1∶50 000 Geological and Mineral Survey Database of Qixia–Muping Area, Jiaodong Metallogenic Province
-
摘要:
胶东成矿区栖霞—牟平地区地质矿产调查是中国地质调查局开展新一轮矿产地质调查工作项目。填(编)的10幅1∶50 000矿产地质图是根据《固体矿产地质调查技术要求(1∶50 000)》(DD 2019−02)和行业其他统一标准及要求,结合区域地质调查成果资料,采用数字填图系统进行野外地质专项填图,并应用室内与室外填编图相结合的方法完成的。在充分利用最新获得的1∶50 000遥感地质解译、地面高精度磁法测量、重力测量成果资料的基础上,全区新发现矿点矿(化)点31处,包括金矿(化)点24处、铜矿点4处、银铅矿点3处,圈定找矿靶区42处,其中A级25处、B级14处、C级3处,并纳入数据库中。胶东成矿区栖霞—牟平地区地质矿产调查数据库是1∶50 000矿产地质图库和图饰、地球物理数据库、遥感数据库、样品数据库、综合成果数据库、勘探工程库等成果的集成,数据容量合计299 MB,包含矿产地数据275处,涉及多金属矿、贵金属矿以及非金属矿23种,预测金资源量836.94 t、银499 t、铜72.71万t、铅17.41万t、锌28.31万t、钼35.70万t、钨2.8万t、石墨164万t。对该区基础地质研究、矿产资源勘探等具重要参考意义。
Abstract:The geological and mineral survey in Qixia–Muping area, Jiaodong metallogenic province (also referred to as the survey site) is one of a new round of mineral and geological survey projects initiated by the China Geological Survey. During this project, ten 1∶50 000 mineral geologic maps were mapped (prepared) in accordance with uniform industrial standards and requirements such as the Technical Requirement of1∶50 000 Solid Mineral Geological Survey (DD 2019–02). Meanwhile, the results of relevant regional geological surveys were adopted, special geological field mapping was conducted by using digital mapping, and indoor mapping (preparation) was combined with outdoor mapping (preparation). Thirty-one ore occurrences (mineralized points) were newly discovered, and 42 prospecting target areas were delineated throughout the area by making full use of the latest results of geological interpretation of 1∶50 000-scale remote sensing data, high-precision ground magnetic survey and gravity survey. Among them, the former consists of 24 gold ore occurrences (mineralized points), four copper ore occurrences and three silver–lead ore occurrences, and the latter is composed of 25 areas of grade A, 14 areas of grade B, and three areas of grade C. All these survey results were included in the database. The geological and mineral survey database of Qixia–Muping Area, Jiaodong Metallogenic Province (also referred to as the Database) integrates the databases of 1∶50 000-scale mineral and geological maps and their map decorations, geophysical databases, remote sensing databases, sample databases, comprehensive result databases, and prospecting engineering databases, with a total data size of 299 MB. It covers the data of 275 mineral occurring sites, and 23 species of polymetallic, precious metallic and non-metallic deposits. The resources of Au, Ag, Cu, Pb, Zn, Mo, W and graphite are predicted to be 836.94 tonnes, 499 tonnes, 727 100 tonnes, 174 100 tonnes, 283 100 tonnes, 357 000 tonnes, 28 000 tonnes and 1.64 million tonnes, respectively. The Database serves as an important reference for basic geological research and exploration of mineral resources in the Qixia–Muping area.
-
Keywords:
- Jiaodong metallogenic province /
- Qixia–Muping area /
- database /
- mineral and geological survey /
- Database /
- 1∶50 000 /
- Shandong
-
1. 引言
