
      7 54.3 97.1 360 0.27 0.0699 0.0021 1.2338 0.0373 0.1277 0.0014 928 61.1 816 17.0 775 8.0 94%
      8 15.7 33.1 212 0.16 0.0617 0.0031 0.5353 0.0258 0.0634 0.0008 665 107 435 17.0 396 4.7 90%
      10 51.4 63.7 338 0.19 0.0690 0.0019 1.2698 0.0362 0.1330 0.0016 900 63.1 832 16.2 805 9.0 96%
      11 48.0 127 295 0.43 0.0675 0.0019 1.2471 0.0375 0.1332 0.0017 854 63.9 822 16.9 806 9.5 98%
      12 37.3 232 330 0.70 0.0591 0.0021 0.7099 0.0256 0.0870 0.0012 572 77.8 545 15.2 538 7.2 98%
      13 47.6 62.9 314 0.20 0.0671 0.0024 1.2379 0.0413 0.1331 0.0017 843 77.0 818 18.7 805 9.5 98%
      14 49.5 212 288 0.74 0.0680 0.0020 1.2701 0.0371 0.1350 0.0019 878 60.3 832 16.6 816 10.5 98%
      15 29.1 22.3 709 0.03 0.0514 0.0018 0.2737 0.0098 0.0385 0.0004 257 83.3 246 7.8 243 2.7 99%
      16 33.9 61.6 213 0.29 0.0709 0.0024 1.3819 0.0474 0.1407 0.0017 955 74.2 881 20.2 849 9.6 96%
      18 132 307 914 0.34 0.0671 0.0016 1.1507 0.0282 0.1236 0.0012 843 54.6 778 13.3 751 6.7 96%
      PM101-RZ1(辉石玄武岩)
      1 28.9 96.1 409 0.24 0.0542 0.0024 0.4545 0.0206 0.0607 0.0009 389 100 380 14.4 380 5.3 99%
      2 42.9 70.2 288 0.24 0.0652 0.0022 1.1556 0.0411 0.1276 0.0016 789 72.2 780 19.4 774 8.9 99%
      3 26.7 366 582 0.63 0.0510 0.0022 0.2565 0.0110 0.0366 0.0005 239 72.2 232 8.9 232 3.3 99%
      4 44.4 51.7 309 0.17 0.0646 0.0021 1.1147 0.0353 0.1247 0.0014 761 67.7 760 17.0 758 8.1 99%
      7 47.7 50.2 298 0.17 0.0664 0.0022 1.2061 0.0388 0.1313 0.0014 817 70.4 803 17.9 795 8.1 98%
      8 120 79.3 683 0.12 0.0614 0.0034 1.1885 0.0690 0.1375 0.0020 654 119 795 32.0 830 11.5 95%
      9 97.3 75.7 705 0.11 0.0621 0.0019 1.0473 0.0314 0.1215 0.0013 680 64.8 728 15.6 739 7.3 98%
      10 61.3 142 356 0.40 0.0696 0.0025 1.2954 0.0458 0.1346 0.0015 917 75.9 844 20.3 814 8.6 96%
      11 58.9 192 334 0.57 0.0665 0.0020 1.2437 0.0372 0.1348 0.0015 833 60.2 821 16.8 815 8.5 99%
      13 53.0 109 332 0.33 0.0660 0.0019 1.1978 0.0340 0.1306 0.0015 806 59.3 800 15.7 791 8.5 98%
      15 112 224 251 0.89 0.1183 0.0029 5.0616 0.1288 0.3066 0.0037 1931 44.4 1830 21.6 1724 18.2 94%
      PM102-RZ1(辉石玄武岩)
      1 63.8 48.2 403 0.12 0.0677 0.0020 1.2634 0.0364 0.1340 0.0016 861 61.1 829 16.3 811 8.9 97%
      2 44.3 53.3 275 0.19 0.0658 0.0020 1.2378 0.0359 0.1356 0.0016 1200 59.1 818 16.3 819 9.0 99%
      3 51.5 58.8 320 0.18 0.0679 0.0018 1.2710 0.0349 0.1344 0.0014 865 55.6 833 15.6 813 7.8 97%
      4 97.8 131 617 0.21 0.0660 0.0017 1.2156 0.0311 0.1324 0.0013 806 53.7 808 14.2 802 7.3 99%
      5 45.6 71.1 283 0.25 0.0674 0.0022 1.2370 0.0384 0.1326 0.0015 852 67.4 818 17.4 803 8.7 98%
      6 56.6 53.1 364 0.15 0.0648 0.0018 1.2112 0.0345 0.1345 0.0015 769 59.3 806 15.8 814 8.4 99%
      7 44.8 35.8 282 0.13 0.0692 0.0021 1.2964 0.0375 0.1354 0.0014 906 63.0 844 16.6 818 7.9 96%
      8 101 274 720 0.38 0.0643 0.0015 1.0009 0.0234 0.1121 0.0011 750 48.9 704 11.9 685 6.2 97%
      9 56.4 55.6 356 0.16 0.0663 0.0019 1.2446 0.0369 0.1354 0.0016 817 61.1 821 16.7 819 9.2 99%
      10 94.0 99.7 612 0.16 0.0647 0.0017 1.1849 0.0330 0.1320 0.0016 765 55.6 794 15.3 799 9.0 99%
      11 98.2 279 585 0.48 0.0636 0.0017 1.1630 0.0315 0.1322 0.0016 728 25.0 783 14.8 800 8.9 97%
      12 151 131 969 0.13 0.0644 0.0015 1.2190 0.0303 0.1363 0.0015 754 249.1 809 13.9 824 8.3 98%
      13 61.8 76.0 387 0.20 0.0655 0.0019 1.2181 0.0360 0.1340 0.0017 791 59.3 809 16.5 811 9.4 99%
      14 70.4 57.7 449 0.13 0.0659 0.0018 1.2471 0.0354 0.1364 0.0018 806 57.4 822 16.0 824 10.1 99%
      15 50.2 47.9 296 0.16 0.0707 0.0021 1.4306 0.0479 0.1449 0.0022 950 61.1 902 20.0 872 12.5 96%
      16 65.1 51.4 427 0.12 0.0637 0.0019 1.1719 0.0363 0.1322 0.0015 731 64.8 788 17.0 800 8.4 98%
      17 61.9 67.8 396 0.17 0.0638 0.0018 1.2019 0.0354 0.1353 0.0016 744 59.3 801 16.4 818 9.0 97%
      18 51.0 71.7 330 0.22 0.0672 0.0019 1.2224 0.0356 0.1309 0.0014 843 59.3 811 16.3 793 7.9 97%
      19 46.2 43.1 307 0.14 0.0650 0.0019 1.1959 0.0344 0.1325 0.0014 776 56.5 799 15.9 802 8.1 99%
      20 67.6 110 422 0.26 0.0634 0.0018 1.2037 0.0340 0.1367 0.0016 720 63.9 802 15.7 826 9.1 97%
      下载: 导出CSV 
      | 显示表格

      PM101-RZ1玄武岩锆石U–Pb同位素测年结果数据谐和性整体较好(图6a),PM101-RZ1的16颗锆石有11颗年龄值谐和度均大于等于90%。PM101-RZ1-14、PM101-RZ1-16这2颗锆石被打穿;M101-RZ1-05、PM101-RZ1-06、PM101-RZ1-12此3颗锆石年龄值谐和度低于90%,这5颗锆石年龄中不作为参考数据,年龄数据详见表1。11个有效年龄值,大致可以分为4个年龄组,分别为232 Ma、380 Ma、739~830 Ma、1931 Ma(图6a)。其中PM101-RZ1-15号锆石年龄大于1400 Ma,采用207Pb/206Pb表面年龄值。4个年龄群组中,739~830 Ma的样品数达到8个,谐和度都在95%以上,6个谐和度达98%。

      图  6  加勒万河地区中基性岩锆石U–Pb年龄谐和图
      Figure  6.  Zircons U–Pb concordia diagrams of the intermediate–basic rock in the Galwan Valley area

      PM102-RZ1样品的20颗锆石年龄值谐和度都在96%以上(图6b)。PM102-RZ1样品的20颗锆石年龄值更加集中,除PM102-RZ1-08、PM102-RZ1-15两锆石206Pb/238U年龄分别为685 Ma、872 Ma,其余18粒锆石206Pb/238U年龄均在793~826 Ma。793~826 Ma年龄段的谐和年龄为(810.1±2.0)Ma,MSWD=0.056;加权平均年龄为(810.3±5.0)Ma,MSWD=1.4(图6b)。

      地层中火山岩夹层的就位时间与地层的形成时间基本一致。但火山岩中的继承锆石或捕获锆石的年龄一般老于火山岩的就位时间。西南达坂一带早侏罗世巴工布兰莎组(J1bg)的火山岩喷发或溢流时间为早侏罗世,晚于最年轻锆石组PM101-RZ-03的结晶时间(232±9)Ma,说明玄武岩的这些锆石年龄是岩浆房的结晶年龄,而非喷发年龄。

      PM201-RZ1花岗闪长岩共挑选出65颗锆石,阴极发光下多为棱角分明、边界平直的长柱状自形—半自形晶,少数呈不规则状。挑选了18颗(图5c)形态较好的锆石进行U–Pb同位素测年(表1)。所选测试锆石均发育岩浆韵律环带,4、6、18锆石岩浆振荡环带较宽,显示高温成因的特点,14号锆石最外层可见薄增生边,以上特征表明锆石为原生的岩浆锆石。锆石长50~120 μm,长短轴比值为1~4;4、5、6、15、18号锆石长柱状显示中基性岩浆锆石的特点。从锆石的长短轴比值、形态以及生长环带特征可以看出,这些锆石并不是同一环境下形成的,应该是岩浆中的继承锆石或捕获锆石,反映的是岩浆来源地深部地壳的特征和性质。

      18颗锆石的Th含量在22.3×10−6~400×10−6,U含量为212×10−6~1983×10−6,Th/U值为0.03~0.82(表1),6颗锆石的Th/U值大于0.3,锆石地球化学特征表明这些锆石主要为岩浆成因锆石(吴元保和郑永飞, 2004)。

      18颗锆石的年龄数据谐和性整体较好,16颗谐和度大于等于90%,其中11颗锆石的年龄数据谐和度大于96%,4颗锆石的年龄数据谐和度为98%,3颗锆石的年龄数据谐和度为99%。在207Pb/235U–206Pb/238U谐和图上(图5c)(7、19号谐和度低于90%,不做参考),数据投点多位于谐和曲线上或其附近。18颗锆石年龄变化范围特别大,从新元古代一直跨越到中生代,其中最老的一颗锆石(PM201-RZ-16)207Pb/206Pb年龄为849 Ma,最年轻的年龄值为98.9 Ma。16个有效年龄数据大致分为5个年龄组,分别为98.9 Ma、243 Ma、396 Ma、538 Ma、751~849 Ma(图6c)。其中751~849 Ma年龄组共10颗锆石,而年龄峰值组801~816 Ma共计6颗锆石,对此6个锆石的谐和年龄为(807.9±3.9)Ma(图6c),加权平均年龄为(806.7±7.6)Ma(图6c),MSWD=0.29。

      PM201-RZ1闪长岩侵入于下二叠统加温达坂组(P1-2j)深灰色粉砂岩,约束其侵位时代为早二叠世之后。锆石U–Pb同位素年龄只有PM201-RZ-04、PM201-RZ-15是晚于地层的形成时代。这两颗锆石形态都是长轴状,长短轴比基本接近。PM201-RZ-15内部结构较复杂,可能受后期溶蚀作用,使封闭的锆石中U–Pb系统被打开,同位素时钟重启;而PM201-RZ-04锆石形态完整,韵律环带清晰,晶体表面光洁明亮,未发现有溶蚀或变质的特征,年龄值谐和度达96%。综合分析认为PM201-RZ-04锆石的U–Pb同位素年龄可靠,对整个岩浆形成的时间具有最晚年龄的制约,(98.9±1.2)Ma可作为冰洞闪长岩的形成年龄。

      冰洞闪长岩中锆石U–Pb年龄出现了5个频谱,其中继承锆石的年龄频谱243 Ma、396 Ma、538 Ma、751~849 Ma共4个,认为本测区在早白垩世以前(98.9±1.2)Ma至少发生了5次被记录的岩浆活动。751~849 Ma新元古代锆石U–Pb同位素年龄峰值表明闪长岩熔融时将深部基底中的锆石裹挟进入岩浆并一同侵位到了浅地表。

      加勒万河地区玄武岩以及闪长岩都携带了大量的739~830 Ma新元古代的继承锆石,这不是一个偶然事件。西南达坂巴工布兰莎组玄武岩与冰洞加温达坂组闪长岩在空间上相隔约40 km,岩性差异大,形成时代也存在一定的差异。两者同时携带了大量新元古代锆石,充分指向和说明两者同源的一个事实,源区即新元古代深部的老基底。

