1∶500 000 Geological Map Spatial Database of the Xiwuqi and Bainaimiao Areas in the Erlian– Dongwuqi Metallogenic Belt
-
摘要:
1∶500 000二连–东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库的建设依托2016–2018年实施的中国地质调查局地质调查项目“二连–东乌旗成矿带西乌旗和白乃庙地区地质矿产调查”开展。古生代、中生代、古近纪及新近纪地层以组为单位,侵入岩时代以最新获取的777个LA-ICPMS和SHRIMP 锆石U-Pb年龄为依据,按照“岩性+时代”方法表达。地质图空间数据库的数据量为210 MB,包括地层面图元4682个,侵入岩面图元1938个。所有地质图面图元和同位素年龄点均建立了相应的属性。在编图过程中主要取得了如下成果: 结合生物区系和重要构造边界重新划分了古生代地层分区,新建、重新厘定了关键地层单位,完善了古生代地层格架; 重新厘定了区内古生代侵入岩时空分布及性质,早、晚古生代2阶段岩浆作用是对早、晚古生代2期俯冲增生造山作用的响应; 新识别并在图上表达出早古生代萨音敖包、昌图及晚古生代二道井–迪彦庙、乌兰沟等蛇绿混杂岩,较为细致地刻画了早古生代大洋南北双向俯冲形成的增生造山带结构,对晚古生代洋盆的俯冲与封闭进行了限定,重新划分了构造单元。这些成果和资料对兴蒙造山带研究过程中的古生代构造单元划分、晚古生代构造背景等具有较大分歧的科学问题具有限定作用。该空间数据库是目前兴蒙造山带中段资料最齐全、最新的1∶500 000地质图数据库,反映了本区地质调查和科学研究的最新成果。
Abstract:The 1∶500 000 Geological Map Spatial Database of the Xiwuqi and Bainaimiao Areas in the Erlian-Dongwuqi Metallogenic Belt is developed as part of China Geological Survey’s project ‘Geological and Mineral Survey of the Xiwuqi and Bainaimiao Areas in the Erlian-Dongwuqi Metallogenic Belt’ during 2016 to 2018. The stratum of the Paleozoic, Mesozoic, Paleogene and Neogene are divided into different formations, while the intrusive rocks are expressed in the form of ‘lithology + era’ based on 777 LA-ICPMS and SHRIMP zircon U–Pb ages. The geological map spatial database is rich in geological information with a data size of 210 MB, including 4682 stratigraphic and 1938 intrusive rock surface entities, all of which are associated with their corresponding attributes. The following achievements have been made during the mapping process: the Paleozoic stratigraphic division has been revised considering biota and key tectonic boundaries, with newly established and re-defined important stratigraphic units and an improved Paleozoic stratigraphic framework; the temporal-spatial distribution and properties of Paleozoic intrusive rocks have been clarified, with the Early and Late Paleozoic two-stage magmatism being responses to corresponding subduction-accretion orogeny; newly identified ophiolitic mélanges, such as Early Paleozoic Sayin Aobao, Changtu and Late Paleozoic Erdaojing-Diyanmiao and Wulangou, have been expressed on the map, which shows the structure of the accretionary orogeny formed by the Early Paleozoic North and South bi-direction subduction. The final closure of the Paleo Asian ocean at the end of the Late Paleozoic was constrained and the tectonic units were re-divided. These achievements and data may shed light on scientific issues with diverging views regarding the Xing’an–Mongolian orogeny, such as the division of the Paleozoic tectonic units and late Paleozoic tectonic setting. As the latest and most complete 1∶500 000 geological map database in the middle part of the Xing’an–Mongolian orogeny so far, this spatial database reflects the latest achievements of geological surveys and research in this area.
-
1. 引 言
个旧矿集区位于古特提斯成矿域与滨太平洋成矿域的交汇部位,以盛产锡矿闻名于世。矿区内云英岩—矽卡岩型、层间氧化矿型、产于花岗岩顶部的脉状锡多金属矿床与燕山期花岗岩成矿关系密切(冶金工业部西南冶金地质勘探公司, 1984; Cheng et al., 2010, 2012, 2016; 贾润幸等, 2014; 毛景文等, 2018)。因此,前人研究多集中在花岗岩成矿以及花岗岩成因方面的研究,并取得了一系列的研究成果(莫国培, 2006; 王永磊等, 2007; 徐启东等, 2009; 李肖龙等, 2011; 黄文龙等, 2016)。但是,对于矿区内出露的辉绿岩墙研究程度较低,尤其是缺乏其年代学和同位素证据,制约了我们对个旧杂岩体成因的整体认识。
基性岩脉作为岩石圈伸展作用和构造−岩浆演化的重要标志(Radhakrishna and Mathew, 1996),是起源于软流圈或岩石圈地幔的岩浆在伸展背景下侵位于地壳不同深度的产物,具有重要的构造意义(Weaver and Tamey, 1981; Hoek and Seitz, 1995; 葛小月等, 2003; Hou et al., 2006a, b; Peng et al., 2008; 祁生胜等, 2013)。通过对基性岩脉的研究可以了解地球深部信息和壳幔作用(冯乾文, 2012)以及地表火山作用与深部地幔岩浆活动间的联系(Hooper et al., 2010; Srivastava, 2011)。
古太平洋板块西向俯冲作用导致的弧后伸展作用对了解中国东南部晚中生代的构造演化历史至关重要。最近,笔者在卡房矿段1380开采水平的巷道中发现了一套辉绿岩墙,其成因尚不明确,对其岩石成因和源区特征的探讨对个旧地区的动力学背景研究具有特殊的指示意义,为研究晚白垩世西太平洋构造域伸展构造环境下的岩浆活动提供了重要窗口。本文通过岩石学、LA−ICP−MS锆石U−Pb年代学、全岩主微量元素地球化学和Sr−Nd−Pb同位素地球化学方法探讨卡房辉绿岩岩浆源区特征及成因机制,为晚白垩世西太平洋构造演化提供岩石地球化学制约。
2. 地质背景和样品
个旧矿区在大地构造上位于印支板块、扬子板块与华夏板块的交汇处附近(图1a)。区内地层以三叠系火山沉积建造为主,其中中三叠统个旧组是以碳酸盐岩为主要的含矿建造。南北向展布的个旧断裂(小江断裂南延部分)为主要的控岩控矿构造,将个旧矿区分为东区和西区两部分,东区次级断裂系统发育,以东西向断裂为主,呈等距分布,是主要的赋矿导矿构造(图1b)。个旧锡铜多金属矿床主要分布于东区,这些矿床由南至北依次为卡房矿段、老厂矿段、高松矿段、松树脚矿段、马拉格矿段。自印支旋回以来,个旧地区构造岩浆活动十分强烈,形成了现在的岩浆岩分布和构造格局(戴福盛, 1990; 李肖龙等, 2011; 赵文君, 2018)。印支期以基性、碱性岩为主的火山、次火山岩广泛分布于矿区南部的新山岩体和北部的麒麟山岩体;燕山期以酸性、碱性侵入岩为主的杂岩体广泛分布于个旧矿区。燕山期晚白垩世岩浆岩主要由花岗岩、二长岩等酸性岩组成,以及少量的辉绿岩、辉长岩、煌斑岩岩脉等,这些侵入体组成复合岩体侵位于地表以下200~1000 m深处,地表仅有少量露头。目前已知的辉绿岩墙有两处,分别分布在老厂矿段东部和卡房矿段(冶金工业部西南冶金地质勘探公司, 1984; 程彦博, 2012),主要侵入到中三叠统碳酸盐岩和砂页岩地层中(图2a),并且与其他基性岩脉(辉长岩)和酸性岩体(二长岩、花岗岩)在时空上密切共生。
图 1 东南亚地质略图(a),个旧矿区地质简图(b)和卡房剖面及取样位置图(c)TP—塔里木板块;YB—扬子地体;CB—华夏地体;SB—滇缅泰马地体;ICB—印支地体;IP—印度板块Figure 1. Simplified geological map of the Southeast Asia (a), geological map of the Gejiu ore district (b) and geological section of diabase in Kafang profile and sample location (c)TP−Tarim Plate; YB−Yangtze Block; CB−Cathaysia Block; SB−Dian−Mian−Tai−Ma Block; ICB−Indochina Block; IP−India Plate图 2 辉绿岩墙侵入到大理岩中(a),辉绿岩手标本照片(b),正交偏光显微镜下照片(c、d、e),单偏光显微镜下照片(f)Bt—黑云母;Pl—斜长石;Px—辉石Figure 2. Diabase intrudes into marble (a), hand specimen of Kafang diabase (b), cross-polarized light photomicrograph of Kafang diabase (c, d, e), single-polarized light photomicrograph of Kafang diabase (f)Bt−Biotite; Pl−Plagioclase; Px−Pyroxene卡房辉绿岩大部分隐伏于地下,主要位于花岗岩和个旧组碳酸盐岩的接触带附近,呈陡倾的岩墙状不整合侵入于中三叠统个旧组碳酸盐岩中(图2a)。岩墙宽30~50 cm,岩墙边部发育冷凝边。本次研究在卡房矿段1380水平巷道中共采集辉绿岩样品13件,分别用于锆石U−Pb测年、全岩主微量元素分析和Sr−Nd−Pb同位素分析,取样位置见图1c。辉绿岩样品呈灰绿色,具辉绿结构,致密块状构造(图2b、c)。主要矿物组成为斜长石、辉石以及少量的角闪石和黑云母;次要矿物以磁铁矿、铁钛氧化矿物为主。斜长石含量约为50%,多呈自形—半自形长板状,可见明显双晶结构,矿物边缘发育少量绢云母化蚀变,斜长石以格架状杂乱分布于岩石中;辉石以普通辉石为主,含量约为20%,多呈半自形—他形,辉石发育轻微蚀变,蚀变矿物以透闪石为主;黑云母呈鳞片状,含量约为5%;黑云母以及磁铁矿等暗色矿物充填在斜长石和辉石的粒间空隙中(图2d、e、f)。
3. 分析方法
锆石分选与制靶在河北省区域地质调查所实验室进行。锆石测年在中国科学技术大学重点实验室完成,采用等离子体质谱仪对锆石进行了微区原位U−Pb同位素测定。采用外部锆石年龄标准TEMORA和GJ−1进行U−Pb同位素分馏校正。激光剥蚀以氦气作为剥蚀物质的载体,激光剥蚀束斑直径为32 μm,ICP−MS数据采集选用一个质量峰采集一点的跳峰方式。每测定5~10个样品点测定一组标样(一个标样91500点和一个GJ−1点)。锆石同位素数据处理采用ICPMS DataCal程序(Liu et al., 2010a)和Isoplot程序(Ludwig, 2003)。
全岩元素化学分析测试工作在中矿(天津)岩矿测试实验室进行。主量元素的测试方法为X射线荧光光谱法(XRF),分析误差介于5%~10%;微量元素的分析采用电感耦合等离子体质谱仪(ICP−MS)分析测试,分析误差优于1.5%。
Sr−Nd同位素的分析测定在北京大学造山带与地壳演化教育部重点实验室进行。在Rb−Sr和Sm−Nd同位素分析测定前,粉末状岩石样品首先加入混合同位素示踪剂,然后在混有氢氟酸和硝酸的闷罐中溶解。Rb、Sr、Sm、Nd的分离采用传统的离子交换柱方法,详细分离流程见Yan et al. (2005)。Sr−Nd同位素在VG Axiom质谱仪上测定。质谱测量中Sr同位素分馏用86Sr/88Sr=0.1194校正,Nd同位素分馏用146Nd/144Nd=0.7219校正。采用BCR−2标准样143Nd/144Nd=0.512633±0.000017 (2σ)和87Sr/86Sr=0.705013±0.000019 (2σ)检测分析精度。初始87Sr/86Sr和143Nd/144Nd比值根据锆石U−Pb年龄计算。