地壳中天然含有一定量的重金属,其中一些元素(如Cu、Zn、Cr)是人体代谢必需的;在自然条件下,它们很少累积到对环境和生态系统造成有害影响的水平(Sun et al., 2018)。然而,随着工业发展对矿产资源需求的增加,在金属矿山开采过程中,矿体中的重金属元素容易产生流失并进入土壤中,导致后者重金属含量升高;最终,它们可能通过各种介质进入人体,对矿区附近的居民构成潜在的健康风险(Lu et al., 2019;张进德等,2021;Chen et al., 2023)。Singh and Kalamdhad(2011)在重金属对土壤、植物、人类健康和水生生物的影响研究中,发现重金属在过度累积下,Cu的长期接触会导致肝肾损伤和中枢神经损伤,Zn的长期接触会导致系统功能失调、生长和繁殖受损,Cr的长期接触将导致肝、肾脏循环和神经组织受损等健康问题。Duruibe et al.(2007)对重金属污染和人类的生物毒性效应研究中,发现Cd、Pb、Hg在人类生物化学或生理学中没有任何已知的功能,在生物体中也不是天然存在的;因此,即使在较低暴露下,也会在生物中累积并造成影响。Cd对肾脏和骨骼具有高度毒性,较高水平的吸入会对肺部产生损伤,可能会引起呕吐和腹泻;长时间接触会累积在肾脏中,最终导致肾脏疾病和肺损伤(Bernard,2008)。Pb对人体具有生理和神经毒性,可能导致肾脏、生殖系统、肝脏和大脑功能障碍,严重可导致死亡(Zahra and Kalim, 2017);已观察到Pb对神经系统有着最为敏感的影响,尤其是对儿童和婴儿,长期的接触会导致儿童发育不良、智商低下(Reuben et al., 2017)。Hg则被认为是环境中毒性较大的重金属,可以与其他元素结合形成无机汞和有机汞;会损害大脑,肾脏和发育中的胎儿(Al Osman et al., 2019)。Jaishankar et al.(2014)研究发现As具有显著的毒性和致癌性,以氧化物或硫化物的形式广泛存在;低剂量摄入会导致恶心和呕吐、心率异常、血管损伤等症状,长期接触可导致皮肤癌、肺癌、肝癌和膀胱癌。
湖南省矿产资源丰富,矿种较多,享有“有色金属之乡”的美誉。在采、选、冶等矿业活动过程中产生的“三废”会对周边土壤生态环境产生破坏。研究表明,湖南省因有色金属矿产开采导致的重金属污染土地面积达2.8×104 km2,占全省总面积的13%(郭朝晖和朱永官,2004)。虽然有部分学者对湖南省矿区土壤污染开展研究(余旋等,2016;江诚毅,2020;余嘉衍等,2020),但针对锡矿区污染资料仍非常有限,需要进一步开展针对性的调查与评价。研究区位于湘南地区,区内有成规模的锡矿区、工业区以及农业区;在生活与生产过程中对周边土壤具有潜在的威胁,而其土壤重金属污染和健康风险研究几近空白。因此,基于对生态环境和当地居民人体健康的保护,本文对研究区土壤重金属展开研究,采用多元评价评估锡矿区重金属含量与分布特征,探讨重金属污染程度与生态风险,为当地土壤环境安全及受同样问题影响的地区提供参考与科学依据。
2. 区域地质与研究方法
2.1 研究区概况
研究区区域地层以南华系、泥盆系,石炭系为主(图 1a),前者为浅变质碎屑岩夹碳酸盐岩,主要分布于泗洲山背斜;后者为浅海相碳酸盐岩夹滨海相碎屑岩,分布于大义山岩体周围;此外,河流周围发育少量第四系,为洪积、冲积及残坡积层。区域基底褶皱总体呈NNE走向,控制着区域整体构造格架;盖层褶皱多呈近SN—NNW向分布于岩体周边,背斜多具紧密线型特征,向斜则较开阔;区域断裂构造总体走向325°,倾向北东、倾角大于65°;按走向划分为NE、NW—NNW、NW、NNW—近SN向四组(张遵遵等, 2022)。区域岩浆岩主要为大义山岩体,研究区主要发育中细粒斑状角闪黑云二长花岗岩(ηγJ3a)、中细粒斑状黑云母二长花岗岩(ηγJ3c)、细粒少斑状黑云母二长花岗岩(ηγJ3b)、细粒斑状(含电气石)二云母二(正)长花岗岩(ηγJ3e),中细粒斑状角闪黑云二长花岗岩为本文所采集样品的母岩。
大义山是南岭地区重要的成锡岩体,自2000年以来,该区已查明万金窝、猫仔山、藤山坳、白沙子岭、大顺窿、台子上、狮形岭等大中型矿山7处,小型矿床(点)40余处;累计提交锡资源量10余万t。本文研究对象为该岩体东南部某大型锡矿区,地处南岭北麓,舂陵江中上游。研究区地形地貌复杂,山地丘陵约占总面积的3/4,属于典型丘岗山地地带;地势由东南向西北倾斜,东南地势高峻多山地,西北山势低矮,以丘陵为主。研究区土类主要分为红壤、黄壤与水稻土3类,以林地、荒草地、耕地与园地为主,种植作物以烤烟、蔬菜、水稻为主。本区属亚热带湿润性季风气候,气候温暖,光照充足,雨热同期,1月平均气温2.5℃,7月平均气温28℃。区内年降雨量1460 mm,年内降雨变化较大,多集中于3—7月。
2.2 样品采集与分析
调查与研究表明,多数矿区土壤存在显著的重金属异常或污染,本文结合已有分析先例和研究区成矿元素的组成特点,选取Cu、Pb、Zn、Cr、Cd、As、Hg元素为分析内容。在矿区以及周边地区采集114个表层土壤样品(图 1b),其中南北向土壤样本89个,东西向土壤样本25个,采样深度为0~20 cm,并在区内工程揭露的天然土壤边坡取3个垂向剖面,深度140~220 cm。土壤样品采用多点采样法,去除植物根系、碎石等杂质,留取1 kg装入样品袋。干燥后研磨过100目尼龙筛,取筛下粒级样品150 g备用。样品测试在中国地质调查局武汉地质调查中心完成,Cu、Pb、Zn和Cr含量采用原子吸收分光光度计AAS nos300-ZEEnit600测定,Cd、As和Hg含量使用全自动原子荧光分光光度计AFS-230E测定;采用国家一级标准物质对准确度和精密度进行验证,所有样本测试分析均在允许值范围内;Cu、Pb、Cr、As元素检出限为0.01 mg/kg,Cd、Hg元素检出限0.001 mg/kg,分析精度优于0.8%。
2.3 评价方法
2.3.1 地累积指数
地累积指数法是综合考虑人为污染因素、地球化学背景值和自然成岩作用的共同影响,判别土壤重金属污染程度的一种评价方法(Xia et al., 2020)。计算公式为:
式中,Ci为第i种重金属的实测值,Bi为土壤中第i种元素的地球化学背景值,K为成岩作用引起的背景值的变动系数(通常取值K=1.5)。根据Forstner et al.(1993)提出的划分标准,可将重金属分为7个等级(表 1)。
表 1 地累积指数污染程度分级Table 1. Classifications of geo-accumulation index pollution level2.3.2 潜在生态风险评估
采用Hakanson潜在生态风险指数法评价土壤重金属的生态风险(表 2),该指数法是将生态效应、毒理效应和环境效应联系在一起,可系统、全面地评估土壤重金属污染状况(何东明等,2014;高瑞忠等,2019)。计算公式为:
表 2 潜在生态风险评价等级划分Table 2. Classifications potential ecological risk evaluation level式中,RI为综合潜在生态风险指数;Eri为第i种重金属单项潜在生态风险指数;Tri为第i种重金属的毒性相应系数;各毒性响应系数为:Cu=5、Pb=5、Zn=1、Cr=2、Cd=30、As=10、Hg=40(Hakanson, 1980; 徐争启等, 2008);Pi为重金属i污染指数;Ci为重金属i的实测值;Cni为土壤重金属i元素背景值。
2.3.3 人体健康风险评价
根据USEPA风险评估方法,土壤重金属往往通过3种途径被人体摄入并危害人体健康,即经口摄入、皮肤接触、吸入土壤颗粒物。计算公式为:
式中,ADDing、ADDderm和ADDinh分别代表经口摄入、皮肤接触和呼吸吸入的日均暴露剂量;Ci为土壤中重金属i的含量。暴露皮肤表面积参照(刘同等, 2022),其他参数值(表 3)参照《建设用地土壤污染风险评估技术导则》(HJ 25.3-2019)推荐值以及EPA暴露因子手册。
表 3 健康风险评估模型暴露参数Table 3. Exposure parameters of health risk assessment model exposure parameters健康风险效应分析分为致癌效应和非致癌效应,其中非致癌效应通过非致癌风险指数(HQ)和总非致癌风险指数(HI)表示。致癌效应通过致癌风险指数(CR)和总致癌风险指数(TCR)表示。