      分别对PM101-RZ1中11颗、PM102-RZ1中20颗、PM201-RZ1中16颗测年锆石进行了稀土元素含量的测定,测试结果见表2。锆石稀土元素配分型式图(图7)表明,各样品中出现了主体样式和少量的不同稀土元素配分样式,但可以发现加勒万河地区玄武岩、闪长岩中主体锆石(黑色线型)稀土元素配分样式基本一致;表现为轻稀土含量低,而重稀土含量较高,明显的La、Pr、Sm、Eu亏损的“MW”型。加勒万河地区玄武岩、闪长岩主体原生锆石的稀土配分样式与Greenland西南部Gothabsfjord地区的中太古代(GGU125540)样品锆石稀土元素配分图基本一致(Whitehouse and Kamber, 2002)。锆石U–Pb同位素年龄结合锆石稀土元素分配特征进一步说明玄武岩与闪长岩均有新元古代同一源区的物质来源。

      表  2  加勒万河地区中基性岩锆石稀土元素含量
      Table  2.  Rare earth elements data of zircon in the intermediate-basic rocks of the Galwan Valley area
      稀土元素 Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE/HREE δEu δCe
      PM101-RZ1
      1 0.81 0.031 2.35 0.082 1.42 3.45 0.64 25.6 8.93 92.9 32.4 137 27.0 238 48.8 959 617.92 0.013 0.207 11.371
      2 0.55 0.009 1.01 0.069 1.31 4.03 0.30 37.5 15.9 208 84.4 396 82.3 754 150 2504 1735.05 0.004 0.074 10.037
      3 1.27 0.018 14.6 0.080 1.17 1.77 0.60 13.5 4.23 55.7 23.8 123 30.4 313 74.4 784 656.40 0.029 0.379 93.848
      4 0.59 0.020 0.57 0.0096 0.55 3.50 0.019 31.4 13.9 179 72.6 332 71.6 644 129 2135 1477.94 0.003 0.006 10.191
      7 0.73 0.013 1.89 0.072 0.67 2.83 0.17 24.3 11.2 146 53.8 254 54.6 502 106 1629 1157.14 0.005 0.063 15.077
      8 1.74 4.40 8.24 1.47 7.20 5.50 0.71 34.6 17.0 251 106 535 119 1141 231 3365 2461.21 0.011 0.158 0.793
      9 0.83 0.030 0.63 0.060 0.99 3.91 0.099 33.3 15.7 193 70.8 320 66.5 628 128 2157 1460.06 0.004 0.027 3.637
      10 1.72 0.18 13.1 0.16 1.52 3.81 0.61 35.8 15.4 202 80.1 372 77.3 703 141 2439 1645.97 0.012 0.160 19.309
      11 6.37 17.8 71.9 6.75 34.8 12.3 3.31 26.6 7.64 91.2 37.2 184 43.2 437 102 1179 1076.28 0.158 0.560 1.608
      13 1.62 0.032 2.54 0.088 1.40 5.71 0.41 48.4 19.3 246 103 486 101 939 192 3124 2144.34 0.005 0.075 11.675
      15 2.72 0.36 26.2 0.87 8.67 9.79 2.85 29.7 9.74 102 32.8 139 28.0 246 48.9 999 685.75 0.077 0.512 11.389
      PM102-RZ1
      1 0.75 0.034 0.49 0.077 0.95 2.09 0.032 26.1 12.7 189 82.0 401 89.5 842 173 2474 1647 0.003 36.745 0.014
      2 0.60 0.029 0.52 0.035 0.94 3.14 0.10 28.3 12.2 168 68.1 323 69.2 631 132 2044 1305 0.004 30.628 0.013
      3 0.77 0.044 0.84 0.056 0.87 3.51 0.12 34.0 14.1 194 77.9 368 77.5 708 145 2361 1481 0.004 32.745 0.013
      4 1.67 0.056 2.51 0.040 1.15 3.88 0.31 40.4 18.8 269 114 559 119 1109 224 3516 2238 0.004 19.925 0.007
      5 0.70 0.15 0.96 0.15 2.31 4.97 0.13 35.4 15.5 212 88.5 420 89.8 830 168 2733 1700 0.005 27.689 0.046
      6 0.67 0.001< 0.39 0.001< 0.66 2.94 0.068 28.0 14.5 203 84.7 419 90.2 831 168 2701 1676 0.003 42.301 1.000
      7 0.55 0.058 0.53 0.056 0.80 2.59 0.043 23.8 11.4 159 66.3 321 70.3 651 136 1971 1308 0.004 42.827 0.026
      8 3.65 0.079 10.4 0.14 1.13 3.20 1.34 19.0 7.31 85.2 33.7 156 33.2 328 67.7 1011 682.5 0.028 7.920 0.003
      9 0.90 0.001< 0.50 0.059 0.50 2.60 0.069 27.9 13.4 184 75.8 369 79.7 753 154 2316 1508 0.003 42.809 1.000
      10 1.04 3.24 2.97 1.98 11.2 11.8 2.65 61.1 25.9 355 146 688 149 1330 270 4617 2789 0.012 6.643 0.453
      11 3.06 0.047 3.87 0.26 5.30 11.3 0.92 72.6 22.3 206 54.8 175 29.1 235 43.1 1696 819.5 0.030 15.646 0.003
      12 1.17 0.57 3.11 0.62 3.71 5.38 0.39 45.1 22.8 331 143 712 158 1533 316 4638 2960 0.005 13.653 0.073
      13 0.88 0.081 2.75 0.040 1.12 4.37 0.054 34.2 16.4 218 89.8 431 90.0 824 167 2826 1713 0.005 54.255 0.013
      14 0.73 0.017 0.56 0.042 0.91 3.21 0.11 34.3 17.0 242 103 513 111 1031 212 3308 2057 0.003 31.455 0.006
      15 0.62 0.019 0.79 0.026 0.95 3.19 0.15 28.1 13.3 174 68.6 315 67.5 601 123 2126 1274 0.004 25.603 0.007
      16 0.75 0.0038 0.48 0.033 0.49 3.20 0.091 29.4 15.0 219 91.4 452 98.2 922 189 2900 1832 0.003 46.335 0.002
      17 0.73 0.001< 0.54 0.026 0.71 3.70 0.12 35.9 16.7 220 89.8 427 88.8 812 166 2828 1695 0.003 37.996 1.000
      18 0.94 0.0029 1.14 0.048 0.91 3.83 0.085 35.6 16.0 213 85.3 393 83.1 743 149 2669 1575 0.004 41.878 0.001
      19 0.74 0.090 0.60 0.046 0.53 2.51 0.059 22.5 11.3 163 69.5 339 72.1 661 137 2103 1343 0.003 43.376 0.033
      20 0.77 0.022 0.82 0.032 1.03 4.66 0.12 40.7 17.4 249 100 473 98.5 887 181 3179 1874 0.004 40.391 0.007
      PM201-RZ1
      1 1.13 4.34 2.56 3.02 17.8 15.7 4.21 55.3 23.5 296 112 505 105 943 193 3432 2280 0.021 0.437 0.173
      2 1.54 0.14 10.7 0.11 1.36 5.91 0.42 37.4 13.9 177 69.5 314 62.8 550 113 2007 1356 0.014 0.087 21.230
      3 3.54 0.31 2.92 0.24 2.34 4.86 0.35 37.4 15.0 202 81.4 375 79.7 719 147 2516 1668 0.007 0.080 2.639
      4 5.79 0.059 4.44 0.040 0.80 2.76 0.21 18.9 7.85 109 43.7 220 48.7 462 97.4 1357 1015.4 0.008 0.089 22.311
      5 1.65 0.13 1.59 0.074 0.84 2.85 0.16 24.6 13.0 177 70.0 337 73.0 653 136 2117 1490 0.004 0.059 3.906
      6 0.82 0.090 3.83 0.16 2.38 7.15 0.54 52.5 18.8 243 97.2 438 89.3 800 161 2950 1914 0.007 0.085 7.828
      7 0.91 0.25 1.41 0.19 2.52 6.24 0.34 47.3 19.3 255 101 466 96.4 849 174 3206 2019 0.005 0.060 1.591
      8 0.61 0.10 1.98 0.11 0.70 1.58 0.28 12.5 4.88 58.8 23.3 105 21.9 205 44.0 686 480.4 0.010 0.192 4.562
      10 0.57 0.028 0.53 0.037 0.97 4.11 0.093 34.7 15.2 199 78.2 364 74.8 672 137 2424 1580 0.004 0.024 3.998
      11 0.59 0.023 0.91 0.13 2.32 7.92 0.19 48.4 15.4 167 60.2 264 53.9 479 93.6 1842 1192.4 0.010 0.030 4.113
      12 1.34 7.44 43.8 2.13 11.2 5.92 1.11 21.8 6.81 72.5 26.4 113 22.4 202 41.1 777 578.0 0.141 0.298 2.696
      13 0.57 0.034 0.71 0.049 0.81 4.24 0.056 34.9 15.5 203 82.4 388 80.1 713 148 2571 1672 0.004 0.014 4.297
      14 1.40 0.40 9.25 0.17 1.36 2.51 0.60 14.2 4.06 44.9 15.0 68.6 14.8 140 31.7 513 348.0 0.043 0.309 8.833
      15 6.56 0.014 3.55 0.010 0.21 0.41 0.092 4.59 1.98 26.5 12.4 63.8 15.1 157 36.9 391 322.1 0.013 0.205 73.353
      16 0.58 0.013 1.03 0.092 2.20 4.83 0.18 38.5 14.8 191 76.5 352 73.5 669 136 2382 1560 0.005 0.040 7.323
      18 2.45 0.065 3.98 0.16 2.84 9.71 0.85 82.6 32.7 433 173 779 157 1362 267 5356 3303 0.005 0.091 9.435
      下载: 导出CSV 
      | 显示表格

      加勒万河地区7件中基性岩主量与微量元素分析结果见表3

      表  3  加勒万河地区中基性岩主量元素(%)和微量元素含量(10−6
      Table  3.  Whole–rock major (%) and trace (10−6) elements data of intermediate–basic rocks in the Galwan Valley area
      样品号PM101-RZ1PM102-RZ1PM201-RZ1PM307-HQ9Pdh1-HQ4Pdh1-HQ48PM304-HQ1
      岩性辉石玄武岩气孔状辉石玄武岩闪长岩辉绿辉长岩辉绿辉长岩角闪辉石岩辉绿岩
      SiO238.5940.8051.9145.1637.8238.6239.13
      TiO24.554.770.993.025.855.636.25
      Al2O310.5010.7014.4215.5312.6512.489.63
      FeO6.567.047.297.227.858.4311.66
      Fe2o39.878.272.503.106.038.272.77
      MnO0.180.170.160.190.180.190.20
      MgO6.176.096.633.027.096.738.85
      CaO8.858.534.746.209.298.657.39
      K2O0.970.331.230.431.481.361.53
      Na2O3.683.863.455.532.443.442.01
      P2O51.731.870.131.342.861.121.49
      LOI6.775.524.106.694.753.864.35
      H2O1.561.030.350.160.580.360.77
      Total99.9898.9797.8997.5998.8499.1596.01
      A/NK1.602.061.481.632.261.751.94
      A/CNK0.480.920.450.750.560.550.52
      Cr6.892.68222.56.561.7944.9917.73
      Ni26.0517.2950.467.9127.7231.7521.97
      Rb29.129.334114.4481.7847.4153.41
      Ba447.6152.0575.32102170711691138
      Th19.9517.856.17.265.174.894.77
      Nb152.8149.711.879.957.1452.0661.27
      K80002700102003600122001120012700
      Ta9.719.781.096.34.674.414.11
      Pr39.7243.555.1325.1725.0618.0618.46
      Sr764.7726.8323.4374.6498.6471.01050
      Nd152.4167.320.47102.211177.6978.62
      Zr993.8964.5184.5434.3307.6306.5269.4
      Hf21.3121.735.2210.198.878.736.75
      Sm26.128.924.4317.3520.9314.5914.78
      Eu7.488.371.436.397.164.965.02
      Ti2827730204564218111353273405237470
      Gd23.2625.434.1515.4917.4411.9512.41
      Tb3.133.390.772.132.471.771.74
      Dy14.4215.624.959.7211.498.558.49
      Y60.1362.2724.4440.0145.3233.8934.5
      Ho2.462.670.971.651.931.441.45
      Er6.987.342.814.715.063.863.63
      Tm0.830.820.420.560.570.460.44
      Yb4.925.012.773.243.382.812.51
      Lu0.730.730.420.460.490.410.36
      P75838366546.459871251949316500
      Li40.5247.8649.8744.0282.243.97148.2
      Cs7.080.478.680.9299.856.0237.14
      V127.0125.2131.7118.2157.1175.0137.8
      La168.3177.120.6589.7478.1261.4460.04
      Ce339.4365.141.04205.6193.3134.5127.7
      Co43.2636.8836.8617.0346.1249.1247.28
      ΣREE790.1851.3110.4484.4478.4342.5335.7
      LREE733.4790.393.16446.4435.6311.2304.6
      HREE56.7361.0117.2537.9642.8331.2531.03
      LREE/HREE12.9312.955.411.7610.179.969.82
      (La/Yb)N24.5325.385.3519.8816.5815.6817.16
      DI35.5437.5644.1853.8731.5232.5728.86
      δEu0.910.9211.191.151.151.1
      下载: 导出CSV 
      | 显示表格