Pb同位素测试在核工业北京地质研究院分析测试中心进行,准确称取0.1~0.2 g粉末样品于低压密闭溶样罐(PFA)中,用混合酸(HF+HNO3+HClO4)溶解24小时。待样品完全溶解后,蒸干,加入6 mol/L的盐酸转为氯化物蒸干。用1 mL 0.5 mol/L HBr溶解,离心分离,清液加入阴离子交换柱,用0.5 mol/L HBr淋洗杂质,用1 mL 6 mol/L的HCl解析铅于聚四氟乙烯的烧杯中,蒸干备用。同位素分析采用ISOPROBE−T热电离质谱计,用磷酸硅胶将样品点在铼带上,用静态接受方式测量铅同位素比值。实验过程相对湿度为40%,温度为20℃,同位素比值控制误差为2σ。NBS 981校正结果:208Pb/206Pb=2.164940±15,207Pb/206Pb=0.914338±7,204Pb/206Pb=0.0591107±2,全流程本底Pb<100 pg。
4. 分析结果
4.1 锆石U−Pb测年
卡房辉绿岩中锆石多呈短柱状,晶形完好,可见少量呈浑圆状的继承锆石。阴极发光图中,锆石颗粒整体呈暗灰色,震荡环带较发育(图3a)。锆石颗粒长30~120 μm,长宽比1∶1~3∶1。本次研究对15个锆石颗粒的15个测点进行分析,分析结果见表1。锆石Th和U含量分别为82×10−6~10637×10−6、98×10−6~5844×10−6,Th/U比值为0.10~2.03,平均值为0.69。其中12个测点为辉绿岩岩浆锆石,锆石的206Pb/238U年龄介于72.7~82.0 Ma,几乎都位于谐和线上,并且集中于77 Ma,表明这些锆石在形成之后其U−Pb体系保持封闭状态,206Pb/238U年龄加权平均值为(77±2) Ma(n=12,MSWD=9.7)(图3b)。3个测点为继承锆石,年龄偏大且分散,206Pb/238U年龄分别为2409 Ma、2616 Ma、290 Ma,可能为岩浆捕获的围岩中的继承锆石。
表 1 卡房辉绿岩样品SS13806锆石U−Pb测年数据Table 1. Zircon U−Pb dating data of diabase sample SS13806 in Kafang点号 Th/10−6 U/10−6 Th/U 同位素比值 年龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 1 573 5844 0.10 0.0473 0.0010 0.0817 0.0012 0.0125 0.0002 80 1 80 1 2 1114 2630 0.42 0.0479 0.0010 0.0788 0.0014 0.0119 0.0002 76 1 77 1 3 114 290 0.39 0.1557 0.0031 10.148 0.1357 0.4723 0.0063 2409 27 2448 12 4 410 1619 0.25 0.0489 0.0012 0.0859 0.0016 0.0127 0.0002 82 1 84 2 5 82 98 0.83 0.0542 0.0034 0.3441 0.0206 0.0461 0.0007 290 5 300 16 6 134 1096 0.12 0.1761 0.0033 8.3755 0.1140 0.3450 0.0045 2616 21 2273 12 7 1088 4868 0.22 0.0481 0.0010 0.0787 0.0012 0.0119 0.0002 76 1 77 1 8 201 408 0.49 0.0476 0.0023 0.0834 0.0038 0.0127 0.0002 81 1 81 4 9 10637 5250 2.03 0.0450 0.0010 0.0743 0.0011 0.0120 0.0002 77 1 73 1 10 5677 4178 1.36 0.0483 0.0010 0.0800 0.0012 0.0120 0.0002 77 1 78 1 11 4314 4061 1.06 0.0488 0.0011 0.0772 0.0012 0.0115 0.0002 74 1 75 1 12 101 267 0.38 0.0461 0.0016 0.0794 0.0025 0.0125 0.0002 80 1 78 2 13 6039 4463 1.35 0.0479 0.0011 0.0768 0.0012 0.0117 0.0002 75 1 75 1 14 2333 2389 0.98 0.0505 0.0012 0.0788 0.0015 0.0113 0.0002 73 1 77 1 15 1052 3382 0.31 0.0448 0.0010 0.0712 0.0012 0.0115 0.0002 74 1 70 1 4.2 主量和微量元素
卡房辉绿岩全岩主微量元素分析结果见表2。所采集岩石样品烧失量较低(1.59%~2.26%),指示样品新鲜,后期蚀变作用较弱。卡房辉绿岩具有较低的SiO2含量(43.19%~45.36%)和全碱含量(Na2O+K2O,4.07%~5.35%),较高的K2O(2.81%~4.52%)、TiO2(2.54%~3.15%)、MgO(11.83%~13.19%)含量和Mg#值(64.69~70.60)。在火成岩硅碱(TAS)图中(图4a),大部分样品分布在碧玄岩区域;在Nb/Y−Zr/Ti图解(图4b)中,样品全部落在碱性玄武岩范围内;在Na2O−K2O图解中(图4c),样品全部分布在高钾系列;在SiO2−K2O图解中(图4d),所有样品均分布在钾玄岩系列。
表 2 卡房辉绿岩全岩主量元素(%)和微量元素(10−6)含量Table 2. Compositions of whole−rock major (%) and trace elements (10−6) of Kafang diabase分析项目 SS13806 分析项目 SS13806 01 02 03 04 05 06 07 09 01 02 03 04 05 06 07 09 SiO2 43.19 43.87 44.35 44.45 44.32 45.36 45.17 44.56 Nb 23.74 17.98 18.32 26.88 1.13 16.93 1.14 16.31 TiO2 3.05 2.55 2.64 3.15 2.63 2.54 2.63 2.54 Cd 0.30 0.22 0.26 0.27 0.056 0.24 0.053 0.22 Al2O3 12.89 13.16 13.12 13.49 12.93 12.91 12.60 12.72 In 0.29 0.32 0.43 0.91 0.061 0.57 0.047 0.35 TFe2O3 13.53 12.48 12.79 10.12 13.06 11.62 12.73 12.31 Cs 333.4 429.4 339.9 280.7 308.2 256.0 292.2 358.2 MnO 0.170 0.150 0.160 0.150 0.170 0.170 0.190 0.170 Ba 252.8 274.7 299.6 197.9 139.9 169.8 101.5 235.0 MgO 12.94 13.19 11.83 12.27 12.11 12.02 12.18 13.17 La 21.67 16.48 17.38 27.25 17.38 16.52 15.75 14.86 CaO 6.18 6.18 6.93 9.43 7.19 8.95 7.19 6.86 Ce 49.06 37.12 39.30 59.40 27.57 36.91 25.71 33.55 Na2O 0.96 0.83 1.18 0.77 1.15 1.08 1.27 0.96 Pr 6.04 4.64 4.85 7.31 4.87 4.59 4.46 4.25 K2O 3.75 4.52 3.52 3.30 3.36 2.81 3.47 3.89 Nd 28.76 22.22 23.02 33.62 23.01 21.58 21.18 20.73 P2O5 0.50 0.39 0.40 0.60 0.40 0.39 0.40 0.38 Sm 6.29 5.24 5.30 7.01 5.35 5.15 4.78 4.69 LOI 2.26 1.92 1.86 1.80 2.03 1.60 1.59 1.75 Eu 2.05 1.96 2.12 2.82 1.96 1.87 1.64 1.62 Total 99.42 99.24 98.78 99.53 99.35 99.45 99.42 99.31 Gd 6.83 5.68 5.93 8.28 5.68 5.66 5.33 5.40 Li 55.25 58.63 46.99 39.27 14.28 33.77 11.68 45.94 Tb 0.99 0.79 0.85 1.16 0.84 0.79 0.75 0.76 Be 0.54 0.81 0.49 0.43 0.18 0.56 0.15 0.63 Dy 4.91 4.11 4.22 5.69 4.22 4.00 3.99 4.11 Sc 13.79 17.76 14.18 11.48 12.98 12.38 12.61 14.96 Ho 0.83 0.67 0.68 0.93 0.70 0.66 0.64 0.66 V 156.5 151.2 154.7 138.1 11.27 144.1 12.13 142.2 Er 2.17 1.77 1.76 2.46 1.78 1.86 1.79 1.81 Cr 342.2 404.6 394.5 175.0 124.2 380.2 132.1 371.1 Tm 0.27 0.22 0.23 0.32 0.22 0.21 0.20 0.21 Co 38.59 33.53 34.26 20.14 2.55 31.15 3.07 33.55 Yb 1.42 1.13 1.15 1.68 1.06 1.25 1.23 1.25 Ni 159.6 161.1 161.8 96.34 11.29 147.1 14.91 145.0 Lu 0.21 0.16 0.17 0.25 0.15 0.17 0.16 0.16 Cu 117.1 94.72 101.7 80.63 4.84 74.57 4.65 75.75 Hf 4.46 3.59 3.59 4.71 0.51 3.41 0.45 3.28 Zn 115.3 109.1 111.7 104.1 11.14 97.14 12.70 105.8 Ta 1.75 1.37 1.48 2.08 0.09 1.33 0.10 1.29 Ga 12.86 12.97 12.19 14.47 7.64 12.14 6.55 11.12 Pb 1.76 1.72 2.11 1.90 0.72 1.87 0.40 1.58 Rb 705.8 881.6 641.4 667.1 518.3 540.0 477.7 734.4 Bi 0.46 0.29 0.55 0.46 0.053 0.27 0.002 0.14 Sr 570.0 568.9 627.7 743.6 591.5 693.5 566.7 684.2 Th 3.03 2.30 2.32 3.99 2.19 2.02 2.05 2.37 Y 16.15 13.11 13.71 18.72 13.66 12.60 12.96 13.17 U 0.82 0.61 0.66 1.02 0.086 0.61 0.071 0.58 Zr 139.2 106.5 108.6 152.5 13.96 101.1 12.63 97.97 Mg# 65.45 67.68 64.69 70.6 64.75 67.2 65.46 67.94 卡房辉绿岩具有较低的稀土含量(∑REE=87.6×10−6~158.16×10−6),稀土元素球粒陨石标准化图解呈右倾式分布(图5a),轻稀土元素相对富集,重稀土元素相对亏损((La/Yb)N=8.53~11.77)。在微量元素原始地幔标准化图解中(图5b),所有样品富集Rb、K、Sr等大离子亲石元素,亏损Nb、Ta、Zr、Hf等高场强元素,两个样品具有较大的Nb、Ta、Zr、Hf负异常。稀土元素和微量元素均呈现出与洋岛玄武岩相似的分布特征,仅Rb、K、Sr等活泼元素表现出较大的异常特征。
4.3 Sr−Nd−Pb同位素
卡房辉绿岩全岩Sr−Nd−Pb同位素分析结果见表3和表4。同位素参数按照t=77 Ma进行校正。卡房辉绿岩样品具有较高且一致的初始87Sr/86Sr同位素比值(0.70782~0.70791)和正的εNd(t)值(2.07~2.29)。初始铅同位素组成中,(206Pb/204Pb)t=18.286~18.465,(207Pb/204Pb)t=15.668~15.717,(208Pb/204Pb)t=37.763~38.830。所有样品均分布于北半球参考线的左侧,指示样品含有较高的放射性铅含量。
表 3 卡房辉绿岩Sr−Nd同位素组成Table 3. Sr−Nd isotopic compositions of Kafang diabase样品 年龄/Ma Rb/10−6 Sr/10−6 87Sr/86Sr (87Sr/86Sr)i Sm/10−6 Nd/10−6 143Nd/144Nd (143Nd/144Nd)i εNd(t) SS13806-10 77 478 566 0.71056 0.70791 4.78 21.18 0.51272 0.51266 2.29 SS13806-11 77 734 684 0.71119 0.70782 4.69 20.73 0.51271 0.51265 2.07 表 4 卡房辉绿岩Pb同位素组成Table 4. Pb isotopic compositions of Kafang diabase样品 年龄/Ma 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb (206Pb/204Pb)t (207Pb/204Pb)t (208Pb/204Pb)t Φ μ Th/U SS13806-07 77 18.622±0.003 15.724±0.001 39.212±0.006 18.465 15.717 37.763 0.583 9.68 3.96 SS13806-09 77 18.610±0.007 15.683±0.008 39.254±0.014 18.286 15.668 38.830 0.579 9.61 3.98 注:Φ和μ为源区特征值。 5. 讨 论
5.1 成岩年龄