式中,ADD表示摄入、皮肤或呼吸暴露途径的日均暴露含量,RfD表示参考剂量,SF为斜率因子,具体参考值见表 4(王昌宇等,2021;刘同等,2022)。当HI≤1时,非致癌风险属于可接受范围,当HI>1时,意味将因接触特定的有毒元素而具有潜在的非致癌风险。TCR < 1.0×10-6不会对人体产生致癌风险;1.0× 10-6≤TCR≤1.0×10-4时,致癌风险属于可接受范围;TCR>1.0×10-4时,则认为致癌风险不可接受,会对人体产生致癌风险(Rehmana et al., 2018)。
表 4 不同暴露途径的参考剂量(RfD)和斜率因子(SF)Table 4. Reference dose (RfD) and slope factor (SF) of different exposure routes3. 结果与讨论
3.1 表层土壤重金属含量与分布特征
结果显示研究区土壤中重金属含量均值均超出湖南省土壤环境背景值(表 5),其中,Cu、Pb、Zn、Cr、Cd、As和Hg含量均值分别为湖南土壤背景值的12.26、35.27、11.84、1.66、218.52、115.31和2.11倍,样本超标率分别为94.74%、100%、100%、67.54%、100%、100%和82.46%。参考《土壤环境质量农用地土壤污染风险管控标准》(GB 15618-2018)筛选值,重金属元素存在部分点位超过筛选值的情况,其中,Cu、Pb、Zn、Cr、Cd、As和Hg超出筛选值样本分别占总样本的45.61%、79.82%、63.16%、4.39%、84.21%和100%,Hg样本均未超标。变异系数可以反映重金属元素在空间上的离散和变异程度,变异系数越大意味着受到人为影响越大(Li et al., 2017)。研究区表层土壤变异系数由大到小依次为:Cd>As>Cu>Zn>Pb>Cr>Hg,Cd、As、Cu、Zn和Pb变异系数分别为2.24、2.08、1.66、1.59和1.40,表明这些重金属分布具有明显空间差异,存在人为污染的可能。
表 5 研究区土壤重金属含量特征分析(mg/kg)Table 5. Characterization of soil heavy metal content in the study area (mg/kg)研究区土壤环境地球化学表层剖面显示,土壤中Cd、As、Pb、Zn和Cu元素含量在空间分布上具有明显的相似性(图 2)。富集区均位于矿区附近,尾矿库与冶炼区为矿山主要污染区域,可见冶炼区以及尾矿库具有集中分布和复合污染的特点(Hu et al., 2018);Cr元素含量较低,富集区呈岛状分布,集中于居民区;Hg元素浓度分布较均匀,高值区位于矿区北侧。综上所述,研究区土壤重金属在不同程度上受到外源物质的影响。根据土壤重金属的来源可知,土壤重金属来源主要分为自然源以及人为活动,自然来源与成土母质有关,而人为来源主要受到人为活动和强度的影响(王昌宇等, 2021)。结合变异系数等已有分析初步判断,Cd、As、Pb、Zn和Cu异常富集主要是由于矿业活动中重金属流失进入土壤中造成的,Cr主要受到生活污染的影响,Hg可能受到部分人为活动的影响,但主要受到花岗岩母岩风化作用的影响。此外,重金属污染程度还取决于重金属的迁移,雨水淋滤作用的强度是影响迁移的主要因素(Meite et al., 2018),研究区年降水量约1460 mm,区内较强的淋滤作用可能是造成研究区污染范围较广的主要因素之一。
综上所述,研究区内土壤中重金属浓度偏高,并伴随向外扩散的趋势;矿业活动被视为研究区重金属的主要来源,通过风、水等其他可能运输的方式向周边输出重金属。由于矿区内以及居民区表层土壤中重金属的累积可能会增加当地居民的健康风险,因此,可以进行更多的调查,以评估其风险和潜在的不利影响。
3.2 剖面土壤重金属含量与分布特征
为探究矿区土壤重金属垂向分布规律,选取矿区内HTZ1、HTZ2、HTZ3剖面为研究对象(图 3)。Cu、Pb、Zn、Cd、As含量随深度增加而降低,在表层土壤中含量较高,且在0~60 cm深度内含量下降较明显,60 cm之下深度含量趋于稳定;这种表层土壤中重金属累积的现象,可能受到矿业活动的影响。在不同剖面中,剖面土壤重金属含量排序为HTZ3>HTZ2>HTZ1;根据剖面所在功能区可知,HTZ1、HTZ2剖面均位于采矿区,而HTZ2则更靠近冶炼区,HTZ3剖面靠近尾矿坝和冶炼区。尾矿的堆积以及冶炼中产生的废气、废渣、废液对土壤重金属具有活化作用,加速重金属的富集,从而导致区域内重金属在环境中不断累积并高于周边地区(邬光海等,2020)。这与郭世鸿等(2015)通过对矿区土壤重金属污染特征的研究中发现在不同功能区中污染排序呈尾矿库区>冶炼区>废弃冶炼区>采矿区的结果基本一致,说明研究区矿业活动中冶炼以及尾矿的堆积是造成土壤重金属累积的主要原因,而采矿导致的重金属累积则较小。Cr剖面含量分布在HTZ1、HTZ2、THZ3变化趋势相同,含量增加与减少所在的深度单位略有不同:HTZ1在0~60 cm重金属含量随深度增加而增加,60~100 cm重金属含量急剧下降,随后逐渐上升,至160 cm达到高峰,160~220 cm持续下降;HTZ2、HTZ3在20cm处含量达到最大值,随后波动变化分别在80 cm、120 cm和100 cm、180 cm处出现小高峰。Hg剖面含量分布具有如下规律:HTZ1在0~60 cm含量增加并达到最大值,随后波动变化在100 cm、140 cm、200 cm出现小高峰;HTZ2在20 cm含量达到最大值,随后波动变化在120 cm、180 cm出现小高峰;HTZ3在0~60 cm含量波动变化并在60 cm达到最大值,随后持续下降;Cr与Hg元素在不同土层深度含量变化略有不同的状况,可能是由于不同土壤剖面中土壤理化性质相似层的厚度不同,从而影响重金属垂向迁移和富集(Bi et al., 2006)。
3.3 土壤重金属污染程度分析
采用地累积指数法对研究区表层土壤中7种重金属进行评价,Igeo平均值从大到小依次为Cd (4.80)>As(4.14)>Pb(3.55)>Zn(1.90)>Cu(1.68)>Hg(0.20)>Cr(-0.44)。不同等级污染样本占比结果表明(图 4):研究区表层土壤中Cd污染最为严重,极重污染样本占比42%,中度及以上污染样本占比达97%;As和Pb元素极重污染样本分别占比28%和18%,中度及以上污染样本分别占比98%和97%;Zn和Cu极度污染样本分别占比8%和11%,中度及以上污染样本分别占比66%和72%;Hg和Cr不存在重度以上污染的样品,中度及以上污染样本占比不超过20%。研究结果表明锡矿最为突出的污染元素为Cd和As,其次为Pb、Zn和Cu,Hg和Cr污染相对较小,与前人得出的研究结果基本一致(莫佳等,2015;陈希清等,2021;张浙等,2022),因此在锡矿区周边土壤重金属污染治理中应重视Cd、As、Pb、Zn和Cu污染的治理。
3.4 土壤重金属潜在生态风险评价
研究区表层土壤Cu、Pb、Zn、Cr、Cd、As和Hg的潜在生态风险因子(Eri)平均值分别为15.94、28.01、3.71、0.91、874.07、645.71和2.20(图 5),生态风险样本占比结果表明:Cr、Hg、Zn全部样本的生态风险指数均小于40,为轻微生态风险;Cu和Pb样本大部分为轻微污染,中风险以上样本占比不足20%;As生态风险处于中—极重风险区间,中度及以上风险样本占比75%;研究区Cd生态风险最高,中度及以上风险样本占比高达80%,是研究区土壤最主要的潜在生态风险因子。土壤的RI值范围为31.84~17392.10,平均值为1570.55;生态风险处于轻微—极重风险区间,其中,中度及以上风险样本占比67%,极重风险样本占比31%。整体而言,研究区生态风险较高,As和Cd元素为生态风险的主要贡献因子。