      PM201-RZ1闪长岩SiO2含量为51.91%,属中性岩类,ALK为5.01,K2O/Na2O比值为0.36,贫钾;A/CNK为0.92,小于1,为亚铝质;PM201-RZ1中CIPW标准矿物基本不含C、Q分子,分异指数(DI)为42.68,按吴利仁(1963)划分属于富铁质超基性岩。里特曼指数为1.99,属于亚碱性系列。综合上述,PM201-RZ1闪长岩具高铝、铁、镁、钙,低钾、钠、钛、磷的特征。在闪长岩TAS图解(图8b)中,落在辉长闪长岩中,在AR–SiO2与SiO2−K2O与SiO−K2O图解中(图9)显示属钙碱性系列。

      图  7  加勒万河地区中基性岩样品锆石稀土元素配分型式图
      a—PM101-RZ1辉石玄武岩;b—PM102-RZ1杏仁状辉石玄武岩;c—PM201-RZ1闪长岩
      Figure  7.  Zircon REE patterns of the intermediate−basic rocks in the Galwan Valley area
      a–Basalt of sample PM101-RZ1; b–Basalt of sample PM102-RZ1; c–Diorite of sample PM201-RZ1
      图  8  玄武岩TAS分类图(a,据Le Maitre, 1989)和中基性侵入岩TAS分类图(b,据Middlemost, 1994
      Figure  8.  TAS diagram of basalt (a, after Le Maitre, 1989); TAS diagram of intermediate-mafic intrusions (b, after Middlemost, 1994)
      图  9  AR–SiO2图解(a,据Maniar and Piccoli, 1989)和SiO2–K2O图解(b,据Peccerillo and Taylor, 1976
      Figure  9.  AR–SiO2diagram (a, after Maniar and Piccoli, 1989) and SiO2–K2O diagram (b, after Peccerillo and Taylor, 1976)

      PM101-RZ1、PM102-RZ1玄武岩SiO2分别为40.44%、44.15%,Al2O3分别为11.46%、13.53%,属基性—超基性;Na2O+K2O含量为4.19%、5.07%;K2O/Na2O为0.08、0.61,变化范围较大,低钾。在TAS图解中(图8a),均落在碱玄岩/碧玄岩区。杏仁状辉石玄武岩PM101-RZ1里特曼指数为1.5,小于3.3,属钙碱性岩石;气孔状玄武岩PM102-RZ1里特曼指数为17.84,大于9,属过碱性岩石。固结指数SI值中等,分别为23.01、28.65;分异指数DI低,分别为31.45、37.56,反映出岩浆结晶分异程度低。

      基性岩脉Pdh1-HQ4、Pdh1-HQ48、PM304-HQ1、PM307-HQ9镜鉴岩性分别为辉绿辉长岩、角闪辉石岩、辉绿岩、辉绿辉长岩。主量元素含量特征基本一致,SiO2含量基本在45%以下,均为基性岩。分异指数(DI)分别为31.52、32.57、28.86、53.87;除PM307-HQ9分异程度较高以外,其余3条岩脉的分异程度很低,甚至低于早侏罗世玄武岩的分异程度。

      闪长岩微量元素含量见表3,其不相容元素Rb、K、Ba、Th强富集,高场强元素Nb、Zr、Hf弱富集,Ta具一定亏损。轻稀土、重稀土均基本不亏损,总体接近MORB。

      玄武岩微量元素含量及特征参数见表2。玄武岩微量元素含量与基性岩维氏值相比,一般高于其维氏值的元素主要有Zn、Nb、Ta、Hf,尤其是大离子亲石元素Hf,其平均含量高于维氏值4~5倍,呈较强烈的富集趋势;一般低于维氏值的元素有Rb、Ba、Sr、Ni、Co、Cs,尤其是大离子亲石元素Rb其平均含量低于维氏值5~10倍,其他元素Ga、V、Cr变化规律不明显。Sr的负异常结合烧失量较高的情况,认为Sr负异常可能是由样品处于地表经过蚀变而造成的。与上、下地壳元素相比(Wedepohl, 1995),其大离子亲石元素Rb、Ba、Cs低于上、下地壳丰度,Nb、Ta、Hf高于上、下地壳丰度;相容元素中Cr、Co、Ni、V元素含量多高于上、下地壳元素含量。微量元素中亲幔源元素(Cr、Co、Ni、V)含量明显偏高。

      闪长岩稀土元素含量见表2。可以看出闪长岩具有较低含量的∑REE、∑LREE、LREE/HREE,其稀土总量ΣREE为110.41×10−6,LREE/HREE为5.40,轻稀土富集不明显;(La/Yb)N为5.35,轻重稀土略有分馏;δEu=1,Eu无亏损;在球粒陨石标准化配分型式图(图10a)上,呈右倾曲线。稀土元素球粒陨石标准化配分型式图呈左陡右缓的趋势,说明轻稀土富集重稀土相对亏损,且轻稀土分异强度大于重稀土。

      图  10  加勒万河地区中基性岩球粒陨石标准化稀土配分图(a)和原始地幔标准化微量元素蛛网图(b)(据Sun and McDonough, 1989
      Figure  10.  Chondrite normalized REE diagram (a) and primitive−mantle normalized trace elements diagram(b) of the intermediate−basic rocks in the Galwan Valley area (chondrite normalized and primitive–mantle normalized values after Sun and McDonough, 1989)

      玄武岩PM101-RZ1、PM102-RZ1的ΣREE分别为790.08×10−6、851.31×10−6,总量较高,同时显示轻稀土富集重稀土相对亏损的右倾样式;LREE/HREE=10.17~12.95、(La/Yb)N为16.58~25.38都显示玄武岩发生强烈的轻重稀土分馏的过程,属于轻稀土富集型(图10a)。δEu=0.91~1.11,铕无明显亏损,表明岩浆可能没有经历明显的分离结晶作用。δCe=0.98~1.06,显示为弱负Ce异常,说明岩石受低温蚀变作用的影响较弱。

      西昆仑造山带经历了多期次的构造−岩浆演化阶段(毕华等, 1999; 张传林等, 2007, 2019),加勒万河地区做的岩浆锆石、碎屑锆石均有反映。将闪长岩与玄武岩3个岩石样品共47个有效(谐和度>90%)锆石U–Pb年龄进行频率统计,结果呈现约6个年龄组(图11),由老至新分别是1724 Ma、685~872 Ma、538 Ma、380~396 Ma、243 Ma、98.9 Ma。因此,闪长岩与玄武岩3个岩石样品共记录了区域内的6次岩浆活动。

      图  11  加勒万河地区玄武岩、闪长岩锆石U–Pb同位素年龄频谱图
      Figure  11.  Spectrum diagram of zircon U–Pb isotopic ages of basalts and diorites in the Galwan Valley area

      目前甜水海地块中记录的最古老的锆石U–Pb年龄为在西段古元古界布伦阔勒岩群中片理化变流纹岩的单颗粒锆石,年龄为(2481±14)Ma(计文化等, 2011),研究区南屏山—俘虏沟一带出露较大面积的长城系甜水海群(ChT)。据1∶25万岔路口幅区调报告记录甜水海群夹有一定量绿泥钠长片岩的火山质成分,与本文的1724 Ma年锆石可能来源于深部地壳形成初期的残留物质或者是来源于加勒万河下部长城系甜水海岩群变质岩系中的残留锆石。

      最集中的年龄组685~872 Ma时间跨度在南华纪至青白口纪,而峰值在810 Ma的青白口纪末期,峰值时间与晋宁运动一致,而此时正在发生Rodinia超大陆的裂解事件(郝杰和翟明国, 2004)。全球范围内剧烈的板块运动也伴随着活跃的岩浆活动,来自地幔熔融的玄武质岩浆上涌底侵至下地壳,发生壳幔混合作用并形成北羌塘地体的古老基底。

      近年从甜水海地块古元古界布伦阔勒岩群解体出了一套寒武纪火山−沉积岩系(张传林等, 2007; 张辉善等, 2020),主要岩性为中基性火山岩,夹少量酸性火山岩和沉积岩。张辉善等(2020)认为可能存在早寒武世和中晚寒武世两期火山岩浆事件,其可能反映的是特提斯麻扎—康西瓦洋向南俯冲形成寒武纪岩浆弧带。PM201-RZ1-12号锆石年龄为538 Ma正是记录了早寒武世的岩浆活动。

      震旦纪开始喀喇昆仑北羌塘进入了原特提斯演化阶段,库地蛇绿岩带中的枕状熔岩标志着原特提斯洋壳的成熟(邓万明, 1989)。原特提斯祥在奥陶纪晚期消亡的过程中伴随着两侧大陆发生加里东期碰撞造山作用,至泥盆系原特提斯消亡,昆仑整体处于一个相对稳定的沉积环境(潘裕生和方爱民, 2010)。闪长岩与玄武岩记录的380 Ma与396 Ma可能为一次小规模的板内岩浆活动。

      石炭纪时期大陆裂解,进入了古特提斯洋演化,羌塘地体处于多岛弧盆系的演化阶段。晚石炭世至早二叠世冈瓦纳大陆发生大陆极地冰川事件,冈底斯的拉嘎组、南羌塘的曲地组均有来自南大陆冰川漂砾的记录,而本区的加温达坂组未出现这一现象。二叠纪古特提斯洋已经开始快速向南、北两侧消减收缩。二叠纪晚期,古特提斯停止了扩张,扩张洋脊已死亡,古特提斯中的陆壳岛链与两侧大陆最终发生碰撞,使羌塘、可可西里与昆仑山拼合到一起,成为亚州大陆新的一部分(潘裕生和方爱民, 2010)。至中三叠世,加勒万河区域接受古特提斯残留洋盆的沉积。区内汽车达坂一带见中三叠世河尾滩组覆盖于中二叠世空喀山口组之上,底部为复成分砾岩,随后出现一层厚约11 m的熔岩。PM201-RZ1-15的243 Ma同位素年龄可能为该时期的岩浆活动记录(张宇等,2023)。

      晚三叠世新特提斯洋开始形成,侏罗纪时期继续扩张,期间印支运动使得本区的早侏罗世巴工布兰莎组不整合于晚三叠世克勒清河组之上。早侏罗世新特提斯洋壳已经开始形成,但根据资料显示班怒带具有新特提斯洋蛇绿岩套与龙木错双湖结合带在三叠纪已经闭合的事实,认为甜水海地区在新特提斯洋时期处于无成熟洋壳的弧后盆地沉积构造环境。喀喇昆仑地区巴工布兰莎组发育一套海相裂隙–中心式喷发的玄武岩–安山岩–英安岩组合火山岩(新疆维吾尔自治区地质矿产局, 1993)。笔者在河尾滩西南达坂—碧兰冰川一带采集的2件玄武岩样品均为该时期的产物。在加勒万河北东侧多宝山一带的巴工布兰莎组双峰式火山岩中的流纹岩获得锆石U–Pb同位素年龄为(195.5±1.1)Ma(周能武等, 2019)。早—中侏罗世海水下渗萃取了Pb、Zn元素,矿质流体受岩浆热液驱动下由断裂构造上涌至近地表并成矿,形成诸如火烧云、多宝山、甜水海以及研究区的加勒万河等铅锌矿床。

      晚侏罗世后新特提斯洋开始消减,班怒洋启动闭合,洋壳俯冲并伴随碰撞造山,甜水海地块抬升为陆。随着南大陆持续的向北俯冲,地壳增厚,温度上升并发生熔融,在龙木错南侧龙角错一带侵位形成花岗岩条带,在芒错岩体获得白云母二长花岗岩中白云母40Ar–39Ar年龄为(101.01±1.13)Ma(安徽省地质调查院, 2005 1)。与加勒万河晚白垩花岗闪长岩(98.9±1.2)Ma的年龄值基本一致。

      玄武岩、闪长岩中携带多个时期的继承锆石反映了区域多期次的岩浆−构造活动。6个锆石U–Pb同位素年龄频谱反映的是由老至新1724 Ma、685~872 Ma、538 Ma、380~396 Ma、243 Ma、98.9 Ma 6个阶段的岩浆构造演化。其对应的分别是中元古代结晶基底、Rodinia超大陆的裂解、寒武纪麻扎—康西瓦洋俯冲、泥盆纪板内岩浆活动、中三叠世河尾滩组岩浆活动、新特提斯洋闭合碰撞造山等6个期次的构造岩浆活动。