前人对个旧地区铁镁质岩石的研究较少,仅有少量关于其形成年代的报道。其中,由于受限于分析技术手段,冶金工业部西南冶金地质勘探公司(1984)认为卡房辉绿岩是燕山早期的产物。程彦博(2012)利用LA−ICP−MS方法对老厂铁镁质岩墙和羊坝底煌斑岩中的锆石进行U−Pb测年,获得的年龄分别为82 Ma和77 Ma。张颖等(2013)对个旧西区的贾沙辉长岩进行SIMS锆石U−Pb定年,认为贾沙辉长岩的侵位年代为84 Ma。本次研究所获得的卡房辉绿岩墙岩浆锆石谐和年龄为77 Ma,与前人报道的个旧铁镁质岩石年龄接近。晚白垩世华南板块西部滇东南及桂西北地区广泛发育大规模成岩成矿事件,个旧杂岩体及与花岗岩相关的锡铜多金属成矿系统形成年龄为77~85 Ma,老君山岩体及与花岗岩相关的都龙锡钨多金属成矿系统形成年龄为89~95 Ma,薄竹山岩体及与花岗岩相关的白牛厂银钨锡多金属成矿系统形成年龄为88~91 Ma,广西大厂龙箱盖岩体及锡多金属成矿系统形成年龄为90~100 Ma,广西大明山岩墙群及钨锡多金属成矿系统形成年龄年龄为89~94 Ma(程彦博等, 2008; 陈永清等, 2020)。上述事实表明晚白垩世成岩成矿事件时限为77~100 Ma,卡房辉绿岩的形成时代在此范围内,其岩浆作用属于燕山期晚白垩世岩浆大爆发阶段(Ma et al., 2013),是对华南地区中生代大规模成岩成矿事件的响应。
此外,锆石样品中可见少量继承锆石,继承锆石存在两种类型:一种为浑圆状锆石,锆石年龄为2409 Ma和2616 Ma;另一种为震荡环带较发育的锆石,锆石年龄为290 Ma。这些继承锆石是对个旧地区新太古代、古元古代、晚古生代岩浆和变质事件的响应。年龄结果表明,在290 Ma左右个旧地区存在岩浆作用,与古特提斯分支洋—哀牢山洋东向俯冲至华南板块之下的相关岛弧岩浆作用阶段相吻合(Xu et al., 2007, 2008; Hou et al, 2017)。2409 Ma和2616 Ma的继承锆石呈浑圆状且环带不发育,且具有较低的Th/U比值(0.12~0.39),这些特征暗示其可能为变质锆石(吴浩等,2023)。表明在新太古代—古元古代期间,个旧地区经历了一次较为重要的构造热事件并形成了变质基底,该变质基底构成了扬子板块的雏形(杜远生和童金南, 2008)。除本次研究之外,在扬子板块其他地区也有大量太古宙和古元古代年龄数据报道。例如,湖北崆岭地区高级变质岩和碎屑岩中的残留锆石、碎屑锆石年龄分别为2.0~1.8 Ga、3.8~2.9 Ga(Qiu et al., 2000; 柳小明等, 2005; Zhang et al., 2006a, 2006b; 焦文放等, 2009);湖北京山、湖南宁乡和贵州镇远煌斑岩中捕获锆石年龄2.9~2.5 Ga(Zheng et al., 2004);攀西正长岩中继承锆石年龄2.8~2.7 Ga(刘红英等, 2004);扬子陆块中东部宿松县斜长角闪岩锆石年龄为2.5 Ga(王翔等, 2020)。这些年龄数据表明扬子板块内可能广泛分布太古宙和古元古代变质基底。
新的锆石测年结果表明,卡房辉绿岩形成于晚白垩世。此外,个旧地区还存在新太古代和古元古代由构造热事件形成的变质基底,以及早二叠世的岩浆活动。推测2409 Ma、2616 Ma和290 Ma的锆石可能来源于岩浆同化地壳围岩。
5.2 岩石成因及源区特征
镁铁质岩墙是由幔源玄武质岩浆充填伸展断裂形成的浅层侵入体,其地球化学特征为深入研究深部岩浆过程和地幔源区的组成提供了依据(Halls and Fahrig, 1987)。目前关于OIB型铁镁质岩石成因仍然存在争议,其形成机制可归结为地幔柱或者其他类型的软流圈地幔上涌(Niu et al., 2012; Søager et al., 2013; Buiter and Torsvik, 2014)。从时空分布来看,晚白垩世个旧及相邻区域内不存在地幔柱活动的证据,个旧铁镁质岩墙的形成不可能与地幔柱活动有关,而可能是软流圈地幔上涌导致。晚白垩世铁镁质岩石在个旧地区除卡房辉绿岩外,其他同时代的铁镁质岩石还包括贾沙辉长岩(84 Ma)、老厂铁镁质岩墙(82 Ma)和羊坝底煌斑岩(77 Ma)。张颖等(2013)认为贾沙辉长岩起源于富集地幔较低程度的部分熔融。程彦博(2012)认为老厂铁镁质岩墙和羊坝底煌斑岩来源于富集地幔的部分熔融,并有明显的地壳混染。此外,华南板块西缘亦广泛分布其他晚白垩世铁镁质、超铁镁质岩石。如在黔西南白层地区,陈懋弘等(2009)报道了晚白垩世超基性岩墙(84 Ma)的成因是软流圈上涌导致的富集地幔部分熔融并经历了一定程度的地壳混染。Liu et al. (2010b)报道了贵阳西南鲁容—阴河地区的碱性铁镁质岩墙(85~88 Ma),认为其是由软流圈上涌引起的。广西大厂由花岗斑岩岩墙、闪长玢岩岩墙、次玄武岩岩墙等组成的岩墙群(91 Ma)形成于活动大陆边缘环境(黎应书等, 2011)。赵永贵等(1992)通过地震层析法对滇西深部构造进行对比研究,地震影像表明个旧地区岩石圈地幔相较于外围地区明显减薄,认为这是由软流圈地幔上涌导致的。广泛分布的铁镁质岩墙暗示晚白垩世华南板块西缘可能存在区域性伸展作用,这些铁镁质岩墙可能是由软流圈地幔上涌引起的。
地幔源区以及岩浆后期过程(主要是岩浆侵位过程中的流体作用)对微量元素的影响程度可通过微量元素比值进行区分,受地幔源区控制的元素通常分布在地幔序列(Pearce et and Peate, 1995; 朱永峰等, 2007; 冯志硕等, 2010)。在Nb/Yb−Ta/Yb图解(图6a)和Nb/Yb−La/Yb图解中(图6b),大部分样品落在地幔序列且集中分布于洋岛玄武岩附近,仅有两个样品离群分布,说明这些具有洋岛玄武岩特征的元素主要受控于地幔源区特征。在微量元素原始地幔标准化图解中(图5b),微量元素分布特征与洋岛玄武岩类似,仅Rb、Ba、Nb、Ta、K等活泼元素显示不同程度的异常,这些活动元素的异常可能由后期蚀变作用引起。与洋岛玄武岩相似的地球化学特征暗示卡房辉绿岩可能来自富集地幔源区,软流圈地幔物质上涌导致克拉通边缘岩石圈地幔部分熔融,形成小体积呈分散分布的具洋岛玄武岩特征的玄武质岩浆(Lebedev et al., 2006)。
N−MORB—正常洋中脊玄武岩;E−MORB—富集洋中脊玄武岩;OIB—洋岛玄武岩Figure 6. Nb/Yb−Ta/Yb diagram (a) and Nb/Yb−La/Yb diagram (b) (after Pearce et al., 1995; Feng Zhishuo et al., 2010)N−MORB−N−type mid−ocean ridge basalt; E−MORB−E−type mid−ocean ridge basalt; OIB−Oceanic island basalt高场强元素和稀土元素在风化和蚀变过程中具有稳定性,元素含量主要受地幔成分和部分熔融程度的控制。因此,其元素含量和比值可用于判别岩浆源区和确定部分熔融的程度(Staudigel and Hart, 1983; Wang et al., 2007; Zhao and Zhou, 2007; Zhang et al., 2015; 刘浪等, 2020)。La具有比Sm更强的不相容性,在尖晶石或石榴子石地幔部分熔融过程中,La、Sm更倾向于在熔体中富集。Sm相对于Yb的富集主要依赖于熔融过程的残留体中是否存在石榴子石。因此,可通过La、Sm、Yb元素和元素比值研究岩浆源区及部分熔融的程度。在Sm−Sm/Yb图解(图7a)和La/Sm−Sm/Yb图解(图7b)中,样品全部分布在石榴石二辉橄榄岩演化曲线上,指示卡房辉绿岩岩浆源区物质为石榴石二辉橄榄岩,并且部分熔融程度介于5%~15%。
图 7 Sm−Sm/Yb(a)和La/Sm−Sm/Yb图解(b)(据Aldanmaz et al., 2000)N−MORB—正常洋中脊玄武岩;E−MORB—富集洋中脊玄武岩;DM—亏损地幔;PM—原始地幔Figure 7. Sm−Sm/Yb (a) and La/Sm−Sm/Yb diagram (b) (after Aldanmaz et al., 2000)N−MORB−N−type mid−ocean ridge basalt; E−MORB−E-type mid-ocean ridge basalt; DM−Depleted mantle; PM−Primitive mantle岩浆体系中岩浆的结晶或分异对同位素的分馏作用影响很小,故而Sr−Nd−Pb同位素可以很好地示踪岩浆物质来源。软流圈地幔在同位素组成上具有亏损地幔特征(低初始87Sr/86Sr值和高εNd(t)值),岩石圈地幔由于长期与对流地幔隔离,并与熔体相互作用,普遍具有富集同位素特征(高初始87Sr/86Sr值和低εNd(t)值)(Zhang et al., 2008)。卡房辉绿岩初始87Sr/86Sr同位素比值(0.70782~0.70791),和εNd(t)值(2.07~2.29)与富集岩石圈地幔相似,在(87Sr/86Sr)i−εNd(t)图解(图8a)中,岩石样品位于EM2端元附近,指示卡房辉绿岩源区以富集地幔为主。同样,在(206Pb/204Pb)t−(207Pb/204Pb)t图解(图8b)中,样品均位于北半球参考线左侧EM2附近。Sr−Nd−Pb同位素特征暗示卡房辉绿岩岩浆源区具有EM2特征。
图 8 (87Sr/86Sr)i−εNd(t)图解(a)(据Zimmer et al., 1995)和(206Pb/204Pb)t−(207Pb/204Pb)t图解(b)(据Zindler and Hart, 1986,t=77 Ma;MORB据Zimmer et al., 1995;OIB据White and Duncan, 1995;EM1和EM2据Hart, 1988)MORB—洋中脊玄武岩;OIB—洋岛玄武岩;EM1—富集1型地幔;EM2—富集2型地幔;BSE—全硅酸盐地球Figure 8. (87Sr/86Sr)i−εNd(t) diagram (a) (after Zimmer et al., 1995) and (206Pb/204Pb)t−(207Pb/204Pb)t diagram (b) (after Zindler and Hart, 1986, t=77 Ma; MORB after Zimmer et al., 1995; OIB after White and Duncan, 1995; EM1 and EM2 after Hart, 1988)MORB−Mid−ocean ridge basalt; OIB−Oceanic island basalt; EM1−1−type enriched mantle; EM2−2−type enriched mantle; BSE−Bulk silicate earth交代地幔熔融形成的小体积富集熔体具有EM2特征(徐义刚, 1999),EM2成分一般存在于岩石圈地幔中的石榴石相稳定区(韩江伟等, 2009),这与La−Sm−Yb元素体系所指示的岩浆源区特征相一致。大量研究也表明华南地区岩石圈地幔受到过流体或熔体的交代作用(Tatsumoto et al., 1992; 范蔚茗和Menzies, 1992; Xu et al., 2003; Yu et al., 2006)。卡房辉绿岩具有高K2O含量(2.81%~4.52%),富集轻稀土元素和不相容元素,与OIB相似的地球化学特征(杨杰等, 2014)。对碱性玄武岩和金伯利岩中的地幔捕虏体的研究表明交代地幔为OIB的主要源区(Niu et al., 2012)。徐峣等(2019)采用天然地震层析成像方法构建了华南东南部上地幔P波速度结构模型,证实了在软流圈顶部存在低速异常带。在大洋或大陆岩石圈深部普遍存在地幔交代岩脉(如辉石岩、角闪石岩等),表明地幔交代初始熔体(富H2O−CO2硅酸盐熔体)可能起源于地震波低速带。在持续的地幔交代作用下,岩石圈地幔逐渐富集。软流圈地幔上涌导致富集岩石圈地幔部分熔融形成卡房辉绿岩的初始熔体。根据基于实验岩石学所得出的地幔固相线,岩浆分离深度可通过CaO/Al2O3−Al2O3图解进行约束(Herzberg, 1992,1995; Condie, 2003),卡房辉绿岩初始熔体形成深度介于2~4 GPa(60~120 km)(图9a)。
在幔源熔体上升过程中,热的岩浆与冷的地壳围岩之间的热交换将不可避免地导致熔体同化混染地壳物质,岩浆的混染作用主要发生在岩浆侵位结晶之前的地壳深部(李宏博等, 2012)。由于幔源岩浆与地壳物质具有不同的地球化学组成特征,地壳混染作用可以很大程度的改变元素组成特征(DePaolo, 1981),因此可通过元素地球化学特征进行示踪。卡房辉绿岩Nb/Ta比值介于11.5~13.6(平均值为12.7),Zr/Hf比值介于27.5~32.3(平均值为29.8),其Nb/Ta和Zr/Hf比值分别与大陆地壳值接近(大陆地壳Nb/Ta=11,Zr/Hf=33,Taylor and McLennan, 1985),指示形成镁铁质岩墙的岩浆受到了地壳物质混染(Weaver, 1991; Green, 1995; Kalfoun et al., 2002)。这与铁镁质岩浆中捕获的继承锆石所指示岩浆中存在地壳物质的结论一致。地壳具有显著的Nb、Ta负异常(Paces and Bell, 1989; Rudnick and Founain, 1995; Barth et al., 2000),卡房辉绿岩中Nb、Ta具有不同程度的负异常(图5b),同样指示岩浆演化过程中存在壳源物质的混染。此外,卡房辉绿岩还具有如下地球化学特征:低Th/U值(3.3~4.1,两个样品值为25.4,28.9)和Nb/Zr(0.08~0.17)值;Nb/U比值(13.07~29.56,平均值24.75)介于大洋玄武岩(52±15)和陆壳(8)之间(Hofmann, 1997, 2003);较低的Th含量(2.02×10−6~3.99×10−6,通常下地壳相较于上地壳Th亏损明显(Barth et al., 2000))。上述元素地球化学特征均表明卡房辉绿岩岩浆在侵位过程中可能混染了下地壳物质。
卡房辉绿岩具有较高的Mg#值(64.69~70.60),大部分样品Cr(124×10−6~405×10−6)、Ni(96×10−6~161×10−6)含量低于初始岩浆(Mg#=71~83,Cr大于1000×10−6,Ni大于400×10−6; Wilson, 1989),这些特征暗示卡房辉绿岩在形成过程中可能经历了较低的铁镁质矿物(如橄榄石、辉石)的分离结晶作用(刘娇等, 2016)。在分离结晶过程中,熔体中相容元素的浓度可发生急剧变化,因此熔体中Ni、Cr、Sr等元素的浓度可用来指示橄榄石、单斜辉石、斜长石等矿物的分离结晶(Hart and Allegre, 1980)。在Cr−Ni图解(图9b)中,指示在卡房辉绿岩的形成过程中经历了单斜辉石的分离结晶。CaO−CaO/Al2O3图解(图9c)显示单斜辉石的分离结晶。Sr−Rb/Sr图解(图9d)指示黑云母的分离结晶。稀土元素球粒陨石标准化图解中无Eu负异常特征表明斜长石的分离结晶作用并不明显。在岩石薄片中辉石、黑云母斑晶的存在也支持这一结论,岩石学和地球化学特征表明辉石、黑云母是卡房辉绿岩主要的结晶分异矿物,而斜长石的分离结晶作用较弱。