3.5 人体健康风险评价
3.5.1 暴露风险评估
基于健康风险评估模型暴露参数计算研究区土壤重金属的日暴露量,结果如表 6和表 7所示:成人致癌与非致癌平均日摄入量顺序为ADDing>ADDinh>ADDderm,儿童致癌与非致癌平均日摄入量顺序为ADDing>ADDderm>ADDinh。经口摄入是致癌与非致癌风险的主要摄入途径,根据不同途径暴露量可知非致癌风险暴露途径中儿童的暴露量均高于成人,致癌风险暴露途径中儿童经口摄入以及皮肤接触途径暴露量均高于成人,呼吸吸入途径低于成人。根据不同元素暴露量可知,在致癌与非致癌风险中儿童暴露量均高于成人;这可能是受到儿童的生理和行为特征(吸吮行为,以及较差的解毒和排毒能力)的影响,使得儿童的健康更易受到威胁。
表 6 土壤重金属非致癌平均日暴露量(mg/(kg·d))Table 6. Average daily exposure of non-carcinogenic heavy metals in soils (mg/(kg·d))表 7 土壤重金属致癌平均日暴露量(mg/(kg·d))Table 7. Average daily exposure of soil heavy metals causing cancer (mg/(kg·d))3.5.2 健康风险评价
根据日暴露量和参考剂量计算研究区7种重金属的非致癌与致癌健康风险指数,结果如表 8、表 9所示。
表 8 土壤重金属非致癌健康风险指数Table 8. Non-carcinogenic health risk index of soil heavy metal表 9 土壤重金属致癌健康风险指数Table 9. Cancer health risk index of soil heavy metal非致癌健康风险指数显示:成人非致癌风险不同暴露途径顺序为HQing>HQinh>HQderm,儿童为HQing>HQderm>HQinh,表明经口摄入是非致癌风险的主要途径。从重金属元素来看,成人的非致癌风险排序依次为As>Pb>Cd>Cr>Cu>Zn>Hg,儿童排序为为As>Pb>Cr>Cd>Cu>Zn>Hg。其中,As和Pb元素为高风险元素,As元素成人和儿童经口摄入途径均值大于1,Pb元素儿童经口摄入途径均值大于1;意味着这些重金属将通过经口摄入途径对人体尤其是儿童健康造成不良影响。此外,研究区土壤中Cd与Cr元素儿童经口摄入途径最大值大于1,Cd元素成人和儿童呼吸吸入途径最大值大于1,暗示二者会对人体产生非致癌风险;其余重金属元素在不同暴露途径中均小于1,对人体健康影响较弱。因此,需要着重管理和控制研究区内As、Pb以及部分区域Cd和Cr的污染状况,以免对当地居民尤其是儿童产生不利影响。
致癌健康风险指数显示,成人与儿童不同暴露途径致癌风险顺序均为CRing>CRinh>CRderm;表明经口摄入途径为成人和儿童致癌风险的主要途径,呼吸吸入途径为成人和儿童致癌风险的次要途径。研究区重金属元素对成人和儿童致癌风险贡献顺序依次为As>Cd>Cr>Pb。As元素成人和儿童的CRing的均值分别为1.19×10-3和1.91×10-3,CRinh的均值分别为9.74×10-5和4.05×10-5,CRderm的均值分别为1.03×10-5和1.14×10-5;即As经口摄入途径对人体健康构成了致癌风险,呼吸吸入和皮肤接触途径则属于可接受范围;Cd经口摄入途径的均值位于10-6~10-4,呼吸吸入以及皮肤接触均值小于10-6。表明经口摄入属于可接受范围,呼吸吸入以及皮肤接触途径不会对人体产生致癌风险;此外,Cd元素成人和儿童经口摄入的最大值分别为5.56×10-4和8.95×10-4,这表明研究区内部分采样点中Cd元素存在致癌风险;Cr所有接触途径均位于10-6~10-4,属于可接受范围;Pb经口摄入属于可接受范围,呼吸吸入与皮肤接触途径不会对人体产生致癌风险。根据TCR以及上述分析可知,研究区土壤As元素对人体健康构成了潜在的致癌风险,Cd部分采样点同样存在致癌风险,Cr和Pb元素则属于可接受范围,对人体致癌风险较小。
3.6 讨论
土壤中重金属污染是当前环境、土壤等领域的主要研究问题之一,城市、工业区以及矿区是重金属污染的高危地带。本文通过对研究区土壤重金属含量,变异系数和空间分布分析可知:研究区土壤中Cd、As、Pb、Zn、Cu含量明显高于土壤环境背景值,呈现出富集于矿业区的特点;它们在空间分布上亦较为一致,重金属含量呈现尾矿库>冶炼区>采矿区的规律;研究区Cr富集区主要分布在生活区,可能与矿业无关;Hg分布较均匀,无明显富集区。
目前,土壤重金属评价主要基于生态风险和健康风险,本文结合已有研究发现,研究区土壤重金属生态风险与邻近区域研究结果趋于一致。沈红艳(2021)评价了湖南省某典型流域农田土壤重金属的生态风险,发现Cd、As、Pb受到工业、交通运输等影响污染最为突出,Cr和Hg受自然活动影响污染较轻;余璇等(2016)对湖南某铅锌矿生态风险评价,发现Cd、Pb、As、Cu、Zn属于中等及以上风险状态,Cr属于相对安全水平;雷鸣等(2008)对湖南9个县市采矿区和冶炼区附近水稻土5种重金属风险进行评价,发现土壤重金属Cd、As、Zn、Cu、Pb都在中等潜在风险之上。通过上述研究发现该片区土壤重金属均存在严重的生态危害,需要对该地区土壤生态环境的治理采取综合且有效的措施。
研究区土壤重金属致癌与非致癌的主要暴露途径为经口摄入,儿童受到的致癌与非致癌风险总体要大于成人,表明儿童更易受到重金属的威胁。这与杨敏等(2016)、鲍丽然等(2020)等研究结果相近,可能是由于儿童的生理和行为特征(吸吮行为等)更易接触到土壤以及儿童较差的免疫所导致。该区As和Pb对人体构成了潜在的威胁,其中As为主要的风险元素,这可能是由于As较大的毒性和较高的含量所致。周楠(2016)、王昌宇等(2021)指出重金属健康风险除了与含量有关之外,还与重金属毒性有关,As具有较大的毒性,更易对人体产生潜在的健康威胁。考虑到重金属无法被人体全部吸收消化,李华等(2015)、刘同等(2022)引入生物可给性,发现基于总量的评价与生物体内含量相关性较差,往往夸大了危害程度。本次研究评价基于土壤中重金属总量,缺乏一些间接因素(如作物对重金属的转归、人体对重金属的拮抗作用),因此本次研究有一定程度的不确定性,真实情况还需进一步研究。但从土壤环境与健康角度出发,土壤环境治理依然不容懈怠,对潜在的健康风险应保持警惕。
4. 结论
(1)地统计分析表明研究区土壤重金属含量高于土壤背景值,其中As和Cd最为突出;变异系数表明,Cu、Pb、Zn、Cd和As元素受到矿业活动影响较大,Cr和Hg元素受矿业活动影响较小;空间分布结果表明Cu、Pb、Zn、Cd和As含量富集区位于矿区附近,具有集中分布和复合污染的趋势。
(2)地累积指数评价结果显示,研究区Cd和As元素污染现象最为突出,Cu、Pb和Zn元素污染次之,Cr和Hg总体呈无污染—轻度污染状态。潜在生态风险指数表明,研究区土壤中重金属潜在生态风险主要以中—极重风险为主,As和Cd生态风险较高,是生态风险的主要贡献元素,Pb和Cu元素次之,Zn、Cr和Hg为轻微风险。