      加勒万河晚白垩世闪长岩,岩石类型为辉石闪长岩;在Hf/3–Th–Ta图中(图12b),落入板边岛弧玄武岩区;而Th/Yb–Ta/Yb图解(图12a)上,则落在大陆边缘玄武岩区。喀喇昆仑缺失晚侏罗、早白垩世地层是由于受到班怒洋的俯冲消亡并碰撞造山的结果,该时期喀喇昆仑被抬升为陆地并接受风化剥蚀。晚白垩世随着印度板块持续的向北挤压,北羌塘南侧为被动破坏性板块边缘。挤压造山造成陆壳叠覆增厚,深部发生熔融,形成钙碱系列岩浆。班怒带碰撞造山在本区域的岩浆活动反应主要在龙木错南部一带,侵位了较大面积的花岗岩类岩体。通过40Ar–39Ar法定年的年龄值(安徽省地质调查院, 20051 1)与班怒带碰撞造山的时间吻合,所以综合分析认为加勒万河晚白垩世钙碱性闪长岩是班怒带汇聚碰撞造山,壳幔混合的远端反应。

      图  12  加勒万河地区玄武岩、闪长岩构造环境判别图
      a—Th/Yb–Ta/Yb图解(据Pearce, 1982);b—Hf/3–Th–Ta图解(据Wood, 1980);c—2Nb–Zr/4–Y图解(据Meschede, 1986)WPB—板内玄武岩;MORB—洋中脊玄武岩;IAB—岛弧玄武岩;TH—拉斑系列;TR—过渡系列;ALK—碱性系列;IAT—岛弧拉斑系列;ICA—岛弧钙碱性系列;SHO—岛弧橄榄玄武岩系列;N–MORB—N型洋脊玄武岩;E–MORB—E型洋脊玄武岩;WPT—板内拉斑玄武岩;WPA—板内碱性玄武岩;A1+A2—板内碱性玄武岩;A2+C—板内拉斑玄武岩;B—P型洋中脊玄武岩;D—N型洋中脊玄武岩;C+D—火山弧玄武岩
      Figure  12.  Tectonic setting discrimination diagrams of basalts and diorites in the Galwan Valley area
      a–Th/Yb–Ta/Yb diagram (after Pearce, 1982); b–Hf/3–Th–Ta diagram (after Wood, 1979); c–Nb×2–Zr/4–Y diagram (after Meschede, 1986) WPB–Within plate basalt; MORB–Mid-oceanic ridge basalt; IAB–Island arc basalt; TH–Tholeiitic series; TR–Transitional series; ALK–Alkaline series; IAT–Island arc tholeiitic series; ICA–Island arc calc-alkaline series; SHO–Island arc shoshonite series; N–MORB–N-type mid-oceanic ridge basalt; E–E-type mid-oceanic ridge basalt; WPT–Within plate tholeiite; WPA–Within plate calc-alkaline basalt; A1+A2–Within-plate alkaline basalt; A2+C–Within-plate tholeiite; B–P-type mid-ocean ridge basalt; D–N-type mid-oceanic ridge basalt; C+D–Volcanic arc basalt

      对西南达坂—碧兰冰川一带的玄武岩PM101-RZ1与PM102-RZ1进行构造环境判别分析。在Th/Yb–Ta/Yb图解(图12a)上,PM101-RZ1与PM102-RZ1分别落在板内玄武岩与碱性玄武岩区。在Hf/3–Th–Ta图解(图12b)上,均落在板内碱性玄武岩区。在Nb×2–Zr/4–Y图解(图12c)上,两样品落在板内碱性玄武岩区边缘。

      加勒万河北侧河尾滩断裂以北的团结峰—兴山—岔路口一带火山岩较为发育。菅坤坤等(2019)认为团结峰龙山组玄武岩来源于陆壳基底的初始洋盆。而周能武等(2019)认为多宝山巴工布兰莎组中的双峰式火山岩形成于无洋壳的弧后盆地环境。团结峰玄武岩的稀土配分图为近于平躺的E–MORB型(菅坤坤等, 2019);而多宝山(火烧云北)玄武岩与英安岩的稀土配分图为似OIB型,英安岩出现明显的Eu中等负异常(周能武等, 2019)。而本次西南达坂—碧兰冰川的巴工布兰莎组碱性拉斑玄武岩稀土配分模式呈高角度的右倾轻稀土富集OIB型,且无Eu异常。结合野外没有发现其他类型火山岩,同时玄武岩中携带大量的继承锆石的事实,综合分析认为西南达坂—碧兰冰川一带巴工布兰莎组玄武岩为一套未经分离结晶的海相裂隙–中心式喷发火山岩。造成这三处火山岩中锆石组成、岩石地球化学性质的差别,可能是三者离壳幔混合岩浆通道的时空距离不一致,进而使得岩浆混合和分异的程度不一。西南达坂—碧兰冰川的巴工布兰莎组玄武岩是未经分离结晶的近火山通道快速溢流冷却的产物。

      (1)加勒万河地区西南达坂巴工布兰莎组杏仁状辉石玄武岩据碱性拉斑OIB玄武岩性质,为未经分离结晶快速溢流冷却的产物,岩浆成因环境为弧后盆地。玄武岩中含有约4个阶段的继承或原生锆石,最年轻的锆石U–Pb同位素年龄为(232±9)Ma,可能代表玄武岩岩浆房的结晶年龄。加勒万河晚白垩世花岗闪长岩中携带约5个时代的继承锆石或原生锆石,最年轻的锆石U–Pb同位素年龄为(98.9±1.2)Ma,为岩浆成因的原生锆石。闪长岩是壳幔混合、地壳增厚的产物,是新特提斯洋闭合碰撞造山远端反映。

      (2)加勒万河地区的玄武岩、闪长岩及中基性岩脉具有极为相似的OIB轻稀土富集型稀土元素配分模式;玄武岩、闪长岩中携带最多的锆石均为新元古代岩浆锆石,且锆石具有与Gothabsfjord地区中太古代(GGU125540)样品锆石相一致的稀土元素分配样式,说明玄武岩、闪长岩均来源于新元古代基底物质的熔融。

      (3)玄武岩、闪长岩中携带多个时期的继承锆石反映了区域多期次的岩浆−构造活动。6个锆石U−Pb同位素年龄频谱反映的是由老至新1724 Ma、685~872 Ma、538 Ma、380~396 Ma、243 Ma、98.9 Ma 6个阶段的岩浆构造演化,分别对应中元古代结晶基底、Rodinia超大陆的裂解、寒武纪麻扎—康西瓦洋俯冲、泥盆纪板内岩浆活动、中三叠世河尾滩组岩浆活动、新特提斯洋闭合碰撞造山等6个期次的构造岩浆活动。

      致谢: 感谢南京大学地球科学与工程学院于津海教授、夏炎副教授、杨涛副教授对文章提出的宝贵意见!感谢南京大学地球科学与工程学院薛伟伟博士、李娟博士以及江西省地质调查研究院张芳荣教授级工程师、陈士海高级工程师给予的建议与指导,以及新疆地矿局第三地质大队实验室、江西省地质调查研究院实验室、武汉上谱科技有限责任公司实验室在样品分析测试过程中给予的技术支持!

    • 图  1   研究区大地构造位置图(a,据Xiao et al., 2003)及区域地质简图(b)

      1—第四系;2—下白垩统白音高老组;3—上侏罗统玛尼吐组;4—上侏罗统满克头鄂博组;5—下二叠统大石寨组;6—下二叠统寿山沟组;7—中元古界锡林浩特岩群;8—早白垩世碱长花岗岩;9—早白垩世花岗斑岩;10—早白垩世英安斑岩;11—早中三叠世侵入岩;12—早二叠世侵入岩;13—不整合接触界线;14—实测断层;15—同位素年龄采样点及编号;16—剖面位置

      Figure  1.   Regional geological location of the study area (a, after Xiao et al., 2003) and geological sketch map of the study area (b)

      1-Quaternary; 2−Lower Cretaceous Baiyingaolao Formation; 3−Upper Jurassic Manitu Formation; 4−Upper Jurassic Manketouebo Formation; 5−Lower Permian Dashizhai Formation; 6−Lower Permian Shoushangou Formation; 7−Middle Proterozoic Xilinhot Group; 8−Early Cretaceous alkali–feldspar granite; 9−Early Cretaceous granite porphyry; 10−Early Cretaceous dacite porphyry; 11−Early–Middle Triassic intrusive rock; 12− Early Permian intrusive rock; 13−Unconformity; 14−Measured fault; 15−Isotopic age sampling position and serial number; 16−Location of section

      图  2   罕乌拉地区白音高老组火山岩实测剖面

      1—砾岩;2—砂砾岩;3—粉砂岩;4—凝灰质粉砂岩;5—流纹质凝灰角砾岩;6—流纹质含角砾岩屑晶屑凝灰岩;7—流纹质含角砾岩屑凝灰岩;8—流纹质岩屑晶屑凝灰岩;9—流纹质晶屑凝灰岩;10—流纹质含角砾岩屑晶屑熔结凝灰岩;11—流纹质含角砾熔结凝灰岩;12—流纹质晶屑熔结凝灰岩;13—流纹质熔结凝灰岩;14—流纹岩;15—流纹斑岩;16—英安斑岩;17—不整合界线;18—地质代号;19—同位素年龄采样点及编号;20—产状

      Figure  2.   Measured geological section of Baiyingaolao Formation in Hanwula

      1−Conglomerates; 2−Glutenites; 3−Siltstones; 4−Tuffaceous siltstones; 5−Rhyolitic tuff breccias; 6−Rhyolitic tuffs with breccia lithic and crystal clasts; 7−Rhyolitic tuffs with breccia and lithic clasts; 8−Rhyolitic tuffs with lithic and crystal clasts; 9−Rhyolitic tuffs with crystal clasts; 10−Rhyolitic welded tuffs with breccia lithic and crystal clasts; 11−Rhyolitic welded tuffs with breccia clasts; 12−Rhyolitic welded tuffs with crystal clasts; 13−Rhyolitic welded tuffs; 14−Rhyolite; 15−Rhyolite porphyry; 16−Dacite porphyry; 17−Unconformity; 18−Geological code; 19− Isotopic age sampling position and serial number; 20−Attitude

      图  3   白音高老组火山岩野外及显微照片

      a, b—流纹岩; c, d—球粒流纹岩; e, f—流纹质晶屑熔结凝灰岩; g, h—英安斑岩; Q—石英; Pl—斜长石; Kf—钾长石; Bi—黑云母

      Figure  3.   Field outcrop and microscopic characteristics of Baiyingaolao Formation

      a, b-Rhyolite; c, d-Pyromeride; e, f-Rhyolitic welded tuffs with crystal clasts; g, h-Dacite porphyry; Q−Quartz; Pl−Plagioclase; Kf−K-feldspar; Bi−Biotite

      图  4   罕乌拉地区白音高老组球粒流纹岩(Pm27−49)和英安斑岩(B1412)代表性单颗粒锆石阴极发光(CL)图像及其表面年龄(Ma)(a、b);罕乌拉地区白音高老组球粒流纹岩(Pm27−49)和英安斑岩(B1412)LA−ICP−MS锆石U−Pb年龄谐和图(c、d)

      Figure  4.   Cathodoluminescence images of typical single−crystal zircons and their apparent ages (Ma) for the pyromeride(Pm27−49) and dacite porphyry (B1412)of Baiyingaolao Formation in Hanwula (a, b); LA−ICP−MS zircon U−Pb concordant age diagram for the pyromeride (Pm27−49) and dacite porphyry (B1412) of Baiyingaolao Formation in Hanwula (c, d)

      图  5   罕乌拉地区白音高老组火山岩SiO2−K2O图解(a)(转引自Rollinson,1993)和Nb/Y−Zr/TiO2分类命名图解(b)(转引自Wilson,1989)

      Figure  5.   SiO2−K2O diagrams (a, after Rollinson, 1993) and Nb/Y−Zr/TiO2 classifying−naming diagrams (b, after Wilson, 1989) for volcanic rocks of Baiyingaolao Formation in Hanwula

      图  6   罕乌拉地区白音高老组火山岩球粒陨石标准化稀土元素配分图(a)(球粒陨石标准化数据引自Boynton, 1984)和原始地幔标准化蛛网图(b)(原始地幔标准化数据引自Sun and MC Donough., 1989)

      下地壳、中地壳据Rudnick et al., 2003;大兴安岭地区白音高老组火山岩数据据苟军等, 2010Dong et al., 2014Kong et al., 2014秦涛等, 2014聂立军等, 2015王雄等, 2015Yang et al., 2015张乐彤等, 2015张学斌等, 2015

      Figure  6.   Chondrite−normalized REE patterns(a)(normalization values after Boynton, 1984) and primitive mantle−normalized trace element spider diagrams (b)(normalization values after Sun and Mc Donough., 1989) for volcanic rocks of Baiyingaolao Formation in Hanwula lower crust, middle Crust(after Rudnick et al., 2003); data of Baiyingaolao Formation in the Da Hinggan Mountains

      (after Gou Jun et al., 2010; Dong Yu et al., 2014; Kong Yuanming et al., 2014;Qin Tao et al., 2014; Nie Lijun et al., 2015;Wang Xiong et al., 2015; Yang Wubin et al., 2015;Zhang Letong et al., 2015;Zhang Xuebin et al., 2015)

      图  7   大兴安岭地区白音高老组火山岩年龄直方图(图中白音高老组年龄数据见表 3;①、②分别代表本文133、140 Ma火山岩所处年龄段)

      Figure  7.   Age probability diagram for volcanic rocks of Baiyingaolao Formation in the Da Hinggan Mountains (ages of Baiyingaolao Formation after Table 3; ① and ② representing 133, 140Ma of this paper, respectively)

      图  8   罕乌拉地区白音高老组火山岩10000×Ga/Al−Nb图解(a)和10000×Ga/Al−Zr图解(b)(a、b,据Whalen et al., 1987)

      Figure  8.   Diagrams of 10000×Ga/Al−Nb (a) and 10000×Ga/Al−Zr (b)(a, b, after Whalen et al., 1987) for volcanic rocks of Baiyingaolao Formation in Hanwula

      图  9   罕乌拉地区白音高老组火山岩构造环境图解(据Eby,1992)

      Figure  9.   Tectonic discrimination diagrams for volcanic rocks of Baiyingaolao Formation in Hanwula (after Eby, 1992)

      表  1   罕乌拉地区白音高老组火山岩球粒流纹岩(Pm27-49)和英安斑岩(B1412)LA-ICP-MS锆石U-Pb同位素分析结果

      Table  1   LA-ICP-MS zircon U-Pb isotope analysis results for the pyromeride(Pm27-49) and dacite porphyry(B1412) of Baiyingaolao Formation in Hanwula

      下载: 导出CSV

      表  2   罕乌拉地区白音高老组火山岩主量元素(%)和微量元素(10–6)分析结果

      Table  2   Major(%) and trace element (10–6) analysis results of volcanic rocks of Baiyingaolao Formation in Hanwula

      下载: 导出CSV

      表  3   大兴安岭地区白音高老组火山岩年龄测定结果

      Table  3   The ages of volcanic rocks of Baiyingaolao Formation in Da Hinggan Mountains

      下载: 导出CSV
    • Anderson T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1/2):59-79.