结合岩体特征、岩石地球化学特征和区域构造特征,卡房辉绿岩可能形成于区域伸展背景。在强烈伸展减薄作用下,软流圈地幔上涌底侵富集岩石圈地幔并使其部分熔融形成了卡房辉绿岩的初始岩浆,在岩浆侵位过程中同化混染下地壳物质,经过一定程度的的分离结晶作用后形成了卡房辉绿岩(图10)。
5.3 构造环境
关于个旧地区晚白垩世岩浆杂岩体形成的构造环境存在很多不同的观点。贾润幸等(2014)通过对个旧西区的贾沙二长岩和东区的老卡花岗岩进行地球化学研究,认为晚白垩世个旧地区处于燕山期碰撞造山晚期向造山期后过渡的构造环境。黄文龙等(2016)通过对个旧地区代表性的花岗岩、辉长岩和碱性岩进行锆石U−Pb年代学、全岩地球化学和Hf同位素研究,认为个旧杂岩体形成于燕山期板内伸展构造背景。Cheng et al.(2016)通过对位于云南东南部和越南北东部与Sn−W矿床相关的晚白垩岩浆岩的形成年代进行统计分析,认为这些岩浆作用形成于古太平洋板块向欧亚大陆板块之下俯冲产生的安第斯型活动大陆边缘环境。个旧地区辉绿岩墙多隐伏于地下,目前已揭露的辉绿岩墙分布在卡房矿段和老厂矿段。本文首次以卡房矿段巷道中揭露的辉绿岩为研究对象探讨其形成的构造环境。
分离结晶和部分熔融等岩浆作用过程对Zr、Y、Nb、Ti等不相容元素的影响较小(Pearce and Cann, 1973; Pearce and Norry, 1979; Mechede, 1986),因此,可通过这些元素鉴别玄武质岩浆形成的构造环境。在Nb−Zr−Y图解(图11a)、Ti−Zr−Y图解(图11b)和Hf−Th−Ta(图11c)图解中,大部分岩石样品均分布在板内玄武岩范围内,暗示卡房辉绿岩的形成可能与伸展作用有关。铁镁质岩墙的形成与岩石圈伸展作用有关,其可在多种大地构造背景下由源自地幔的玄武质岩浆充填张性裂隙形成,一般来说包括3种解释:板内裂谷、坳拉谷、地幔柱热点(葛小月等, 2003; 程彦博, 2012; 祁生胜等, 2013)。个旧地区的铁镁质岩墙侵入于三叠系个旧组中,并且附近无同时期的沉积建造,在区域上分布大量的陆相火山盆地,与地幔柱形成的呈放射状分布的岩墙群明显不同,因此个旧地区的铁镁质岩墙可能与板内裂谷作用有关。
Figure 11. Trace element tectonic discrimination diagrams (after Pearce and Cann, 1973; Wood, 1980; Mechede, 1986)大量的研究表明,俯冲带镁铁质岩墙可形成于多种动力学背景,如弧后盆地伸展背景(Khan et al., 2007),弧下岩石圈减薄背景(Scarrow et al., 1998)。区域构造演化表明,华南地区早白垩世是弧后扩张和花岗质岩浆活动的鼎盛期,晚白垩世—古近纪则是陆内伸展红盆形成的高峰期(王德滋和舒良树, 2007)。在燕山晚期,个旧所处的右江盆地处于板内演化阶段,盆地内部发生岩石圈减薄、软流圈上涌以及大规模的伸展和拆离,在伸展盆地边缘深大断裂附近出露大量燕山晚期花岗岩和铁镁质岩墙(程彦博, 2012)。在古太平洋板块的低角度俯冲动力学体制下,华南构造体制在135 Ma由挤压转向伸展,中国东部发生大范围弧后伸展作用,形成了大量花岗质岩浆作用和大规模的伸展断陷盆地(李三忠等, 2017)。中国东南部晚白垩世主要处于拉张的构造环境(葛小月等, 2003),表现为沿着一系列大致平行的断裂带形成断陷盆地和伴随的大量A型花岗岩和同期基性岩脉、变质核杂岩以及各种类型的铜金矿床、热液型铀矿。个旧地区基性岩墙与花岗岩共生的岩浆组合指示伸展构造背景,结合卡房辉绿岩的岩体地质特征和地球化学特征,本次研究认为晚白垩世个旧地区处于俯冲带大陆活动边缘形成的伸展构造环境。
6. 结 论
(1)锆石U−Pb定年结果表明卡房辉绿岩年龄为77 Ma。年龄为2409 Ma、2616 Ma、290 Ma的继承锆石指示个旧地区存在新太古代、古元古代的变质基底和早二叠世的岩浆活动。
(2)卡房辉绿岩属于钾玄岩系列,具有低硅、高钾、高镁的特征,富集Rb、K、Sr等大离子亲石元素,亏损Nb、Ta、Zr、Hf等高场强元素,稀土和微量元素分布与OIB相似,Sr−Nd−Pb同位素特征指示其源区为富集岩石圈地幔中的石榴石二辉橄榄岩,部分熔融程度介于5%~15%。
(3)卡房辉绿岩起源于富集岩石圈地幔。其成岩机制为在伸展构造背景下,软流圈地幔上涌底侵富集岩石圈地幔并使其部分熔融,形成了卡房辉绿岩的初始岩浆,在岩浆侵位过程中混染了下地壳物质并经过较弱的分离结晶作用最终形成了卡房辉绿岩。
-
图 1 二连–东乌旗成矿带西乌旗和白乃庙地区地质简图(据Miao LC et al.,2008)
1. Geological map of the Xiwuqi and Bainaimiao areas in the Erlian-Dongwuqi metallogenic belt (modified from Miao LC et al., 2008)
表 1 数据库元数据简表
条目 描述 数据库名称 1∶500 000二连–东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库 数据库作者 王树庆,中国地质调查局天津地质调查中心
胡晓佳,中国地质调查局天津地质调查中心
杨泽黎,中国地质调查局天津地质调查中心数据时间范围 2014—2018年 地理区域 地理坐标为:东经110°00′~120°00′,北纬41°40′00″~46°40′00″ 数据格式 MapGIS 数据量 210 MB 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 中国地质调查局地质调查项目“二连–东乌旗成矿带西乌旗和白乃庙地区地质矿产调查”(DD20160041) 语种 中文 数据库组成 本地质图空间数据库包括1∶500 000地质图库、地理图、系统库、字库。地质图库由主图、辅图及图饰组成;主图包括地层、侵入岩、脉岩、地质界线、断层、注记、断层性质及同位素年龄等;辅图包括构造单元划分和地层分区;图饰包括图例、图框、编图参数及责任表等 表 2 二连–东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库地图参数
坐标系类型 投影类型 椭球参数 比例尺分母 坐标单位 参数比例 投影平面直角 兰伯特等角圆锥投影坐标系 北京54/克拉索夫斯基1940年椭球 500 000 mm 1∶1 第一标准经纬度 第二标准经纬度 中央子午线经度 投影原点纬度 图框经度范围 图框纬度范围 42°50′00″ 45°40′00″ 114°00′00″ 41°30′00″ 109°56′00″~
119°56′00″41°33′00″~
46°53′00″表 3 编图工作主要进展
进展 前人观点 具体内容 意义 重新划分了古生代地层分区 以贺根山蛇绿岩带为界划分为天山兴蒙和华北地层大区 以贺根山、索伦–西拉沐伦蛇绿岩带为界将兴蒙造山带中段的古生代地层划分为洪格尔–东乌旗、锡林浩特和包尔汗图–白乃庙3个地层区 与前人地层分区方案相比,本次除考虑生物区系划分外,结合蛇绿岩等重要构造边界的分区意义,与构造单元划分统一起来 在洪格尔–东乌旗地层分区新建早泥盆世吉林宝力格组(D1j)、晚泥盆世汗乌拉巴格组(D3h)、早石炭世汗敖包组(C1h) 本次新建 新发现的Monograptus uniformis笔石组合指示吉林宝力格组为早泥盆世早期半深海沉积;含有斜方薄皮木等植物化石的晚泥盆世晚期汗乌拉巴格组为海陆交互相沉积;早石炭世汗敖包组为陆相火山岩建造 进一步完善了东乌旗地区晚古生代地层格架。本区从顶志留世卧都河组以来进入泥盆纪连续的被动陆缘沉积,直到晚泥盆世向陆相转变 重新厘定了温都尔庙群、白乃庙组、阿木山组及寿山沟组 温都尔庙群(长城系–蓟县系):下部桑达来呼都格火山岩,上部为哈尔哈达组碎屑岩;白乃庙组(青白口系):长英质及基性片岩;阿木山组:塔林宫地区建组 将温都尔庙群原划桑达来呼都格组重新厘定为二叠纪蛇绿混杂岩和洋岛海山建造,原划哈尔哈达组保留,时代为奥陶纪;将白乃庙组时代重新厘定为早奥陶世–中志留世;根据新识别出的植物化石,将达茂旗北塔林宫地区阿木山组下部与赤峰地区白家店组对比,上部与酒局子组对比;明确西乌旗地区寿山沟为半深海相浊积岩沉积 早古生代温都尔庙群为弧前增生楔,白乃庙组代表岩浆弧,与早古生代蛇绿岩共同代表了南部沟弧盆体系;晚古生代阿木山组的重新厘定,解决了地层分区与构造单元划分的不一致,使之统一起来。寿山沟组沉积环境表明晚古生代洋盆并未封闭 重新厘定了古生代侵入岩时空分布及性质 部分年龄为K–Ar、Rb–Sr方法测定 本次编图根据锆石U–Pb年龄更新了兴蒙造山带中段古生代侵入岩时代,全区大部分侵入体都有精确年龄限定。在二连–东乌旗地区,将大量原划二叠纪侵入岩重新厘定为石炭纪和白垩纪,将泥盆纪侵入岩重新厘定为奥陶纪;将白音宝力道地区泥盆纪侵入岩重新厘定为奥陶纪和志留纪 兴蒙造山带中段古生代岩浆作用主要分为奥陶纪–早志留世和晚石炭–早二叠世两期,分别代表了早、晚古生代大洋俯冲及弧陆碰撞和碰撞造山过程。与前人相比,汇聚了大量高精度锆石年龄,明确了岩浆作用时空分布及构造背景及对造山过程的约束 在早古生代北部造山带/弧盆系新识别出萨音敖包蛇绿混杂岩 本次工作新厘定 在阿巴嘎旗南部萨音敖包地区新识别出早古生代(519 Ma)蛇绿岩,并在其中识别出代表初始俯冲的玻安质岩石,其北侧为岛弧型侵入岩(485~493 Ma),南侧为温都尔庙群哈尔哈达组增生楔,指示大洋向北的俯冲极性 进一步明确了早古生代大洋向南北双向俯冲的构造格局,较为细致的刻画了增生造山带结构–由洋向两侧分别为增生楔、蛇绿岩、岛弧及弧后盆地 在图上表达出二道井–迪彦庙蛇绿岩带 本次工作新厘定 分布于苏右旗南部二道井(298 Ma)、达青牧场(314~318 Ma)和迪彦庙(340 Ma)地区,位于石炭纪白音宝力道–西乌旗岛弧南侧,代表了石炭纪大洋板片向北俯冲。时代介于贺根山与索伦–西拉沐伦蛇绿岩之间 与苏尼特左旗–西乌旗岛弧及沉积建造共同代表了西拉沐伦蛇绿岩北侧发育的石炭纪增生带,反映了由北向南逐次拼贴增生的过程 新识别出乌兰沟早二叠世蛇绿岩 原划为温都尔庙群桑达来呼都格组 乌兰沟地区原划温都尔庙群桑达来呼都格组中识别出早二叠世蛇绿混杂岩,辉长岩年龄为292±10 Ma,其中还发育洋岛海山建造(包括OIB型玄武岩和盖帽碳酸盐岩)。蛇绿岩类型为SSZ型 进一步明确了索伦–乌兰沟–西拉沐伦蛇绿岩带的空间分布、时代及分区意义,对构造单元划分及地层分区具有重要约束作用。同时二叠纪SSZ型蛇绿岩的确定也表明晚古生代洋盆未封闭 重新划分了构造单元 以贺根山蛇绿岩带为界划分为北部西伯利亚板块和南部华北板块 以索伦–西拉沐伦蛇绿岩带为界将兴蒙造山带中段划分为北部的西伯利亚板块和南部的华北板块2个一级构造单元,再以贺根山蛇绿岩带为界将北部西伯利亚板块划分为西伯利亚东南缘陆缘增生带和锡林浩特复合增生带2个二级构造单元,南侧华北板块以赤峰–白云鄂博断裂划分为华北北缘增生带和华北陆块2个二级构造单元 考虑到增生造山带的生长方式,将蛇绿岩作为一级构造单元–板块的界线,其他都是拼贴在板块边缘的岛弧、微陆块、增生楔等地体。与前人划分方案相比,未将造山带作为独立构造单元来划分 1 Metadata Table of Database (Dataset)
Items Description Database (dataset) name 1∶500 000 Geological Map Spatial Database of the Xiwuqi and Bainaimiao Areas in the Erlian-Dongwuqi Metallogenic Belt Database (dataset) authors Wang Shuqing, Tianjin Center, China Geological Survey
Hu Xiaojia, Tianjin Center, China Geological Survey
Yang Zeli, Tianjin Center, China Geological SurveyData acquisition time 2014—2018 Geographic area 110°00'–120°00' E, 41° 40'00"–46°40'00" N Data format MapGIS Data size 210 MB Data service system URL http://dcc.cgs.gov.cn Fund project China Geological Survey project named ‘Geological and Mineral Survey of the Xiwuqi and Bainaimiao Areas in the Erlian-Dongwuqi Metallogenic Belt’ (DD20160041) Language Chinese Database (dataset) composition This geological map spatial database includes a 1∶500 000 geological map database, geographical map, system database and font database. The geological map database consists of a main map, auxiliary map and map appearance. The main map includes strata, intrusive rocks, dikes, geological boundaries, faults, annotations, fault properties and isotopic age. The auxiliary map includes tectonic unit division and stratigraphic division. The map appearance includes a legend, drawing frame, drawing parameters and the author information. 2 Parameters of the geological map spatial database of the Xiwuqi and Bainaimiao areas in the Erlian-Dongwuqi metallogenic belt