(3)人体健康风险评估结果表明,儿童更容易受到重金属威胁,经口摄入是重金属非致癌和致癌风险的主要暴露途径。土壤中Cd和Cr部分样本对人体具有潜在的非致癌风险,Cd部分样品对人体具有潜在的致癌风险。As和Pb总非致癌风险指数大于1,为主要非致癌因子,具有潜在的非致癌风险;As总致癌风险指数大于10-4,为主要致癌因子。
-
图 1 胶东成矿区栖霞—牟平地区地质矿产略图(据丁正江等,2015修改)
1. Geological and mineral simplified map of the Qixia–Muping area, Jiaodong metallogenic province (modified from Ding ZJ et al., 2015)
表 1 数据库(集)元数据简表
条目 描述 数据库(集)名称 胶东成矿区栖霞—牟平地区1∶50 000地质矿产调查数据库 数据库(集)作者 栖霞市幅(J51E017004)、桃村幅(J51E017005)、山前店幅(J51E018004): 付超,彭丽娜,中国地质调查局天津地质调查中心
高疃幅(J51E016005)、臧家庄幅(J51E016004)、大辛店幅(J51E015004)、岗嵛幅(J51E015005): 戴广凯,朱学强,山东省地质调查院
水道幅(J51E017007)、观水幅(J51E017006)、冯家幅(J51E018007): 邹键,马方,山东省第三地质矿产勘查院数据时间范围 2016—2018年 数据格式 MapGIS 数据量 299 MB 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 中国地质调查局地质调查项目“胶东成矿区栖霞—牟平地区地质矿产调查”(项目编号:DD20160044)资助 语种 中文 数据库(集)组成 胶东成矿区栖霞—牟平地区地质矿产调查数据库包括 1∶50 000矿产地质图库和图饰、地球物理数据库、遥感数据库、样品数据库、综合成果数据库、勘探工程库等。矿产地质图库包括沉积岩、岩浆岩、火山岩、变质岩、第四系、脉岩、构造、地质界线、产状、矿床(点)、蚀变、岩性花纹、各类代号等;图饰包括接图表、柱状图、图例、图切剖面、典型矿床成矿要素图、典型矿床实测剖面图、矿产地名录、所属成矿区带位置图、责任表;地球物理数据库包括地球物理异常图和平面图;遥感数据库包括遥感异常提取、推测线性构造;综合成果数据库包括异常查证结果表、矿产地预测远景区图层、找矿靶区图层;勘探工程库包括探槽、钻孔等 表 2 大辛店幅成果数据库基本要素类、综合要素类和对象类数据表
图幅号 数据集 实体名称 文件名 数据类型 J51E015004
(大辛店幅)基本要素类 地质体面实体 _GEOPOLYGON.wp Area 地质(界)线 _GEOLINE.wl Line 矿产地 _MINERAL_PNT.wt Point 产状 _ATTITUDE.wt Point 样品 SAMPLE.wt Point 同位素测年 _ISOTOPE.wt Point 钻孔 DRILLHOLE.wt Point 火山口 _CRATER.wt Point 河、湖、海、水库岸线 _LINE_GEOGRAPHY.wl Line 综合要素类 构造变形带 _TECOZONE.wp Area 蚀变带(面) _ALTERATION_POLYGON.wp Area 变质相带 _METAMOR_FACIES.wp Area 火山岩相带 _VOLCA_FACIES.wp Area 矿化带 MINERAL_ZONE.wp Area 标准图框(内图框) _MAP_FRAME.wl Line 对象类 沉积(火山)岩岩石地层单位 _STRATA ACCESS 侵入岩岩石年代单位 _INTRU_LITHO_CHRONO ACCESS 断层 _FAULT ACCESS 变质岩地(岩)层单位 _METAMORPHIC ACCESS 特殊地质体 _SPECIAL_GEOBODY ACCESS 非正式地层单位 INF_STRATA ACCESS 脉岩(面) _DIKE_OBJECT ACCESS 面状水域与沼泽 _WATER_REGION ACCESS 图幅基本信息 _SHEET_MAPINFO ACCESS 遥感推断地质构造 遥感异常图层 Rsanomaly.wp Area 推断线性构造图层 Rslinear.wl Line 推断环形构造图层 RSRing.wl Line 地球物理数据类 重磁异常预测区图层 GRAVMAGNETICLINEAR.wl Line 重磁异常预测区图层 GRAVMAGNETICLINEAR.wt Point 地球化学数据类 水系沉积物异常图层 ANOMALY_STREAM.wl Line 水系沉积物异常图层 ANOMALY_STREAM.wt Point 成矿规律与矿产预测 矿产预测远景区图层 PredictedProspectiveArea.wp Area 找矿靶区图层 TargetArea.wp Area 地质工作部署建议图层 WorkPlan.wp Area 表 3 测区矿种数量及规模一览表
矿种 规模 合计 大型矿床 中型矿床 小型矿床 矿点 矿化点 岩金 22 18 60 87 31 218 砂金 1 2 3 银 1 2 2 5 铜 1 1 8 10 20 铜钼 1 1 钼 1 1 2 铅 3 3 6 铅锌 2 2 4 铜铅锌多金属 1 1 2 钨钼 1 1 锰 4 4 铁 1 4 5 石榴子石 1 1 石墨矿 1 1 总计 23 23 67 113 47 275 表 4 胶东成矿区栖霞—牟平地区找矿靶区一览表
序号 名称 位置 矿种 类别 1 下雨村金矿床深部找矿靶区 烟台市牟平区西南24 km处的高陵镇下雨村北山,行政区划属烟台市牟平区高陵镇 金 A类 2 磨山金矿深部找矿靶区 烟台市牟平区南约15 km,行政区划属牟平区高
陵镇金 A类 3 磨山金矿床外围找矿靶区 位于烟台市牟平区南约15 km,行政区划属牟平区高陵镇 金 A类 4 双山屯金矿深部找矿靶区 位于烟台市牟平城区西南12 km,双山屯村东,行政区划属牟平区武宁镇和高陵镇 金 A类 5 下潘格庄金矿深部找矿靶区 下潘格庄矿区位于牟平城区西南约15 km,行政区划属高陵镇管辖 金 A类 6 上潘格庄金矿找矿靶区 山东省烟台市牟平区上潘家庄南部一带 金 A类 7 唐家沟金矿深部找矿靶区 位于乳山市城区北约18 km处的唐家沟村南东,行政区划隶属乳山市午极镇 金 A类 8 西直格庄金矿深部找矿靶区 位于牟平城区南25 km,行政区划隶属牟平区水
道镇金 A类 9 邓格庄—金牛山金矿深部找矿靶区 位于牟平区城区南30 km处的西邓格庄村南,东邓格庄—金牛山一带,行政区划属水道镇管辖 金 A类 10 英格庄金矿床深部找矿靶区 位于乳山市城区北约14 km处的英格庄村东,行政区划属下初镇 金 A类 11 福禄地金矿深部找矿靶区 位于山东省烟台市牟平区城南约25 km的西邓格庄村北一带,行政区划属牟平区莒格庄镇管辖 金 A类 12 金青顶矿区金矿床深部找矿靶区 位于乳山市东北25 km,行政区划属乳山市下初镇 金 A类 13 黑岚沟金矿深部预测靶区 山东省蓬莱市大辛店镇 金 A类 14 齐沟金矿一分矿深部预测