      Belousova E, Griffin W, O'Reilly S Y. 2002. Igneous zircon:Trace element composition as an indicator of source rock Type[J]. Contributions to Mineralogy and Petrology, 143(5):602-622. doi: 10.1007/s00410-002-0364-7

      Bonin B. 2007. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 97:1-29. doi: 10.1016/j.lithos.2006.12.007

      Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P(ed.). Rare Earth Element Geochemistry. Amsterdam: Elservier, 63-114.

      Chen Liang. 2010. Mesozoic Magma Evolution and Metallogenesis of Porphyry Molybdenum Deposit in Aershan Area, Da Hinggan Mountains[D]. Beijing: China University of Geosciences, 1-125(in Chinese with English abstract).

      Chen Yanjing, Zhang Cheng, Wang Pin, Pirajno F, Li Nuo. 2016. The Mo deposits of Northeast China:A powerful indicator of tectonic settings and associated evolutionary trends[J]. Ore Geology Reviews, 205:168-184.

      Chen Yingfu, Wang Genhou, Duan Bingxin. 2012. Zircon SHRIMP geochronology and geochemistry of Late Jurassic volcanic rocks in Huiyin Obo area of Dong Ujimqin Banner, Inner Mongolia[J]. Geology in China, 39(6):1690-1699(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201206017

      Dash B, Yin An, Jiang Neng, Tseveendorj B, Han Baofu. 2016.Petrology, structural setting, timing, and geochemistry of Cretaceous volcanic rocks in eastern Mongolia:Constraints on their tectonic origin[J]. Gondwana Research, 27:281-299.

      Davis G A, Zheng Yadong, Wang Cong, Darby B J, Zhang Changhou, Gehrels G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[J].Memoirs-Geological Society of America, 194:171-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdz200204001

      Defant M J, Drummond M S.1994. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294):662-665.

      Dong Yu, Ge Wenchun, Yang Hao, Zhao Guochun, Wang Qinghai, Zhang Yanlong, Su Li. 2014. Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in hte central Great Xing'an Range, NE China, and its tectonic implications[J]. Lithos, 205:168-184. doi: 10.1016/j.lithos.2014.07.004

      Du Yuchun. 2015. Early Cretaceous Volcanic Rock and Cause Analysis in Zhalantun Area[D]. Fuxin: Liaoning Technical University, 1-73(in Chinese with English abstract).

      Eby. 1990. The A-type granitoids:a review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 20:115-134.

      Eby. 1992. Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J]. Geology, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

      Fan Weiming, Guo Feng, Wang Yuejun, Lin Ge. 2003. Late Mesozoic calcalkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China[J]. Journal of Volcanology and Geothermal Research, 121(1/2):115-135.

      Fang Hongwei. 2010. Characteristics and Tectonic Setting of the Volcanic Rocks from Mesozoic Baiyin'gaolao Formation in Wuchagou area, Middle of Daxing'anling[D]. Beijing: China University of Geosciences, 1-69(in Chinese with English abstract).

      Frost B R, Arculus R J, Barnes C G, Collins W J, Ellis D J, Frost C D. 2001. A geochemical classification of granitic rocks[J]. Journal of Petrology, 42:2033-2048. doi: 10.1093/petrology/42.11.2033

      Gao Xiaofeng, Guo Feng, Fan Weiming, Li Chaowen, Li Xiaoyong. 2005. Origin of late Mesozoic intermediate-felsic volcanic rocks from the northern Da Hinggan Mountain, NE China[J]. Acta Petrologica Sinica, 21(3):737-748(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200503014

      Ge Wenchun, Lin Qiang, Sun Deyou, Wu Fuyuan, Yuan Zhongkuan, Li Wenyuan, Chen Mingzhi, Yin Chengxiao. 1999. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling:Evidence of the mantle-crust interaction[J]. Acta Petrologica Sinica, 15(3):397-407 (in Chinese with English abstract).

      Ge Wenchun, Li Xianhua, Lin Qiang, Sun Deyou, Wu Fuyuan, Yun Sunghyo. 2001. Geochemistry of Early Cretaceous alkaline rhyolites from Hulun Lake, Daxing'anling and its tectonic implications[J]. Chinese Journal of Geology, 36(2):176-183(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200102005

      Ge Wenchun, Wu Fuyuan, Zhou Changyong, Zhang Jiheng. 2005.Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 21(3):749-762(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200503015

      Ge Wenchun, Sui Zhenmin, Wu Fuyuan, Zhang Jiheng, Xu Xuechun, Cheng Ruiyu. 2007. Zircon U-Pb ages, Hf isotopic characteristics and their implications of the Early Paleozoic granites in the northwestern Da Hinggan Mts, northeastern China[J]. Acta Petrologica Sinica, 23(2):423-440(in Chinese with English abstract).

      Gou Jun, Sun Deyou, Zhao Zhonghua, Ren Yunsheng, Zhang Xueyuan, Fu Changliang, Wang Xi, Wei Hongyan. 2010. Zircon LA-ICPMS U-Pb dating and petrogenesis of rhyolites in Baiyingaolao Formation from the southern Manzhouli, Inner-Mongolia[J]. Acta Petrologica Sinica, 26(1):333-344(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201001036

      Guan Huimei, Liu Junlai, Ji Mo, Zhao Sheng jin, Hu Ling, Davis G A. 2008. Discovery of the Wanfu metamorphic core complex in southern Liaoning and its regional tectonic implication[J]. Earth Science Frontiers, 15(3):199-208(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200803016

      Guo Feng, Fan Weiming, Wang Yuejun, Lin Ge. 2001. Petrogenesis of the Late Mesozoic bimodal volcanic rocks in the southern Da Hinggan Mts, China[J]. Acta Petrologica Sinica, 17(1):161-168(in Chinese with English abstract).

      Hao Bin, Song Jiang, Li Chaozhu, Yang Xinde. 2016. Zircon U-Pb Age and Geochemical Characteristics of the Late Mesozoic Volcanic Rocks in Chifeng area[J]. Geotectonica et Metallogenia, 40(6):1261-1274(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201606013

      He Fubing, Xu Jixiang, Gu Xiaodan, Cheng Xinbin, Wei Bo, Li Zhao, Liang Yanan, Wang Zelong, Huang Qi. 2013. Ages, Origin and Geological Implications of the Amuguleng Composite Granite in East Ujimqin Banner, Inner Mongolia[J]. Geological Review, 59(6):1150-1164(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201306016

      Huang Fan, Wang Denghong, Wang Ping'an, Wang Chenghui, Liu Shanbao, Liu Cuihui, Xie Youwei, Zheng Binghua, Li Songbai. 2014. Petrogenesis and Metallogenic Chronology of the Yili Mo Deposit in the Northern Great Khing'an Ranges[J]. Acta Geologica Sinica, 88(3):361-379(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201403006

      Huang Meng. 2014. The Geochemical Characteristics and Tectonic Setting of Volcanic Rock in Baiyinggaolao Formation from Xiwuzhumuqin area Inner Mongolia[D]. Beijing: China University of Geosciences, 1-53(in Chinese with English abstract).

      Huang Mingda, Cui Xiaozhuang, Pei Shengliang, Zhang Hengli, Zhang Jianqiang. 2016. Rhyolite zircon U-Pb dating and its tectonic significance in Bayan Gol Formation, Hinggan Massif[J]. Coal Geology of China, 28(11):30-37(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmtdz201611007

      Jahn BM, Wu Fuyuan, Chen Bin. 2000. Massive granitoid generation in central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 23:82-92. doi: 10.18814/epiiugs/2000/v23i2/001

      Jahn B M, Wu Fuyuan, Capdevila R, Martineay F, Zhao Zhenhua, Wang Yixian. 2001. Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 59:171-198. doi: 10.1016/S0024-4937(01)00066-4

      King P L, White A J R, Chappell B W, Allen C M. 1997.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 38(3):371-391. doi: 10.1093/petroj/38.3.371

      Kong Yuanming. 2014. Characteristics and Tectonic Setting of Acid Volcanic Rocks in Early Cretaceous Baiyingaolao Formation from Keyouzhongqi Area, Inner Mongolia[D]. Changchun: Jilin University, 1-52 (in Chinese with English abstract).

      Kong Yuanming, Ma Rui, He Zhonghua, Yang Deming, Wu Qing, Wang Yang. 2014. Characteristics and tectonic setting of volcanic rocks in Early Cretaceous Baiyingaolao Formation of Keyouzhouqi area, Inner Mongolica[J]. Global Geology, 17(2):78-85.

      Kravchinsky V A, CognèJ P, Harbert W P, Kuzmin M I. 2002.Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 148:34-57. doi: 10.1046/j.1365-246x.2002.01557.x

      Li Huaikun, Zhu Shixing, Xiang Zhenqun, Su Wenbo, Lu Songnian, Zhou Hongying, Geng Jianzhen, Li Sheng, Yang Fengjie. 2010.Zircon U-Pb dating on tuffbed from Gaoyuzhuang Formation in Yanqing, Beijing:Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica, 26(7):2131-2140(in Chinese with English abstract).

      Li Jie, Lü Xinbiao, Chen Chao, Gun Minshan, Yang Yongsheng, Xu Yiqun, Wang Lin, Zhang Shuai. 2016. Geochronological and geochemical characteristics of the rhyolites in Taerqi of middle Da Hinggan Mountains and their geological significance[J]. Geological Bulletin of China, 35(6):906-918(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201606008

      Li Jinyi, Mo Shenguo, He Zhengjun, Sun Guihua, Chen Wen. 2004.The timing of crustal sinistral strike-slip movement in the northern Great Khing'an ranges and its constraint on reconstruction of the crustal tectonic evolution of NE China and adjacent areas since the Mesozoic[J]. Earth Science Frontiers, 11(3):157-168(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200403017

      Li Jingyan, Guo Feng, Li Chaowen, Li Hongxia, Zhao Liang. 2014.Neodymium isotopic variations of Late Paleozoic to Mesozoic Iand A-type granitoids in NE China:Implications for tectonic evolution[J]. Acta Petrologica Sinica, 30(7):1995-2008(in Chinese with English abstract).

      Li Ke, Zhang Zhicheng, Li Jianfeng, Tang Wenhao, Feng Zhishuo, Li Qiugen. 2012. Zircon SHRIMP U-Pb age and geochemical characteristics of the Mesozoic volcanic rocks in Xi Ujimqin Banner, Inner Mongolia[J]. Geological Bulletin of China, 31(5):671-685(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201205004

      Li Pengchuan, Li Shichao, Liu Zhenghong, Li Gang, Bai Xinhui, Wan Le. 2016. Formation age and tectonic environment of volcanic rocks from Manketouebo Formation in Linxi area, Inner Mongolia[J]. Global Geology, 35(1):77-88(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201601008

      Li Tiegang, Wu Guang, Liu Jun, Wang Guorui, Hu Yanqing, Zhang Yunfu, Luo Dafeng, Mao Zhihao, Xu Bei. 2016. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China[J]. Lithos, 17(2):78-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74b4b6d88fdc1109e86d0c12a978573e

      Li Wenguo, Li Qingfu, Jiang Wande. 1996. Inner Mongolia Autonomous Region Lithostratigraphic[M]. Wuhan:Chinese Geology University Press:1-344(in Chinese).