Coordinate system type Projection type Ellipsoid parameter Scale denominator Coordinate unit Parameter proportion Projection rectangular coordinates Coordinate system of Lambert isometric conical projection Beijing 54/Ellipsoid Krasovski 1940 500 000 mm 1∶1 First standard longitude and latitude Second standard longitude and latitude Longitude of central meridian Latitude of projection origin Frame longitude range Frame latitude range 42°50′00″ 45°40′00″ 114°00′00″ 41°30′00″ 109°56′00″–
119°56′00″41°33′00″–
46°53′00″3 Main achievements in map compilation
Achievement Previous study Specific Content Significance Paleozoic stratigraphic sub-regions are re-divided The Xing’an–Mongolian Orogeny is divided into the Tianshan-Xingmeng and North China stratigraphic regions by the Hegenshan ophiolitic belt With the Hegenshan-Suolun-Xilamulun ophiolitic belt as the boundary, the Paleozoic strata in the middle part of the Xing’an–Mongolian orogeny are divided into three stratigraphic areas, namely, Hongeer-Dongwuqi, Xilinhaote and Baoerhantu-Bainaimiao Compared with previous stratigraphic zoning schemes, besides considering the division of biota, we considered important tectonic boundaries, such as ophiolitic belts, in stratigraphic division The Early Devonian Jilin Baolige Formation (D1j), the Late Devonian Hanwulabage Formation (D3h) and the Early Carboniferous Hanaobao Formation (C1h) have been newly established in the Honge’er-Dongwuqi stratigraphic sub-region Newly established in this project The newly discovered Monograptus uniformis graptolite assemblage indicates that the Jilinabolige Formation is a semi-deep-sea deposit in the Early Devonian. The Hanwulabage Formation in the late Devonian, which contains plant fossils such as Schizocarpus orbicularis, is a set of marine-terrigenous facies sediments. The Hanaobao Formation in the Early Carboniferous is a continental volcanic rock formation The Late Paleozoic stratigraphic framework in the Dongwuqi area has been further improved. This area had continuous passive continental margin deposit since the Woduhe Formation in the Pridoli series and has transitioned to continental facies in the Late Devonian, ending the oceanic evolution The Wenduermiao Group, Bainaimiao Formation, Amushan Formation and Shoushangou Formation have been redefined The Wenduermiao Group (Changcheng System-Jixian System): the lower part consists of Sangdalaihuduge volcanic rock and the upper part consists of clastic rocks of the Haarhadda Formation; the Bainaimiao Formation (Qingbaikou System): felsic and basic schist; Amushan Formation: established in the Talinggong area The original Wenduermiao Group, Sangdalaihuduge Formation, is redefined as a Permian ophiolitic mélange and ocean island seamount formation, while the original Haarhadda Formation is preserved as an Ordovician formation. The era of the Bainaimiao Formation is redefined as Early Ordovician-Middle Silurian. According to the newly identified plant fossils, the Amushan Formation in the northern Talingong area of Damaoqi is correlated with the Baijiadian Formation in the Chifeng area in the lower part, and with the Jiujuzi Formation in the upper part. It is clear that Shoushangou in the Xiwuqi area is a turbidite deposit with semi-deep-sea facies. The Early Paleozoic Wenduermiao Group is a pre-arc accretionary wedge, and the Bainaimiao Formation represents magmatic arc, which together with the Early Paleozoic ophiolite represents the southern trench-arc basin system. The redefinition of the Late Paleozoic Amushan Formation has reconciled the inconsistencies between stratigraphic division and tectonic unit division in an effort to unify them. The sedimentary environment of the Shoushangou Formation indicates that the Late Paleozoic ocean basin has not closed The temporal-spatial distribution and properties of Paleozoic intrusive rocks have been re-determined The era is partially determined by the K-Ar, Rb-Sr method. According to zircon in-situ U-Pb aging, this map updates the era of the Paleozoic intrusive rocks in the middle part of the Xing’an–Mongolian orogeny. Most of the intrusive bodies in the study area are of precise ages. In the Erlian-Dongwuqi area, a large number of intrusive rocks originally classified as Permian are redefined as Carboniferous and Cretaceous, and the Devonian intrusive rocks in Baiyinbaolidao area are redefined as Ordovician and Silurian Paleozoic magmatism in the middle part of the Xing’an–Mongolian orogeny is divided into two main stages: Ordovician-Early Silurian and Late Carboniferous-Early Permian, respectively representing the Early and Late Paleozoic ocean subduction, arc-continent collision and final closure of the ocean. Compared with previous compilation efforts, we have gathered a large number of high-precision zircon ages, and have clearly defined the temporal-spatial distribution of magmatism, tectonic background and constraints on the orogeny processes The Sayin Aobao Ophiolitic Mélange is newly identified in the Early Paleozoic Northern Orogenic Belt/Arc Basin System Newly determined in this map compilation The Early Paleozoic (519 Ma) ophiolite is newly identified in the Sayin Aobao area in the south of Abaga Banner, in which Bininitic rocks representing initial subduction were identified. The north side features island arc intrusive rocks (485–493 Ma), and the south side features accretionary wedge of the Haarhadda Formation of the Wenduermiao Group, indicating the northward subduction polarity The tectonic pattern of bi-direction subduction of the Early Paleozoic ocean is further clarified and the accretionary orogenic belt structure is described in detail; namely, accretionary wedge, ophiolite, island arc and back-arc basin on both sides from the ocean The Erdaojing-Diyanmiao ophiolitic belt is expressed on the map Newly determined in this project. Distributed in the Erdaojing (298 Ma), Daqingmuchang (314–318 Ma) and Diyanmiao (340 Ma) areas in the south of the Sunidyou Banner; located on the south side of the Carboniferous Baiyinbaolidao-Xiwuqi Island