靶区山东省蓬莱市大辛店镇 金 A类 15 燕山金矿深部预测靶区 山东省蓬莱市大柳行镇 金 A类 16 门楼金矿深部预测靶区 山东省蓬莱市大柳行镇 金 A类 17 齐家沟金矿深部预测靶区 山东省蓬莱市大辛店镇 金 A类 18 香夼铅锌矿深部预测靶区 山东省栖霞市臧家庄镇 铅锌 A类 19 王家庄铜矿深部预测靶区 山东省福山区东厅镇 铜 A类 20 邢家山钼(钨)矿深部预测靶区 山东省福山区东厅镇 铜 A类 21 刁龙嘴找矿靶区 三山岛西部海域 金铅 A类 22 大流口金找矿靶区 山东栖霞市大流口村 金 A类 23 上崖头银铅多金属找矿靶区 山东栖霞市上崖头村—虎鹿夼村一带 银、铅 A类 24 东山庄金矿找矿靶区 山东省栖霞市臧家庄镇 金 A类 25 高家银矿找矿靶区 山东省蓬莱市庄园街道 银 A类 26 芙蓉岛找矿靶区 位于潘家屋子以南,芙蓉岛东部海域,三山岛断裂(F3)西南延伸部位 金 B类 27 双山金矿找矿靶区 山东省栖霞市臧家庄镇与蓬莱市村里集镇交界 金 B类 28 阎家疃金矿床深部找矿靶区 烟台市牟平区城南7 km,阎家疃村南部,行政区划隶属牟平区文化街道办事处 金 B类 29 辉湛金矿找矿靶区 山东省烟台市牟平区辉湛村北部一带 金 B类 30 东桑杭埠—黑牛台金矿床深部找矿靶区 位于烟台市牟平区城南东约30 km处的黑牛台一带,行政区划隶属牟平区玉林店镇 金 B类 31 西邓格庄—高行山金矿深部找矿靶区 位于烟台市牟平区城区南约20 km,水道镇西北约3 km,处行政区划属烟台市牟平区水道镇 金 B类 32 育林山—岔河金矿深部找矿靶区 位于烟台市牟平城区南32 km处的岔河村北一带,行政区划属牟平区水道镇管辖 金 B类 33 郭落庄金找矿靶区 山东栖霞市郭落庄村一带 金 B类 34 后夼金找矿靶区 山东栖霞市草庵村—草夼村一带 金 B类 35 盘子涧金找矿靶区 山东栖霞市盘子涧村一带 金 B类 36 马家窑金找矿靶区 山东栖霞市马家窑—安子夼一带 金 B类 37 町夼金找矿靶区 山东栖霞市町夼村一带 金 B类 38 上范家沟铜金找矿靶区 山东栖霞市上范家沟村一带 铜 B类 39 曲家庵口金矿找矿靶区 山东省蓬莱市大柳行镇 金 B类 40 罗家金找矿靶区 山东栖霞市罗家村一带 金 C类 41 占疃金找矿靶区 栖霞市占疃村—李家圈村一带 金 C类 42 马院山多金属矿找矿靶区 山东省栖霞市经济开发区 铅锌 C类 注:A类指成矿地质条件有利;与已知矿床找矿预测模型吻合程度高,含矿建造、控矿构造等基本清楚;反映与成矿有关的蚀变作用强烈、规模较大、分带明显;有已知矿产地;预测资源量达中型及以上规模。B类指成矿地质条件较有利;与已知矿床找矿预测模型吻合程度较高,含矿建造、控矿构造等较清楚;虽反映与成矿有关的蚀变作用强烈,但规模小、分带弱;有已知矿(化)点;预测资源量达中型及以上规模。C类指成矿地质条件较有利;含矿建造、控矿构造等不甚清楚;蚀变较弱;预测资源量达中型及以上规模。 1 Metadata Table of Database (Dataset)
Items Description Database (dataset) name 1∶50 000 Geological and Mineral Survey Database of Qixia–Muping Area, Jiaodong Metallogenic Province Database (dataset) authors Qixia City Map-sheet (J51E017004), Taocun Map-sheet (J51E017005), Shanqiandian Map-sheet (J51E018004): Fu Chao, Peng Li’na, Tianjin Center, China Geological Survey
Gaotong Map-sheet (J51E016005), Zangjiazhuang Map-sheet (J51E016004), Daxindian Map-sheet (J51E015004), Gangyu Map-sheet (J51E015005): Dai Guangkai, Zhu Xueqiang, Shandong Institute of Geological Survey
Shuidao Map-sheet (J51E017007), Guanshui Map-sheet (J51E017006), and Fengjia Map-sheet (J51E018007): Zou Jian, Ma Fang, No.3 Exploration Institute of Geology and Mineral Resources of Shandong ProvinceData acquisition time From 2016 to 2018 Data format MapGIS Data size 299 MB Data service system URL http://dcc.cgs.gov.cn Fund project The geological survey project entitled Geological and Mineral Survey of Qixia–Muping Area, Jiaodong Metallogenic Province initiated by China Geological Survey (DD20160044) Language Chinese Database (dataset) composition The Database consists of libraries of 1∶50 000-scale mineral and geologic maps and their map decorations, geophysical databases, remote sensing databases, sample databases, comprehensive result databases, and prospecting engineering databases.
The 1∶50 000-scale mineral and geologic map library includes sedimentary rocks, magmatic rocks, volcanic rocks, metamorphic rocks, Quaternary, dikes, structures, geological boundaries, attitude, deposits (mineralized points), alteration, lithologic pattern, and various codes.
Map decorations consist of index map, diagrams, legends, transverse cutting profiles, metallogenic factor maps of typical deposits, measured profiles of typical deposits, mineral deposit list, location maps of metallogenic belts and a duty table.
The geophysical database consists of geophysical anomaly maps and plans.
The remote sensing database consists of extraction data of remote sensing anomaly and inferred linear structures.
The comprehensive result database consists of a table of anomaly verification results, predicted mineral deposit prospect area layers and prospecting target area layers.