      Li Yan, Wang Jian, Han Zhibin, Hou Xiaoguang, Wang Shiyan. 2017.Zircon U-Pb dating and petrogenesis of the Early Jurassic rhyolite in Badaguan area, northern Da Hinggan Mountains[J]. Geology in China, 44(2):346-357(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201702010

      Li Yu, Ding Leilei, Xu Wenliang, Wang Feng, Tang Jie, Zhao Shuo, Wang Zijin. 2015. Geochronology and geochemistry of muscovite granite in Sunwu area, NE China:Implications for the timing of closure of the Mongol-Okhotsk Ocean[J]. Acta Petrologica Sinica, 31(1):56-66(in Chinese with English abstract).

      Lin Qiang, Ge Wenchun, Sun Deyou, Wu Fuyuan, Chong Kwan Won, Kyung Duck Min, Myung Shik Jin, Moon Wonlee, Chi Soon Kwon, Sung Hyo Yun. 1998. Tectonic significance of mesozoic volcanic rocks in northeastern China[J]. Scientia Geologica Sinica, 33(2):129-139(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069875

      Lin Qiang, Ge Wenchun, Wu Fuyuan, Sun Deyou, Zao Lin. 2004.Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrologica Sinica, 20(3):403-412(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403004

      Lin Wei, Wang Jun, Liu Fei, Ji Wenbin, Wang Qingchen. 2013. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics[J]. Acta Petrologica Sinica, 29(5):1791-1810(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201305023

      Liu Ge, Lü Xinbiao, Chen Chao, Yang Yongsheng, Wang Qingjun, Sun Yaofeng. 2014. Zircon U-Pb chronology and geochemistry of Mesozoic bimodal volcanic rocks from Nenjiang area in Da Hinggan Mountains and their tectonic implications[J]. Acta Petrologica et Mineralogica, 33(3):458-470(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201403004

      Liu Junlai, Guan Huimei, Ji Mo, Hu Ling. 2006. Late Mesozoic metamorphic core complexes:New constraints on lithosphere thinning in North China[J]. Progress in Natural Science, 16:633-638. doi: 10.1080/10020070612330045

      Liu Junlai, Davis GA, Ji Mo, Guan Huimei, Bai Xiangdong. 2008.Crustal detachment and destruction of the North China craton:constraints from Late Mesozoic extensional structures[J]. Earth Science Frontiers, 15(3):72-81(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60063-9

      Liu Junlai, Ji Mo, Shen Liang, Guan Huimei, Davis G A. 2011. Early Cretaceous extensional structures in the Liaodong Peninsula:Structural associations, geochronological constraints and regional tectonic implications[J]. Sci. China Earth Sci., 54:823-842(in Chinese). doi: 10.1007/s11430-011-4189-y

      Liu Kai, Wu Taotao, Liu Jinlong, Bao Qingzhong, Du Shouying. 2018.Geochronology and geochemistry of volcanic rocks in Manketou'ebo Formation of Tulihe area, northern Da Hinggan Mountains[J]. Geology in China, 45(2):367-376(in Chinese with English abstract).

      Liu Zhe, Xue Huaimin, Cao Guangyue. 2017. Zircon U-Pb geochronology, intraplate extensional environment and genesis of Mesozoic volcanic rocks in Zhenglan Banner area, Inner Mongolia, China[J]. Geology in China, 44(1):151-176(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701011

      Ludwig K R. 2003. Isoplot 3.0: A Geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, 1-70.

      Lü Zhicheng, Duan Guozheng, Hao Libo, Li Dianchao, Pan Jun, Wu Fengchang. 2004. Petrological and Geochemical Studies on the Intermediate-Basic Volcanic Rocks from the Middle-South Part of the Da Hinggan Mountains[J]. Geological Journal of China Universities, 10(2):186-198(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200402005

      Ma Yubo, Xing Shuwen, Xiao Keyan, Zhang Tong, Tian Fang, Ding Jianhua, Zhang Yong, Ma Lukuo. 2016. Geological characteristics and mineral resource potential of the Cu-Mo-Ag metallogenic belt in Daxinganling Mountains[J]. Acta Geologica Sinica, 90(7):1316-1333(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201607005

      Meng En, Xu Wenliang, Yang Debin, Qiu Kunfeng, Li Changhua, Zhu Hongtao. 2011. Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications[J]. Acta Petrologica Sinica, 27(4):1209-1226(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201104025

      Meng Fanchao, Liu Jiaqi, Cui Yan, Gao Jinliang, Liu Xiang, Tong Ying. 2014. Mesozoic tectonic regimes transition in the Northeast China:Constriants from temporal-spatial distribution and associations of volcanic rocks[J]. Acta Petrologica Sinica, 30(12):3569-3586(in Chinese with English abstract).

      Nie Lijun, Jia Haiming, Wang Cong, Lu Xingbo. 2015. Chronology, geochemistry of rhyolites from Baiyingaolao Formation in the middle part of Da Hinggan Mountains and its tectonic implications[J]. Global Geology, 34(2):296-304(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201502004

      Ouyang Hegen, Mao Jingwen, Santosh M, Zhou Jie, Zhou Zhenhua, Wu Yue, Hou Lin. 2013. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions:Perspectives from spatio-temporal distribution patterns of ore deposits[J]. Journal of Asian Earth Sciences, 78:222-236. doi: 10.1016/j.jseaes.2013.07.011

      Ouyang Hegen, Mao Jingwen, Zhou Zhenhua, Su Huiming. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China[J]. Gondwana Research, 27:1153-1172. doi: 10.1016/j.gr.2014.08.010

      Pearce J A. 1983. The Role of Sub-continental Lithosphere in Magma Genesis at Destructive Plate Margins[M]. Continental Basalts and Mantle Xenoliths. Chester: Nantwich Shiva Academic Press, 1153-1172.

      Pei Fuping, Xu Wenliang, Yang Debin, Ji Weiqiang, Yu Yang, Zhang Xingzhou. 2008. Mesozoic volcanic rocks in the southern Songliao basin:Zircon U-Pb ages and their constraints on the nature of basin basement[J]. Earth Science, 33(5):603-617(in Chinese with English abstract).

      Qin Tao, Zheng Changqing, Cui Tianri, Li linchuan, Qian Cheng, Chen Huijun. 2014. Volcanic rocks of the Baiyingaolao Formation in the Southwest of Zhalantun, Inner Mongolia[J]. Geology and Resources, 23(2):146-153 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz201402011

      Qin Xuliang. 2014. The Petrology Characteristics of the Mesozoic Volcanic Rocks in Sonid Zuoqi Area of Inner Mongolia[D]. Shijiazhuang: Shijiazhuang University of Economics, 1-49 (in Chinese with English abstract).

      Rollinson H R. 1993. Using Geochemical Data:Evaluation, Presentation, Interpreation[M]. New York:Longman, 1-352.

      Rudnick R L, Gao S. 2014. Composition of the continental crust[J]. Treatise on Geochemistry, 4:1-51.

      Sen C, Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa:Implication for the origin of adakites[J]. Contributions to Mineralogy and Petrology, 117(4):394-409. doi: 10.1007/BF00307273

      Shao Ji'an, Mu Baolei, Zhu Huizhong, Zhang Lüqiao. 2010. Material source and tectonic settings of the Mesozoic mineralization of the DaHing gan Mts[J]. Acta Petrologica Sinica, 26(3):649-656(in Chinese with English abstract).

      Shao Ji'an, Tang Kedong. 2015. Research on the Mesozoic oceancontinent transitional zone in the Northeast Asia and its implications[J]. Acta Petrologica Sinica, 31(10):3147-3154(in Chinese with English abstract).

      Shao Jidong, Tan Qiang, Wang Hui, Zhang Ming, He Hongyun. 2011.The Mesozoic Strata and the Jurassic-Cretaceous boundary in the Daxinganling region[J]. Geology and Resources, 20(1):4-11(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz201101002

      She Hongquan, Li Jinwen, Xiang Anping, Guan Jidong, Yang Yuncheng, Zhang Dequan, Tan Gang, Zhang Bin. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, 28(2):571-594(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201202018

      Shen Liang, Liu Junlai, Hu Ling, Ji Mo, Guan Huimei, Davis G A. 2011. The Dayingzi detachment fault system in Liaodong Peninsula and its regional tectonic significance[J]. Sci. China Earth Sci., 54(10):1469-1483(in Chinese). doi: 10.1007/s11430-011-4202-5

      Shi Lu, Zheng Changqing, Yao Wengui, Li Juan, Xu Jiulei, Gao Yuan, Cui Fanghua. 2013. Geochronology, petro-geochemistry and Tectonic setting of the Hamagou Forest Farm A-Type granites in the Wuchagou Region, central great Xinggan range[J]. Acta Geologica Sinica, 87(9):1264-1276(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201309006

      Si Qiuliang, Cui Tianri, Wang Ende, Ding Shu. 2016. Zircon U-Pb dating and petrogenesis of the Baiyingaolao Formation rhyolites in Chaihe area, Great Xing'an Range[J]. Journal of Northeastern University(Natural Science), 37(3):412-415(in Chinese with English abstract).

      Sorokin A A, Yarmolyuk V V, Kotov A B, Sorokin A P, Kudryashov N M, Li Jinyi. 2004. Geochronology of Triassic-Jurassic granitoids in the southern framing of the Mongol-Okhotsk fold belt and the problem of Early Mesozoic granite formation in central and eastern Asia[J]. Doklady Earth Sciences, 399(8):1091-1094.

      Sui Zhenmin, Ge Wenchun, Wu Fuyuan, Zhang Jiheng, Xu Xuechun, Cheng Ruiyu. 2007. Zircon U-Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts[J]. Acta Petrologica Sinica, 23(2):461-480(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702023

      Sun Deyou, Wu Fuyuan, Zhang Yanbin, Gao Shan. 2004. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone:Evidence from the Dayushan granitic pluton, Jilin Province[J]. Journal of Jilin University(Earth Science Edition), 34(2):174-181(in Chinese with English abstract).

      Sun Deyou, Wu Fuyuan, Gao Shan, Lu Xiaoping. 2005. Confirmation of two episodes of A-type granite emplacement during Late Triassic and Early Jurassic in the central Jilin Province, and their constraints on the structural pattern of eastern Jilin-Heilongjiang area, China[J]. Earth Science Frontiers, 12(2):263-275(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200502028

      Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Sunders A D, Norry MJ (eds.). Magmatism in the Ocean Basins. London: Geol. Soc. Spec. Publ., 42: 313-345.

      Wang Fei, Zhou Xinhua, Zhang Liancheng, Ying Jifeng, Zhang Yutao, Wu Fuyuan, Zhu Rixiang. 2006. Late Mesozoic volcanism in the Great Xing'an Range(NE China):Timing and implications for the dymamic setting of NE Asia[J]. Earth and Planetary Science Letters, 251:179-198. doi: 10.1016/j.epsl.2006.09.007

      Wang Jianguo, He Zhonghua, Xu Wenliang. 2013. Petrogenesis of riebeckite rhyolites in the southern Da Hinggan Mts.:Geohronological and geochemical evidence[J]. Acta Petrologica Sinica, 29(3):853-863(in Chinese with English abstract).

      Wang Xing'an, Xu Zhongyuan, Liu Zhenghong, Zhu Kai. 2012.Petrogenesis and tectonic setting of the K-feldspar granites in Chaihe area, central Great Xing'an Range:constraints from petrogeochemistry and zircon U-Pb isotope chronology[J]. Acta Petrologica Sinica, 28(8):2647-2655(in Chinese with English abstract).

      Wang Xiong, Chen Yuejun, Li Yong, Li Senlin, Wang Changbing, Liu Yongjun, Zhu Huailiang, Wu Guoxue. 2015. Geochemical characteristics and geological implication of volcanic rocks in Early Cretaceous Baiyingaolao Formation from Taerqi area, middle-north part of Da Hinggan mountains[J]. Global Geology, 34(1):25-33(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201501005

      Watson E B, Harrison T M. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X

      Whalen J B, Currie K L, Chappell B W. 1987. A-type granites:Geochemical characteristics discrimination and petrogeneisis[J]. Contributions to Mineralogy and Petrology, 95:407-419. doi: 10.1007/BF00402202

      Wilson M. 1989. Igneous Petrogenesis[M]. London: Springer, 295-323.

      Wu Fuyuan, Sun Deyou, Lin Qiang. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China[J]. Acta Petrologica Sinica, 15(2):181-189(in Chinese with English abstract).

      Wu Fuyuan, Sun Deyou, Li Huimin, Jahn B M, Wilde S A. 2002. Atype granites in northeastern China:Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187(1/2):143-173.