Arc, representing northward subduction of the Carboniferous ocean; age is between Hegenshan and Suolun-Xilamulun ophiolite Together with the Sunitezuoqi-Xiwuqi island arc and sedimentary formation, it represents the Carboniferous accretion zone developed on the northern side of the Xilamulun ophiolite, reflecting the process of successive collision and accretion from north to south The Early Permian ophiolite in Wulangou is newly identified Originally included in the Sandalaihuduge Formation of the Wenduermiao Group The Early Permian Ophiolitic Mélange is identified in the Sandalaihuduge Formation of the Wenduermiao Group in the Wulangou area. Gabbro age is 292± 10 Ma and ocean island seamount formation (including OIB basalt and cap carbonate) is also developed. The ophiolite is of SSZ type The spatial distribution, age and zoning significance of the Suolun-Wulangou-Xilamulun ophiolitic belt are further clarified, which is conducive to more precise tectonic unit division and stratigraphic division. Meanwhile, the determination of the Permian SSZ ophiolite also indicates that the Late Paleozoic ocean basin has not closed Tectonic units are re-divided Bounded by the Hegenshan ophiolitic belt, it is divided into the northern Siberian plate and North China plate With the Suolun-Xilamulun ophiolitic belt as the boundary, the middle part of the Xing’an–Mongolian orogeny is divided into two first-order tectonic units: the northern Siberian plate and the North China plate in the south. The northern Siberian plate is divided into two secondary tectonic units, specifically, the continental margin accretion zone and the Xilinhot composite accretion zone. While the North China plate on the south side is divided into two secondary tectonic units, namely, the northern margin accretion zone and the North China continental block, with the boundary of the Chifeng–Bayan Obo fault Considering the growth mode of accretionary orogenic belts, ophiolite is adopted as a main boundary of the first-class tectonic unit (plate), while the others are geobodies attached at the edge of the plate, such as island arcs, micro-continents and accretionary wedges. In contrast with previous division schemes, the orogenic belt is not taken as an independent tectonic unit -
[1] Chen B, Jahn B M, Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 34(3): 245−257. doi: 10.1016/j.jseaes.2008.05.007
[2] Jian P, Liu D Y, Kröner A, Windley B F, Shi Y R, Zhang W, Zhang F Q, Miao L C, Zhang L Q, Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 118(1–2): 169−190. doi: 10.1016/j.lithos.2010.04.014
[3] Jian P, Liu D, Kröner A, Windley B F, Shi Y R, Zhang F Q, Shi G H, Miao L C, Zhang W, Zhang Q, Zhang L Q, Ren J S. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 101(3–4): 233−259. doi: 10.1016/j.lithos.2007.07.005
[4] Jian P, Kröner A, Windley B F, Shi Y R, Zhang W, Zhang L Q, Yang W R. 2012. Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”[J]. Lithos, 142–143: 48−66. doi: 10.1016/j.lithos.2012.03.007
[5] Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3–4): 207−224. doi: 10.1016/j.jseaes.2005.09.001
[6] Li Y J, Wang G H, Santosh M, Wang J F, Dong P P, Li H Y. 2018. Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 59: 126−143. doi: 10.1016/j.gr.2018.02.018
[7] Li Y J, Wang G H, Santosh M, Wang J F, Dong P P, Li H Y. 2020. Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia, North China[J]. Earth and Planetary Science Letters, 535: 116087. doi: 10.1016/j.jpgl.2020.116087
[8] Liu J F, Li J Y, Chi X G, Qu J F, Hu Z C, Fang S, Zhang Z. 2013. A late-Carboniferous to early early-Permian subduction-accretion complex in Daqing pasture, southeastern Inner Mongolia: Evidence of northward subduction beneath the Siberian paleoplate southern margin[J]. Lithos, 177: 285−296. doi: 10.1016/j.lithos.2013.07.008
[9] Liu Y J, Li W M, Feng Z Q, Wen Q B, Neubauer F, Liang C Y. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013
[10] Luo Z W, Xu B, Shi G Z, Zhao P, Faure M, Chen Y. 2016. Solonker ophiolite in Inner Mongolia, China: A late Permian continental margin-type ophiolite[J]. Lithos, 261: 72−91. doi: 10.1016/j.lithos.2016.03.001
[11] Miao L C, Fan W M, Liu D Y, Zhang F Q, Shi Y R, Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(5–6): 348−370. doi: 10.1016/j.jseaes.2007.11.005
[12] Wan B, Li S H, Xiao W J, Windley B F. 2018. Where and when did the Paleo-Asian ocean form?[J]. Precambrian Research, 317: 241−252. doi: 10.1016/j.precamres.2018.09.003
[13] Wei R H, Gao Y F, Xu S C, Santosh M, Xin H T, Zhang Z M, Li W L, Liu Y F. 2018. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia[J]. Lithos, 308–309: 242−261. doi: 10.1016/j.lithos.2018.03.010
[14] Xiao W J, Windley B F, Han C M, Liu W, Wan B, Zhang J E, Ao S J, Zhang Z Y, Song D F. 2018. Late Paleozoic to Early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020
[15] Xiao W J, Windley B F, Hao J, Zhai M G. 2003. Accretion leading to collision and the Permian Solonker Suture, Inner Mongolia, China; termination of the Central Asian orogenic belt[J]. Tectonics, 22(6): 1069.
[16] Xiao W J, Windley B F, Sun S, Li J L, Huang B C, Han C M, Yuan C, Sun M, Chen H L. 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth & Planetary Sciences, 43(1): 477−507.
[17] Xu B, Charvet J, Chen Y, Zhao P, Shi G Z. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 23(4): 1342−1364. doi: 10.1016/j.gr.2012.05.015
[18] Xu B, Zhao P, Wang Y Y, Liao W, Luo Z W, Bao Q Z, Zhou Y H. 2015. The pre-Devonian tectonic framework of Xing’an-Mongolia orogenic belt (XMOB) in North China[J]. Journal of Asian Earth Sciences, 97(Part B): 183−196.
[19] Zhang S H, Zhao Y, Song B, Yang Z Y, Hu J M, Wu H. 2007. Carboniferous granitic plutons from the northern margin of the North China block: implications for a late Palaeozoic active continental margin[J]. Journal of the Geological Society, 164(2): 451−463. doi: 10.1144/0016-76492005-190
[20] Zhang S H, Zhao Y, Song B, Hu J M, Liu S W, Yang Y H, Chen F K, Liu X M, Liu J. 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications[J]. Geological Society of America Bulletin, 121(1–2): 181−200.
[21] Zhang S H, Zhao Y, Ye H, Liu J M, Hu Z C. 2014. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt[J]. Geological Society of America Bulletin, 126(9–10): 1275−1300. doi: 10.1130/B31042.1