The prospecting engineering database includes the data of trenches and boreholes2 Feature classes, complex classes, and object classes in the result databases of the Daxindian map-sheet
Map-sheet No. Dataset Entity name File title Data type J51E015004 (Daxindian map sheet) Feature classes Geologic polygon entity _GEOPOLYGON.wp Area Geologic (boundary) line _GEOLINE.wl Line Mineral deposit _MINERAL_PNT.wt Point Attitude _ATTITUDE.wt Point Sample SAMPLE.wt Point Isotopic dating _ISOTOPE.wt Point Borehole DRILLHOLE.wt Point Crater _CRATER.wt Point Shoreline of river, lake, sea, or reservoir _LINE_GEOGRAPHY.wl Line Complex classes Tectonic deformation zone _TECOZONE.wp Area Alteration zone (section) _ALTERATION_POLYGON.wp Area Metamorphic facies zone _METAMOR_FACIES.wp Area Volcanic facies zone _VOLCA_FACIES. wp Area Mineralized zone MINERAL_ZONE. wp Area Standard map frame (inner map frame) _MAP_FRAME.wl Line J51E015004 (Daxindian map sheet) Object
classesPetrostratigraphic unit of sedimentary (volcanic) rocks _STRATA ACCESS Chronologic unit of intrusions _INTRU_LITHO_CHRONO ACCESS Fault _FAULT ACCESS Petrostratigraphic unit of metamorphic rocks _METAMORPHIC ACCESS Special geological body _SPECIAL_GEOBODY ACCESS Informal stratigraphic unit INF_STRATA ACCESS Dike (section) _DIKE_OBJECT ACCESS Planar waters and swamp _WATER_REGION ACCESS Basic information of map sheets _SHEET_MAPINFO ACCESS Geologic structures inferred from remote sensing Layer of remote sensing anomalies Rsanomaly.wp Area Inferred linear structure layer Rslinear.wl Line Inferred annular structure layer RSRing.wl Line Geophysical data Layer of predicted areas
with gravity and magnetic anomaliesGRAVMAGNETICLINEAR. wl Line Layer of predicted areas
with gravity and magnetic anomaliesGRAVMAGNETICLINEAR. wt Point Geochemical data Layer of stream sediment anomalies ANOMALY_STREAM. wl Line Layer of stream sediment anomalies ANOMALY_STREAM. wt Point Metallogenic rule and mineral prediction Layer of predicted mineral prospect areas PredictedProspectiveArea.wp Area Layer of prospecting target areas TargetArea.wp Area Layer of recommended geological work deployment WorkPlan.wp Area 3 Mineral types and scale of the deposits in the Qixia-Muping Area, Jiaodong Metallogenic Province
Mineral type Scale Total Large-scale Medium-scale Small-scale Ore occurrence Mineralized point Rock gold 22 18 60 87 31 218 Placer gold 1 2 3 Ag 1 2 2 5 Cu 1 1 8 10 20 Cu–Mo 1 1 Mo 1 1 2 Pb 3 3 6 Pb–Zn 2 2 4 Cu–Pb–Zn polymetal 1 1 2 W–Mo 1 1 Mn 4 4 Fe 1 4 5 Garnet 1 1 Graphite 1 1 Total 23 23 67 113 47 275 4 List of prospecting target areas in the Qixia-Muping area, Jiaodong Metallogenic Province
No. Name Location Mineral type Grade 1 Deep prospecting target area of the Xiayucun gold deposit In the north mount of Xiayu Village, Gaoling Town, 24 km in the southwest of Muping District, Yantai. It belongs to Gaoling Town, Muping District, Yantai administratively Au Grade A 2 Deep prospecting target area of the Moshan golddeposit About 15 km in the south of Muping District, Yantai. It belongs to Gaoling Town, Muping District administratively. Au Grade A 3 Peripheral prospecting target area of the Moshan gold deposit About 15 km in the south of Muping District, Yantai. It belongs to Gaoling Town, Muping District administratively. Au Grade A 4 Deep prospecting target area of the Shuangshantun gold deposit In the east of Shuangshancun Village, which is about 12 km to the southwest of Muping urban area, Yantai. It belongs to Wuling Town and Gaoling Town, Muping District administratively. Au Grade A 5 Deep prospecting target area of the Xiapangezhuang gold deposit Xiapange Au deposit is located about 15 km to the southwest of Muping urban area. It belongs to Gaoling Town administratively. Au Grade A 6 Prospecting target area of the the Shangpangezhuang gold deposit Around the south of Shangpangezhuang Village, Muping District, Yantai City, Shandong Au Grade A 7 Deep prospecting target area of the angjiagou gold deposit In the southeast of Tangjiagou Village which is about 18 km to the north of Rushan urban area. It belongs to Wuji Town, Rushan administratively. Au Grade A 8 Deep prospecting target area of the Xizhigezhuang gold deposit 25 km to the south of Muping urban area. It belongs to Shuidao Town, Muping District administratively Au Grade A 9 Deep prospecting target area of the Denggezhuang–Jinniushan gold deposit In the south of Xidenggezhuang Village which is 30 km to the south of Muping urban area and Dongdenggezhuang–Jinniushan area. It belongs to Shuidao Town administratively Au Grade A 10 Deep prospecting target area of the Yinggezhuang gold deposit In the east of Yinggezhuang Village which is about 14 km to the north of Rushan urban area. It belongs to Xiachu Town administratively Au Grade A 11 Deep prospecting target area of the Fuludi gold deposit In the north of Xidenggezhuang Village which is about 25 km to the south of Muping urban area, Yantai, Shandong. It belongs to Jugezhuang Town, Muping District administratively Au Grade A 12 Deep prospecting target area of the Jinqingding gold deposit 25 km to the northeast of Rushan City. It belongs to Xiachu Town, Rushan administratively Au Grade A 13 Deep prospecting target area of the Heilangou gold deposit In Daxindian Town, Penglai City, Shandong Province Au Grade A 14 Deep prospecting target area of No. 1 branch of the Qigou gold deposit In Daxindian Town, Penglai City, Shandong Province Au Grade A 15 Deep prospecting target area of the Yanshan gold deposit In Daliuxing Town, Penglai City, Shandong Province Au Grade A 16 Deep prospecting target area of the Menlou gold deposit In Daliuxing Town, Penglai City, Shandong Province Au Grade A 17 Deep prospecting target area of the Qijiagou gold deposit In Daxindian Town, Penglai City, Shandong Province Au Grade A 18 Deep prospecting target area of the Xiangkuang lead–zinc deposit In Zangjiazhuang Town, Qixia City, Shandong Province Pb–Zn Grade A 19 Deep prospecting target area of the Wangjiazhuang copper deposit In Dongting Town, Fushan District, Shandong Province Cu Grade A 20 Deep prospecting target area of the Xingjiashan molybdennum (tungsten) deposit In Dongting Town, Fushan District, Shandong Province Cu Grade A 21 Prospecting target area of the Diaolongzui deposit In the west waters of Sanshan Island Au–Pb Grade A 22 Prospecting target area of the Daliukou gold deposit In Daliukou Village, Qixia City, Shandong Province Au Grade A 23 Prospecting target area of the Shangyatou silver–lead polymetallic deposit In Shangyatou Vilage–Hulukuang Vilage area, Qixia City, Shandong Province Ag–Pb Grade A 24 Prospecting target area of the Dongshanzhuang gold deposit In Zangjiazhuang Town, Qixia City, Shandong Province Au Grade A 25 Prospecting target area of the Gaojia silver deposit In Zhuangyuan sub-district, Penglai City, Shandong Province Ag Grade A 26 Prospecting target area of the Furong Island In the south of Pangjiawuzi area, west waters of Furong Island, and the part of the Sanshan Island fault (F3) extending towards southwest Au Grade B 27 Prospecting target area of the Shuangshan gold deposit At the junction of Zangjiazhuang Town of Qixia City and Cunliji Town of Penglai City Au Grade B 28 Deep prospecting target area of the Yanjiatuan gold deposit In the south of Yanjiatuan Village and 7 km to the south of Muping urban area, Yantai City. It belongs to Wenhua Sub-district Office, Muping District administratively Au Grade B 29 Prospecting target area of the Huizhan gold deposit In the north of Huizhan Village, Muping District, Yantai City, Shandong Province Au Grade B 30 Deep prospecting target area of the Dongsanghangbu–Heiniutai gold deposit In Heinitai area which is about 30 km to the southeast of Muping urban area, Yantai City. It belongs to Yulingdian Town, Muping District administratively Au Grade B 31 Deep prospecting target area of the Xidenggezhuang–Gaogxingshan gold deposit About 20 km to the south of Muping urban area and about 3 km to the northwest of Suidao Town in Yantai City. It belongs to Shuidao Town, Muping District, Yantai City administratively Au Grade B 32 Deep prospecting target area of the Yulingshan–Chahe gold deposit In the north of Chahe Village which is 32 km to the south of Muping urban area, Yantai City. It belongs to Suidao Town, Muping District administratively. Au Grade B 33 Prospecting target area of the Guoluozhuang gold deposit Near Guoluozhuang Village, Qixia City, Shandong Province Au Grade B 34 Prospecting target area of the Houkuang gold deposit Around Caoan Village–Caokuang Village, Qixia City, Shandong Province Au Grade B 35 Prospecting target area of the Panzijian gold deposit Around Panzijian Village, Qixia City, Shandong Province Au Grade B 36 Prospecting target area of the Majiayao gold deposit In Majiayao-Anzikuang area, Qixia City, Shandong Province Au Grade B 37 Prospecting target area of the Tingkuang gold deposit Around Dingkuang Village, Qixia City, Shandong Province Au Grade B 38 Prospecting target area of the Shangfanjiagou gold–copper deposit Around Shangfanjiagou Village, Qixia City, Shandong Province Cu Grade B 39 Prospecting target area of the Qujia’ankou gold deposit In Daliuxing Town, Penglai City, Shandong Province Au Grade B 40 Prospecting target area of the Luojia gold deposit Around Luojia Village, Qixia City, Shandong Province Au Grade C 41 Prospecting target area of the Zhantuan gold deposit In Zhantuan Village–Lijiaquan Village area, Qixia City Au Grade C 42 Prospecting target area of the Mayuanshan polymetallic deposit In the Qixia Economic Development Zone, Shandong Province Pb–Zn Grade C Notes: Grade A prospecting target areas boast favorable geological conditions. They coincide with existing prospecting prediction models at a high degree, feature nearly definite ore-bearing formations and ore-controlling structures, and display strong, large-scale mineralization-related alteration with apparent zones. Furthermore, there are existing deposits corresponding to these areas, with predicted resources being up to a middle scale or above.