      Wu Fuyuan, Jahn B M, Wilde S A, Lo Chunhua, Yui Tzenfu, Lin Qiang, Ge Wenchun, Sun Deyou. 2003. Highly fractionated I-type granites in NE China(I):Geochronology and petrogenesis[J]. Lithos, 66:241-273. doi: 10.1016/S0024-4937(02)00222-0

      Wu Fuyuan, Sun Deyou, Ge Wenchun, Zhang Yanbin, Grant M L, Wilde S A, Jahn B M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014

      Wu Guang, Chen Yanjing, Sun Fengyue, Li Jingchun, Li Zhitong, Wang Xijin. 2008. Geochemistry of the Late Jurassic granitoids in the northern end area of Da Hinggan Mountains and their geological and prospecting implication[J]. Acta Petrologica Sinica, 24(4):899-910(in Chinese with English abstract).

      Wu TaoTao, Chen Cong, Liu Kai, Bao Qingzhong, Zhou Yongheng, Song Wanbing. 2016. Petrogenesis and Tectonic Setting of the Monzonite Granite in Yitulihe area, Northern Great Xing'an Range[J]. Acta Geologica Sinica, 90(10):2637-2647(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201610007

      Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15):1554-1569(in Chinese). doi: 10.1007/BF03184122

      Xiao Wenjiao, Windley B F, Hao Jie, Zhai Mingguo. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt[J]. Tectonics, 22(6):1069-1089.

      Xu Meijun, XU Wenliang, Meng En, Wang Feng. 2011. LA-ICP-MS zircon U-Pb chronology and geochemistry of Mesozoic volcanic rocks from the Shanghulin-Xiangyang basins in Ergun area, northeastern Inner Mongolia[J]. Geological Bulletin of China, 30(9):1321-1338(in Chinese with English abstract).

      Xu Wenliang, Pei Fuping, Wang Feng, Meng En, Ji Weiqiang, Yang Debin, Wang Wei. 2013a. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 74:167-193. doi: 10.1016/j.jseaes.2013.04.003

      Xu Wenliang, Wang Feng, Pei Fuping, Meng En, Tang Jie, Xu Meijun, Wang Wei. 2013b. Mesozoic tectonic regimes and regional oreforming background in NE China:Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 29(2):339-353(in Chinese with English abstract).

      Yang Jianguo, Wu Heyong, Liu Junlai. 2006. Stratigraphic correlation of the Mesozoic and Cenozoic in the outer basins of the Daqing exploration area, Heilongjiang, China[J]. Geological Bulletin of China, 25(9/10):1088-1093(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200609017

      Yang Wubin, Niu Hecai, Cheng Liren, Shan Qiang, Li Ningbo. 2015.Geochronology, geochemistry and geodynamic implications of the Late Mesozoic volcanic rocks in the southern Great Xing'an Mountains, NE China[J]. Journal of Asian Earth Sciences, 113:454-470. doi: 10.1016/j.jseaes.2014.12.002

      Yang Yang, Gao Fuhong, Chen Jingsheng, Zhou Yi, Zhang Jian, Jin Xin, Zhang Yanlong. 2012. Zircon U-Pb ages of Mesozoic volcanic rocks in Chifeng area[J]. Journal of Jilin University(Earth Science Edition), 42(Suppl. 2):257-268(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxb-e201902021

      Yin Zhigang, Wang Wencai, Zhang Yuelong, Wang Yang, Han Yu, Cao Zhongqiang, Zheng Bei. 2016. Mesozoic volcanic rocks in Yilehuli area:Zircon U-Pb ages and their constraints on the magmatic events[J]. Journal of Jilin University(Earth Science Edition), 46(3):766-780(in Chinese with English abstract).

      Ying Jifeng, Zhou Xinhua, Zhang Lianchang, Wang Fei. 2010.Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Range, NE China and their geodynamic implications[J]. Journal of Asian Earth Sciences, 39:786-793. doi: 10.1016/j.jseaes.2010.04.035

      Zhang Changhou, Wang Genhou, Wang Guosheng, Wu Zhengwen, Sun Lusuo, Sun Weihua. 2002. Thrust tectonics in the eastern segment of the intraplate Yanshan orogenic belt, western Liaoning Province, North China[J]. Acta Geologica Sinica, 76(1):64-76(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200201009

      Zhang Hong, Wei Zhongliang, Liu Xiaoming, Li Dong. 2008.Tuchengzi Formation LA-ICP-MS dating in northern Hebei-western Liaoning[J]. Science in China(Series D), 38(8):960-970(in Chinese).

      Zhang Jiheng, Ge Wenchun, Wu Fuyuan, Wilde S A, Yang Jinhui, Liu Xiaoming. 2008. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China[J]. Lithos, 102:138-157. doi: 10.1016/j.lithos.2007.08.011

      Zhang Jiheng. 2009. Geochronology and geochemistry of the mesozoic volcanic rocks in the Great Xing'an Range, northeastern China[D]. Wuhan: China University of Geosciences, 1-105 (in Chinese with English abstract).

      Zhang Jiheng, Gao Shan, Ge Wenchun, Wu Fuyuan, Yang Jinhui, Wilde S A, Li Ming. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J]. Chemical Geology, 276(3/4):144-165.

      Zhang Letong, Li Shichao, Zhao Qingying, Li Xuefei, Wang Lu, Li Zihao. 2015. Formation age and geochemical characteristics of volcanic rocks from Baiyingaolao Formation of middle Da Hinggan mountains[J]. Global Geology, 34(1):44-54(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201501007

      Zhang Lianchang, Zhou Xinhua, Ying Jifeng, Wang Fei, Guo Feng, Wan Bo, Chen Zhiguang. 2008. Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xing'an Range, NE China:Implications for their origin and mangle source characteristics[J]. Chemical Geology, 256:12-23. doi: 10.1016/j.chemgeo.2008.07.004

      Zhang Lüqiao, Shao Ji'an, Zheng Guangrui. 1998. Metamorphic core complex in ganzhuermiao, Inner Mongolia[J]. Scientia Geologica Sinica, 33(2):140-146(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069873

      Zhang Qi. 2013. Is the Mesozoic magmatismin eastern China related to the westward subduction of the Pacific plate?[J]. Acta Petrologica et Mineralogica, 32(1):113-128(in Chinese with English abstract).

      Zhang Xuebin, Zhou Changhong, Lai Lin, Xu Cui, Tian Ying, Chen Lizhen, Wei Min. 2015. Geochemistry and zircon U-Pb dating of volcanic rocks in eastern Xilin Hot, Inner Mongolia and their geological implications[J]. Geology and Exploration, 51(2):290-302(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201502010

      Zhang Yaming, Du Yuchun, Cui Tianri, Li Linchuan, Qin Tao. 2014.Baiyingaolao Group volcanic rock characteristics and genesis in Zhalantun region[J]. Metal Mine, (6):101-104(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201406020

      Zhang Yutao, Zhang Lianchang, Ying Jifeng, Zhou Xinhua, Wang Fei, Hou Quanlin, Liu qing. 2007. Geochemistry and source characteristics of Early Cretaceous volcanic rocks in Tahe, North Da Hinggan Mountain[J]. Acta Petrologica Sinica, 23(11):2811-2822(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200711012

      Zhao Guolong, Yang Guiling, Wang Zhong, Fu Jiayou, Yang Yuzhuo. 1989. Mesozoic Volcanic Rocks in the Central-Southern Da Hinggan Ling Range[M]. Beijing:Beijing Press of Science and Technology, 1-260 (in Chinese).

      Zhao Pizhong, Xie Xuejing, Cheng Zhizhong. 2014. Regional geochemical background and metallogenic belt division of North Da Hinggan Mountain[J]. Acta Geologica Sinica, 88(1):99-108(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201401009

      Zhao Yue, Yang Zhenyu, Ma Xinghua. 1994. Geotectonic transition from PaleoAsian system and Paleo-Tethyan system to PaleoPacific active continental margin in eastern Asia[J]. Scientia Geologica Sinica, 29(2):105-119(in Chinese with English abstract).

      Zhao Yue, Xu Gang, Zhang Shuanhong, Yang Zhenyu, Zhang Yueqiao, Hu Jianmin. 2004. Yanshanian movement and conversion of tectonic regimes in East Asia[J]. Earth Science Frontiers, 11(3):319-328(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200403030

      Zorin Y A. 1999. Geodynamics of the western part of the Mongolia Okhotsk collisional belt, Trans-Baikal region(Russia)and Mongolia[J]. Tectonophysics, 306(1):33-56. doi: 10.1016/S0040-1951(99)00042-6