[22] Zhang Z C, Li K, Li J F, Tang W H, Chen Y, Luo Z W. 2015. Geochronology and geochemistry of the Eastern Erenhot ophiolitic complex: Implications for the tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt[J]. Journal of Asian Earth Sciences, 97(Part B): 279−293.
[23] Zhou J B, Wilde S A, Zhao G C, Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 186: 76−93. doi: 10.1016/j.earscirev.2017.01.012
[24] 鲍庆中, 张长捷, 吴之理, 王宏, 李伟, 桑家和, 刘永生. 2007. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. 吉林大学学报(地球科学版), 37(1): 15−23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200701003 [25] 郭喜运, 孙华山, 董挨管, 任建勋, 徐瑞英, 高博. 2019. 内蒙古锡林浩特北早二叠世花岗岩类定年及成因[J]. 中国地质, 46(6): 1396−1409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201906012 [26] 何付兵, 魏波, 徐吉祥, 孙永华, 李瑞杰. 2017. 内蒙古巴彦敖包地区宝力高庙组火山岩地球化学特征、锆石U-Pb年龄及地质意义[J]. 中国地质, 44(6): 1159−1174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201706011 [27] 李锦轶, 刘建峰, 曲军峰, 郑荣国, 赵硕, 张进, 孙立新, 李永飞, 杨晓平, 王励嘉. 2019a. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 35(10): 2989−3016. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201910005 [28] 李锦轶, 刘建峰, 曲军峰, 郑荣国, 赵硕, 张进, 王励嘉, 张晓卫. 2019b. 中国东北地区古生代构造单元: 地块还是造山带?[J]. 地球科学, 44(10): 3157−3177. [29] 李文国, 李庆富, 姜万德. 1996. 内蒙古自治区岩石地层[M]. 武汉: 中国地质大学出版社. [30] 刘永江, 冯志强, 蒋立伟, 金巍, 李伟民, 关庆彬, 温泉波, 梁琛岳. 2019. 中国东北地区蛇绿岩[J]. 岩石学报, 35(10): 3017−3047. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201910006 [31] 刘永江, 张兴洲, 金巍, 迟效国, 王成文, 马志红, 韩国卿, 温泉波, 赵英利, 王文弟, 赵喜峰. 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943−951. doi: 10.3969/j.issn.1000-3657.2010.04.010 [32] 邵济安, 何国琦, 唐克东. 2015. 华北北部二叠纪陆壳演化[J]. 岩石学报, 31(1): 47−55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201501003 [33] 邵济安, 唐克东, 何国琦. 2014. 内蒙古早二叠世构造古地理的再造[J]. 岩石学报, 30(7): 1858−1866. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201407002 [34] 孙立新, 张云, 李影, 张永, 任邦方, 张天福. 2017. 内蒙古赤峰地区晚泥盆世双峰式火山岩地球化学特征与板内伸展事件[J]. 中国地质, 44(2): 371−388. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201702012 [35] 孙立新, 任邦方, 王树庆, 许新英, 张云. 2018. 内蒙古苏尼特左旗中元古代片麻状花岗岩的成因及大地构造意义[J]. 地质学报, 92(11): 3−25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201811001 [36] 王金芳, 李英杰, 李红阳, 董培培. 2018. 内蒙古梅劳特乌拉蛇绿岩中早二叠世高镁闪长岩的发现及洋内俯冲作用[J]. 中国地质, 45(4): 706−719. doi: 10.12029/gc20180405 [37] 王树庆, 辛后田, 胡晓佳, 张永, 赵华雷, 耿建珍, 杨泽黎, 滕学建, 李艳锋. 2016. 内蒙古乌兰敖包图早古生代侵入岩年代学、地球化学特征及地质意义[J]. 地球科学, 41(4): 555−569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201604001 [38] 王树庆, 胡晓佳, 赵华雷. 2019. 内蒙古苏左旗洪格尔地区新发现晚石炭世碱性花岗岩[J]. 地质调查与研究, 42(2): 81−85. doi: 10.3969/j.issn.1672-4135.2019.02.001 [39] 王树庆, 胡晓佳, 杨泽黎. 2020. 1∶500 000 二连−东乌旗成矿带西乌旗和白乃庙地区地质图空间数据库[DB/OL]. 地质科学数据出版系统. (2020-06-30). DOI: 10.35080/data.H.2020.P3. [40] 徐备, 王志伟, 张立杨, 王智慧, 杨振宁, 贺跃. 2018. 兴蒙陆内造山带[J]. 岩石学报, 34(10): 2819−2844. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201810002 [41] 徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 30(7): 1841−1857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201407001 [1] Bao Qingzhong, Zhang Changjie, Wu Zhili, Wang Hong, Li Wei, Sang Jiahe, Liu Yongsheng. 2007. SHRIMP U–Pb Zircon Geochronology of a Carboniferous Quartz Diorite in Baiyingaole Area, Inner Mongolia and Its Implications[J]. Journal of Jilin University (Earth Science Edition), 37(1): 15−23 (in Chinese with English abstract). [2] Chen Bin, Jahn Borming, Tian Wei. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 34(3): 245−257. doi: 10.1016/j.jseaes.2008.05.007 [3] Guo Xiyun, Sun Huashan, Dong Aiguan, Ren Jianxun, Xu Ruiying, Gao Bo. 2019. The genesis and dating of the Early Permian granitic rock in the north of Xilin Hot, Inner Mongolia[J]. Geology in China, 46(6): 1396−1409 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201906012 [4] He Fubing, Wei Bo, Xu Jixiang, Sun Yonghua, Li Ruijie. 2017. Ages, origin and geological implications of the volcanic rocks in the Baoligaomiao Formation of East Ujimqin Banner, Inner Mongolia[J]. Geology in China, 44(6): 1159−1174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201706011 [5] Jian Ping, Liu Dunyi, Kröner Alfred, Windley Brian F, Shi Yuruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Lvqiao, Tomurhuu Dondov. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 118(1–2): 169−190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=40ff8aa320c272880289a116d19525f3 [6] Jian Ping, Liu Dunyi, Kröner Alfred, Windley Brian F, Shi Yuruo, Zhang Fuqin, Shi Guanghai, Miao Laicheng, Zhang Wei, Zhang Qi, Zhang Lvqiao, Ren Jishun. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 101(3–4): 233−259. [7] Jian Ping, Kröner Alfred, Windley Brian F, Shi Yuruo, Zhang Wei, Zhang Lvqiao, Yang Weiran. 2012. Carboniferous and Cretaceous mafic–ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”[J]. Lithos, 142–143: 48−66. [8] Li Jinyi. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3–4): 207−224. [9] Li Jinyi, Liu Jianfeng, Qu Junfeng, Zheng Rongguo, Zhao Shuo, Zhang Jin, Sun Lixin, Li Yongfei, Yang Xiaoping, Wang Lijia, Zhang Xiaowei. 2019a. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 35(10): 2989−3016 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.04 [10] Li Jinyi, Liu Jianfeng, Qu Junfeng, Zheng Rongguo, Zhao Shuo, Zhang Jin, Wang Lijia, Zhang Xiaowei. 2019b. Paleozoic Tectonic Units of Northeast China: Continental Blocks or Orogenic Belts?[J]. Earth Science, 44(10): 3157−3177 (in Chinese with English abstract). [11] Li Wenguo, Li Qingfu, Jiang Wande. 1996. Lithostratigtaphy of Inner Mongolian Autonomous Region[M]. Wuhang: China University of Geosciences Press, 354 (in Chinese). [12] Li Yingjie, Wang Genhou, Santosh M, Wang Jingfang, Dong Peipei, Li Hongying. 2018. Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 59: 126−143. doi: 10.1016/j.gr.2018.02.018 [13] Li Yingjie, Wang Genhou, Santosh M, Wang Jinfang, Dong Peipei, Li Hongying. 2020. Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia, North China[J]. Earth and Planetary Science Letters, 535: 116087. doi: 10.1016/j.jpgl.2020.116087 [14] Liu Jianfeng, Li Jinyi, Chi Xiaoguo, Qu Junfeng, Hu Zhaochu, Fang Shu, Zhang Zhong. 2013. A late-Carboniferous to early early-Permian subduction–accretion complex in Daqing pasture, southeastern Inner Mongolia: Evidence of northward subduction beneath the Siberian paleoplate southern margin[J]. Lithos, 177: 285−296. doi: 10.1016/j.lithos.2013.07.008 [15] Liu Yongjiang, Zhang Xingzhou, Jin Wei, Chi Xiaoguo, Wang Chengwen, Ma Zhihong, Han Guoqing, Wen Quanbo, Zhao Yingli, Wang Wendi, Zhao Xifeng. 2010. Late Paleozoic tectonic evolution in Northeast China[J]. Geology in China, 37(4): 943−951 (in Chinese with English abstract). [16] Liu Yongjiang, Li Weimin, Feng Zhiqiang, Wen Quanbo, Neubauer Franz, Liang Chenyue. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013 [17] Liu Yongjiang, Feng Zhiqiang, Jiang Liwei, Jin Wei, Li Weimin, Guan Qingbin, Wen Quanbo, Liang Chenyue. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 35(10): 3017−3047 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.05 [18] Luo Z W, Xu B, Shi G Z, Zhao P, Faure M, Chen Y. 2016. Solonker ophiolite in Inner Mongolia, China: A late Permian continental margin-type ophiolite[J]. Lithos, 261: 72−91. doi: 10.1016/j.lithos.2016.03.001 [19] Miao L C, Fan W M, Liu D Y, Zhang F Q, Shi Y R, Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(5–6): 348−370. [20] Shao Ji’an, Tang Kedong, He Guoqi. 2014. Early Permian tectono-palaeogeographic reconstruction of Inner Mongolia, China[J]. Acta Petrologica Sinica, 30(7): 1858−1866 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201407002 [21] Shao Ji’an, He Guoqi, Tang Kedong. 2015. The evolution of Permian continental crust in northern part of North China[J]. Acta Petrologica Sinica, 31(1): 47−55 (in Chinese with English abstract). [22] Sun Lixin, Zhang Yun, Li Ying, Zhang Yong, Ren Bangfang, Zhang Tianfu. 2017. Geochemical characteristics and intraplate extension of Late Devonian bimodal volcanic rocks in Chifeng area of Inner Mongolia[J]. Geology in China, 44(2): 371−388 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201702012 [23] Sun Lixin, Ren Bangfang, Wang Shuqing, Xu Xinying, Zhang Yun. 2018. Petrogenesis of the Mesoproterozoic Gneissic Granite in the Sonid Left Banner Area, Inner Mongolia, and Its Tectonic Implications[J]. Acta Geologica Sinica, 92(11): 3−25 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201811001 [24] Wan B, Li S H, Xiao W J, Windley B F. 2018. Where and when did the Paleo-Asian ocean form?[J]. Precambrian Research, 317: 241−252. doi: 10.1016/j.precamres.2018.09.003 [25] Wang Jinfang, Li Yingjie, Li Hongyang, Dong Peipei. 2018. The discovery of the Early Permian high-Mg diorite in Meilaotewula SSZ ophiolite of Inner Mongolia and and its Intra-oceanic Subduction[J]. Geology in China, 45(4): 706−719 (in Chinese with English abstract). [26] Wang Shuqing, Xin Houtian, Hu Xiaojia, Zhang Yong, Zhao Hualei, Geng Jianzhen, Yang Zeli, Teng Xuejian, Li Yanfeng. 2016. Geochronology, Geochemistry and Geological Significance of Early Paleozoic Wulanaobaotu Intrusive Rocks, Inner Mongolia[J]. Earth Science, 41(4): 555−569 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201604001 [27] Wang Shuqing, Hu Xiaojia, Zhao Hualei. 2019. Geochronology of Late Carboniferous alkaline granite from Hongeer area, Sunidzuoqi, Inner Mongolia[J]. Geological Survey and Research, 42(2): 81−85 (in Chinese with English abstract). [28] Wang Shuqing, Hu Xiaojia, Yang Zeli. 2020. 1∶500 000 Geological Map Spatial Database of the Xiwuqi and Bainaimiao Areas in the Erlian – Dongwuqi Metallogenic Belt[DB/OL]. Geoscientific Data & Discovery Publishing System. (2020-06-30). DOI: 10.35080/data.H.2020.P3. [29] Wei R H, Gao Y F, Xu S C, Santosh M, Xin H T, Zhang Z M, Li W L, Liu Y F. 2018. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia[J]. Lithos, 308–309: 242−261. [30] Xiao W J, Windley B F, Han C M, Liu W, Wan B, Zhang J E, Ao S J, Zhang Z Y, Song D F. 2018. Late Paleozoic to Early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020 [31] Xiao W J, Windley B F, Hao J, Zhai M G. 2003. Accretion leading to collision and the Permian Solonker Suture, Inner Mongolia, China; termination of the Central Asian orogenic belt[J]. Tectonics, 22(6): 1069. [32] Xiao W J, Windley B F, Sun S, Li J L, Huang B C, Han C M, Yuan C, Sun M, Chen H L. 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth & Planetary Sciences, 43(1): 477−507. [33] Xu B, Charvet J, Chen Y, Zhao P, Shi G Z. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 23(4): 1342−1364. doi: 10.1016/j.gr.2012.05.015 [34] Xu Bei, Zhao Pan, Bao Qingzhong, Zhou Yongheng, Wang Yanyang, Luo Zhiwen. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing–Meng Orogenic Belt(XMOB)[J]. Acta Petrologica Sinica, 30(7): 1841−185 (in Chinese with English abstract). [35] Xu B, Zhao P, Wang Y Y, Liao W, Luo Z W, Bao Q Z, Zhou Y H. 2015. The pre-Devonian tectonic framework of Xing’an–Mongolia orogenic belt (XMOB) in North China[J]. Journal of Asian Earth Sciences, 97(Part B): 183−196. [36] Xu Bei, Wang Zhiwei, Zhang Liyang, Wang Zhihui, Yang Zhenning, He Yue. 2018. The Xing–Meng Intracontinent Orogenic Belt[J]. Acta Petrologica Sinica, 34(10): 2819−2844 (in Chinese with English abstract). [37] Zhang S H, Zhao Y, Song B, Yang Z Y, Hu J M, Wu H. 2007. Carboniferous granitic plutons from the northern margin of the North China block: implications for a late Palaeozoic active continental margin[J]. Journal of the Geological Society, 164(2): 451−463. doi: 10.1144/0016-76492005-190 [38] Zhang S H, Zhao Y, Song B, Hu J M, Liu S W, Yang Y H, Chen F K, Liu X M, Liu J. 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications[J]. Geological Society of America Bulletin, 121(1–2): 181−200. [39] Zhang S H, Zhao Y, Ye H, Liu J M, Hu Z C. 2014. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt[J]. Geological Society of America Bulletin, 126(9–10): 1275−1300. [40] Zhang Z C, Li K, Li J F, Tang W H, Chen Y, Luo Z W. 2015. Geochronology and geochemistry of the Eastern Erenhot ophiolitic complex: Implications for the tectonic evolution of the Inner Mongolia–Daxinganling Orogenic Belt[J]. Journal of Asian Earth Sciences, 97(Part B): 279−293. [41] Zhou J B, Wilde S A, Zhao G C, Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 186: 76−93. doi: 10.1016/j.earscirev.2017.01.012 -
期刊类型引用(2)
1. 刘龙,张树明,张鑫,陈瑜. 江西相山两类流纹英安岩锆石和磷灰石矿物化学特征及地质意义. 东华理工大学学报(自然科学版). 2024(06): 521-537 . 百度学术
2. 李栋,朱建林,雷炼,昝芳,庄任武,张恒. 赣杭带马荃盆地富铀火山熔岩特征及铀矿找矿方向研究. 华北地质. 2024(04): 12-24 . 百度学术
其他类型引用(0)