      陈良. 2010.大兴安岭阿尔山地区中生代岩浆演化与斑岩钼矿成矿作用[D].北京: 中国地质大学, 1-125. http://cdmd.cnki.com.cn/Article/CDMD-11415-2010085692.htm
      陈英富, 王根厚, 段炳鑫. 2012.内蒙古东乌珠穆沁旗辉音敖包一带晚侏罗世火山岩特征及时代[J].中国地质, 39(6):1690-1699. doi: 10.3969/j.issn.1000-3657.2012.06.017
      杜玉春. 2015.扎兰屯地区早白垩世火山岩特征及成因分析[D].阜新: 辽宁工程技术大学硕士论文, 1-73. http://cdmd.cnki.com.cn/Article/CDMD-10147-1016057251.htm
      方红薇. 2010.大兴安岭中段五岔沟一带中生代白音高老组火山岩特征及其构造背景[D].北京: 中国地质大学, 1-69.
      高晓峰, 郭锋, 范蔚茗, 李超文, 李晓勇. 2005.南兴安岭晚中生代中酸性火山岩的岩石成因[J].岩石学报, 21(3):737-748. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200503014
      葛文春, 林强, 孙德有, 吴福元, 元钟宽, 李文远, 陈明植, 尹成孝. 1999.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报, 15(3):396-407.
      葛文春, 李献华, 林强, 孙德有, 吴福元, 尹成孝. 2001.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学, 36(2):176-183. doi: 10.3321/j.issn:0563-5020.2001.02.005
      葛文春, 吴福元, 周长勇, 张吉衡. 2005.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报, 21(3):749-762. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200503015
      葛文春, 隋振民, 吴福元, 张吉衡, 徐学纯, 程瑞玉. 2007.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报, 23(2):423-440. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702021
      苟军, 孙德有, 赵忠华, 任云生, 张学元, 付长亮, 王晰, 魏红艳. 2010.满洲里南部白音高老组流纹岩锆石U-Pb定年及岩石成因[J].岩石学报, 26(1):333-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201001036
      关会梅, 刘俊来, 纪沫, 赵胜金, 胡玲, Davis G A. 2008.辽宁南部万福变质核杂岩的发现及其区域构造意义[J].地学前缘, 15(3):199-208. doi: 10.3321/j.issn:1005-2321.2008.03.016
      郭锋, 范蔚茗, 王岳军, 林舸. 2001.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报, 17(1):161-168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200101017
      郝彬, 宋江, 李朝柱, 杨欣德. 2016.赤峰地区晚中生代火山岩锆石UPb年代学及地球化学特征[J].大地构造与成矿学, 40(6):1261-1274.
      何付兵, 徐吉祥, 谷晓丹, 程新彬, 魏波, 李昭, 梁亚南, 王泽龙, 黄淇. 2013.内蒙古东乌珠穆沁旗阿木古楞复式花岗岩体时代、成因及地质意义[J].地质论评, 59(6):1150-1164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201306016
      黄凡, 王登红, 王平安, 王成辉, 刘善宝, 刘翠辉, 谢有炜, 郑兵华, 李松柏. 2014.大兴安岭北段宜里钼矿岩石成因及成岩成矿年代学[J].地质学报, 88(3):361-379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201403006
      黄猛. 2014.内蒙古西乌旗地区白音高老组火山岩地球化学特征及其构造环境[D].北京: 中国地质大学, 1-53. http://cdmd.cnki.com.cn/article/cdmd-11415-1015517960.htm
      黄明达, 崔晓庄, 裴圣良, 张恒利, 张建强. 2016.兴安地块白音高老组流纹岩锆石U-Pb年龄及其构造意义[J].中国煤炭地质, 28(11):30-37. doi: 10.3969/j.issn.1674-1803.2016.11.07
      孔元明. 2014.内蒙古科右中旗地区早白垩世白音高老组酸性火山岩特征及形成的构造背景[D].长春: 吉林大学硕士学位论文, 1-52. http://cdmd.cnki.com.cn/article/cdmd-10183-1014281768.htm
      李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J].岩石学报, 26(7):2131-2140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007015
      李杰, 吕新彪, 陈超, 衮民汕, 杨永胜, 徐益群, 王琳, 张帅. 2016.大兴安岭中段塔尔气地区流纹岩年龄、地球化学特征及其地质意义[J].地质通报, 35(6):906-918. doi: 10.3969/j.issn.1671-2552.2016.06.008
      李锦轶,莫申国,和政军,孙桂华,陈文. 2004. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J]. 地学前缘,11(3):157-168. doi: 10.3321/j.issn:1005-2321.2004.03.017
      李竞妍,郭峰,李超文,李红霞,赵亮. 2014. 东北地区晚古生代-中生代 I型和 A型花岗岩 Nd同位素变化趋势及其构造意义[J]. 岩石学报,30(7):1995-2008.
      李可,张志诚,李建锋,汤文豪,冯志硕,李秋根. 2012. 内蒙古乌珠穆沁地区中生代中酸性火山岩 SHRIMP锆石 U-Pb年龄和地球化学特征[J]. 地质通报,31(5):671-685. doi: 10.3969/j.issn.1671-2552.2012.05.004
      李鹏川,李世超,刘正宏,李刚,白新会,万乐. 2016. 内蒙古林西地区满克头鄂博组火山岩形成时代及构造环境[J]. 世界地质,35(1):77-88. doi: 10.3969/j.issn.1004-5589.2016.01.008
      李文国,李庆富,姜万德. 1996. 内蒙古自治区岩石地层[M]. 武汉:中国地质大学出版社:1-344.
      李研,王建,韩志滨,侯晓光,王石岩. 2017. 大兴安岭北段八大关地区早侏罗世流纹岩锆石 U-Pb定年与岩石成因[J]. 中国地质,44(2):346-357. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170210&flag=1
      李宇,丁磊磊,许文良,王枫,唐杰,赵硕,王子进. 2015. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学:对蒙古-鄂霍茨克洋闭合时间的限定[J]. 岩石学报,31(1):56-66.
      林强,葛文春,孙德有,吴福元,元钟宽,闵庚德,陈明植,李文远,权致纯, 尹成孝. 1998. 中国东北地区中生代火山岩的大地构造意义[J]. 地质科学,33(2):129-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069875
      林强,葛文春,吴福元,孙德有,曹林. 2004. 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报,20(3):403-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403004
      林伟,王军,刘飞,冀文斌,王清晨. 2013. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论[J]. 岩石学报,29(5):1791-1810. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201305023
      刘阁,吕新彪,陈超,杨永胜,王庆军,孙耀锋. 2014. 大兴安岭嫩江地区中生代双峰式火山岩锆石 U-Pb定年、地球化学特征及其地质意义[J]. 岩石矿物学杂志,33(3):458-470. doi: 10.3969/j.issn.1000-6524.2014.03.004
      刘俊来,Davis G A,纪沫,关会梅,白相东. 2008. 地壳的拆离作用与华北克拉通破坏:晚中生代伸展构造约束[J]. 地学前缘,15(3):72-81. doi: 10.3321/j.issn:1005-2321.2008.03.005
      刘俊来,纪沫,申亮,关会梅,Davis G A. 2011. 辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵[J]. 中国科学:地球科学,41(5):618-637. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201105003
      刘凯,吴涛涛,刘金龙,鲍庆中,杜守营. 2018. 大兴安岭北段图里河地区满克头鄂博组火山岩年代学及地球化学[J]. 中国地质,45(2):367-376. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180211&flag=1
      刘哲,薛怀民,曹光跃. 2017. 内蒙古正蓝旗地区中生代火山岩锆石U-Pb 年龄与板内伸展环境成因讨论[J]. 中国地质,44(1):151-176. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170111&flag=1
      吕志成,段国正,郝立波,李殿超,潘军,吴丰昌. 2004. 大兴安岭中南段中生代中基性火山岩岩石学地球化学研究[J]. 高校地质学报,10(2):186-198. doi: 10.3969/j.issn.1006-7493.2004.02.005
      马玉波,邢树文,肖克炎,张彤,田放,丁建华,张勇,马路阔. 2016. 大兴安岭 Cu-Mo-Ag 多金属成矿带主要地质成矿特征及潜力分析[J]. 地质学报,90(7):1316-1333. doi: 10.3969/j.issn.0001-5717.2016.07.005
      孟恩,许文良,杨德彬,邱昆峰,李长华,祝洪涛. 2011. 满洲里地区灵泉盆地中生代火山岩的锆石 U-Pb 年代学、地球化学及其地质意义[J]. 岩石学报,27(4):1209-1226.
      孟凡超,刘嘉麒,崔岩,高金亮,刘祥,童英. 2014. 中国东部地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约[J]. 岩石学报,30(12):3569-3586.
      聂立军,贾海明,王聪,卢兴波. 2015. 大兴安岭中段白音高老组流纹岩年代学、地球化学及其地质意义[J]. 世界地质,34(2):296-304. doi: 10.3969/j.issn.1004-5589.2015.02.004
      裴福萍,许文良,杨德彬,纪伟强,于洋,张兴洲. 2008. 松辽盆地南部中生代火山岩:锆石 U-Pb年代学及其对基底性质的制约[J]. 地球科学,33(5):603-617. doi: 10.3321/j.issn:1000-2383.2008.05.003
      秦涛,郑常青,崔天日,李林川,钱程,陈会军. 2014. 内蒙古扎兰屯地区白音高老组火山岩地球化学、年代学及其地质意义[J]. 地质与资源,23(2):146-153. doi: 10.3969/j.issn.1671-1947.2014.02.011
      秦旭亮. 2014. 内蒙古苏尼特左旗地区中生代火山岩岩石学特征[D]. 石家庄:石家庄经济学院硕士学位论文,1-49. http://cdmd.cnki.com.cn/Article/CDMD-10077-1015900041.htm
      邵济安,牟保磊,朱慧忠,张履桥. 2010. 大兴安岭中南段中生代成矿物质的深部来源与背景[J]. 岩石学报,26(3):649-656. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201003001
      邵济安,唐克东. 2015. 东北亚中生代洋陆过渡带的研究及启示[J]. 岩石学报,31(10):3147-3154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201510015
      邵积东,谭强,王慧,张明,贺宏云. 2011. 大兴安岭地区中生代地层特征及侏罗-白垩纪界限的讨论[J]. 地质与资源,20(1):4-11. doi: 10.3969/j.issn.1671-1947.2011.01.002
      佘宏全,李进文,向安平,关继东,杨郧城,张德全,谭刚,张斌. 2012. 大兴安岭中北段原岩锆石 U-Pb测年及其与区域构造演化关系[J]. 岩石学报,28(2):571-594.
      申亮,刘俊来,胡玲,纪沫,关会梅,Davis G A. 2011. 辽东半岛大营子拆离断层系及其区域构造意义[J]. 中国科学:地球科学,41(4):437-451.
      施璐,郑常青,姚文贵,李娟,徐久磊,高源,崔芳华. 2013. 大兴安岭中段五岔沟地区蛤蟆沟林场 A型花岗岩年代学、岩石地球化学及构造背景研究[J]. 地质学报,87(9):1264-1276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201309006
      司秋亮,崔天日,王恩德,丁姝. 2016. 大兴安岭柴河白音高老组流纹岩锆石 U-Pb定年及成因探讨[J]. 东北大学学报(自然科学版),37(3):412-415. doi: 10.3969/j.issn.1005-3026.2016.03.023
      隋振民,葛文春,吴福元,张吉衡,徐学纯,程瑞玉. 2007. 大兴安岭东北部侏罗纪花岗质岩石的锆石 U-Pb 年龄、地球化学特征及成因[J]. 岩石学报,23(2):461-468. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702023
      孙德有,吴福元,张艳斌,高山. 2004. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版),34(2):174-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200402003
      孙德有,吴福元,高山,路孝平. 2005. 吉林中部晚三叠世和早侏罗世两期铝质 A 型花岗岩的厘定及对吉黑东部构造格局的制约[J]. 地学前缘,12(2):264-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200502028
      王建国,和钟铧,许文良. 2013. 大兴安岭南部纳闪石流纹岩的岩石成因:年代学和地球化学证据[J]. 岩石学报,29(3):853-863.
      王兴安,徐仲元,刘正宏,朱凯. 2012. 大兴安岭中部柴河地区钾长花岗岩的成因及构造背景:岩石地球化学、锆石 U-Pb同位素年代学的制约[J]. 岩石学报,28(8):2647-2655.
      王雄,陈跃军,李勇,李森林,王长兵,刘永俊,朱怀亮,吴国学. 2015. 大兴安岭中北段塔尔气地区早白垩世白音高老组火山岩地球化学特征及意义[J]. 世界地质,34(1):25-33. doi: 10.3969/j.issn.1004-5589.2015.01.004
      吴福元,孙德有,林强. 1999. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报,15(2):181-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98199902003
      吴涛涛,陈聪,刘凯,鲍庆中,周永恒,宋万兵. 2016. 大兴安岭北部伊图里河地区二长花岗岩的成因及构造背景[J]. 地质学报,90(10):2637-2647. doi: 10.3969/j.issn.0001-5717.2016.10.007
      吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对 U-Pb年龄解释的制约[J]. 科学通报,49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      武广,陈衍景,孙丰月,李景春,李之彤,王希今. 2008. 大兴安岭北端晚侏罗世花岗岩类地球化学及其地质和找矿意义[J]. 岩石学报,24(4):899-910. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804028
      徐美君,许文良,孟恩,王枫. 2011. 内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩 LA-ICP-MS锆石 U-Pb年龄和地球化学特征[J]. 地质通报,30(9):1321-1338. doi: 10.3969/j.issn.1671-2552.2011.09.001
      许文良,王枫,裴福萍,孟恩,唐杰,徐美君,王伟. 2013b. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J]. 岩石学报,29(2):339-353.
      杨建国,吴河勇,刘俊来. 2006. 大庆探区外围盆地中、新生代地层对比及四大勘探层系[J]. 地质通报,25(9/10):1088-1093. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200609017
      杨杨,高福红,陈井胜,周漪,张健,金鑫,张彦龙. 2012. 赤峰地区中生代火山岩锆石 U-Pb年代学证据[J]. 吉林大学学报(地球科学版),42(增刊 2):257-268.
      尹志刚,王文材,张跃龙,王阳,韩宇,曹忠强,郑贝. 2016. 伊勒呼里山中生代火山岩:锆石 U-Pb年代学及其对岩浆事件的制约[J]. 吉林大学学报(地球科学版),46(3):766-780.
      张长厚,王根厚,王果胜,吴正文,张路锁,孙卫华. 2002. 辽西地区燕山板内造山带东段中生代逆冲推覆构造[J]. 地质学报,76 (1):64-76. doi: 10.3321/j.issn:0001-5717.2002.01.009
      张宏,韦忠良,柳小明,李栋. 2008. 冀北-辽西地区土城子组的 LAICP-MS测年[J]. 中国科学(D辑),38(8):960-970. doi: 10.3321/j.issn:1006-9267.2008.08.004
      张吉衡. 2009. 大兴安岭中生代火山岩年代学及地球化学研究[D]. 武汉:中国地质大学,1-105. http://cdmd.cnki.com.cn/Article/CDMD-10491-2009153771.htm
      张乐彤,李世超,赵庆英,李雪菲,王璐,李子昊. 2015. 大兴安岭中段白音高老组火山岩的形成时代及地球化学特征[J]. 世界地质,34(1):44-54. doi: 10.3969/j.issn.1004-5589.2015.01.006
      张履桥,邵济安,郑广瑞. 1998. 内蒙古甘珠尔庙变质核杂岩[J]. 地质科学,33(2):140-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069873
      张学斌,周长红,来林,徐翠,田颖,陈丽贞,魏民. 2015. 锡林浩特东部早白垩世白音高老组岩石地球化学特征、LA-MC-ICP-MS锆石U-Pb年龄及地质意义[J]. 地质与勘探,51(2):290-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201502010
      张亚明,杜玉春,崔天日,李林川,秦涛. 2014. 扎兰屯地区白音高老组火山岩特征及成因[J]. 金属矿山,(6):101-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201406020
      张玉涛,张连昌,英基丰,周新华,王非,侯泉林,刘庆. 2007. 大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征[J]. 岩石学报, 23(11):2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013
      赵国龙,杨桂林,王忠,傅嘉友,杨玉琢. 1989. 大兴安岭中南部中生代火山岩[M]. 北京:北京科学技术出版社:1-260.
      赵丕忠,谢学锦,程志中. 2014. 大兴安岭成矿带北段区域地球化学背景与成矿带划分[J]. 地质学报,88(1):99-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201401009
      赵越,杨振宇,马醒华. 1994. 东亚大地构造发展的重要转折[J]. 地质科学,29(2):105-119.
      赵越,徐刚,张拴宏,杨振宇,张岳桥,胡健民. 2004. 燕山运动与东亚构造体制的转变[J]. 地学前缘,11(3):319-328. doi: 10.3321/j.issn:1005-2321.2004.03.030
    • 期刊类型引用(1)

      1. 高翻翻,向洋,王诗媛,赵龙飞,侯曼,边思源,骆鑫. 基于地理探测器和PLS-SEM的藏东南植被变化及驱动因子分析. 环境科学与技术. 2024(12): 225-236 . 百度学术

      其他类型引用(0)

    图(9)  /  表(3)
    计量
    • 文章访问数:  3012
    • HTML全文浏览量:  615
    • PDF下载量:  4651
    • 被引次数: 1
    出版历程
    • 收稿日期:  2018-05-01
    • 修回日期:  2019-05-14
    • 网络出版日期:  2023-09-25
    • 刊出日期:  2019-12-24

    目录

    /

    返回文章
    返回
    x 关闭 永久关闭