Grade B prospecting target areas boast less favorable geological conditions. They coincide with existing prospecting prediction models at a less high degree, feature less definite ore-bearing formations and ore-controlling structures, and display strong, small-scale mineralization-related alteration with unapparent zones. There are existing ore occurrences (mineralized points) corresponding to grade B prospecting target areas, with predicted resources being up to a middle scale or above.
Grade C prospecting target areas boast less favorable geological conditions, featuring indefinite ore-bearing formations and ore-controlling structures and weak alteration, with predicted resources being up to a middle scale or above. -
[1] Jahn BM, Liu DY, Wan YS, Song B, Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry[J]. American Journal of Science, 308(3): 232−269. doi: 10.2475/03.2008.03
[2] Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY, Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event[J]. Precambrian Research, 149(3-4): 249−271. doi: 10.1016/j.precamres.2006.06.006
[3] Xie SW, Xie HQ, Wang SJ, Kroner A, Liu SJ, Zhou HY, Ma MZ, Dong CY, Liu DY, Wan YS. 2014. Ca. 2. 9Ga granitoid magmatism in eastern Shandong, North China Craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry[J]. Precambrian Research, 255: 538−562. doi: 10.1016/j.precamres.2014.09.006
[4] Yang KF, Jiang P, Fan HR, Zuo YB, Yang YH. 2018. Tectonic transition from a compressional to extensional metallogenic environment at ~120 Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton[J]. Journal of Asian Earth Sciences, 160: 408−425. doi: 10.1016/j.jseaes.2017.08.014
[5] Zhou JB, Wilde SA, Zhao GC, Zheng CQ, Jin W, Zhang XZ, Cheng H. 2008. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications[J]. Precambrian Research, 160(3-4): 323−340. doi: 10.1016/j.precamres.2007.08.004
[6] 陈立博. 1992. 山东省大辛店幅、臧家庄幅化探普查成果报告(水系沉积物测量1︰50 000)[R]. 山东省地矿局物化探大队. [7] 陈运环. 1987. 山东省高疃、岗嵛、巨峰幅1∶50 000以金为主区域化探普查成果报告[R]. 山东省地质矿产局地球物理地球化学勘查大队. [8] 崔元俊, 董健, 何玉海, 王存龙, 陈磊, 刘福魁. 2016. 观水幅J51E017006水道幅J51E017007崖子幅J51E018006冯家幅J51E018007乳山寨幅J51E019006乳山幅J51E019007 1∶50 000高精度重磁测量成果报告[R]. 山东省地质调查院. [9] 丁正江, 孙丰月, 刘建辉, 刘殿浩. 2012. 胶东邢家山钼钨矿床辉钼矿Re-Os同位素测年及其地质意义[J]. 岩石学报, 28(9): 2721−2732. [10] 丁正江, 孙丰月, 刘福来, 刘建辉, 彭齐鸣, 纪攀, 李碧乐, 张丕建. 2015a. 胶东中生代动力学演化及主要金属矿床成矿系列[J]. 岩石学报, 31(10): 3045−3080. [11] 丁正江, 孙丰月, 李国华, 纪攀, 孔彦. 2015b. 胶东邢家山地区燕山早期钼钨成矿母岩锆石U-Pb年龄及其意义[J]. 中国地质, 42(2): 556−569. [12] 付超, 彭丽娜, 戴广凯, 朱学强, 邹键, 马方. 2020. 胶东成矿区栖霞−牟平地区 1∶50 000 地质矿产调查数据库[DB/OL]. (2020-12-30). DOI: 10.35080/data.C.2020.P26. [13] 关康, 罗镇宽, 苗来成, 黄佳展. 1998. 胶东招远郭家岭型花岗岩锆石 SHRIMP年代学研究[J]. 地质科学, 33(3): 318−328. [14] 侯明兰, 丁昕, 蒋少涌. 2004. 胶东蓬莱河西金矿床铅、硫同位素地球化学特征[J]. 地球学报, 25(2): 145−150. doi: 10.3321/j.issn:1006-3021.2004.02.009 [15] 侯明兰, 蒋少涌, 姜耀辉, 凌洪飞. 2006. 胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究[J]. 岩石学报, 22(10): 2525−2533. doi: 10.3321/j.issn:1000-0569.2006.10.013 [16] 黄峰, 张应德, 陈云龙, 王新海, 邵维柱, 吕建志. 1990. 蓬莱幅J-51-19烟台幅J-51-20 1∶200 000区域重砂测量报告[R]. 山东省地质矿产局区域地质调查队. [17] 李杰, 宋明春, 李世勇, 周晓剑, 宋英昕, 丁正江, 杨立新, 王珊珊, 姜帆, 李倩. 2016. 胶东大邓格金多金属矿床地质地球化学特征及意义[J]. 中国地质, 43(1): 221−237. doi: 10.3969/j.issn.1000-3657.2016.01.016 [18] 李守军, 王丽丽, 韩振玉, 王秀静, 田臣龙, 刘强, 崔肖辉, 万云鹏. 2016. 山东烟台地区古生物化石特征及保护规划研究[J]. 地质调查与研究, 39(1): 39−46. doi: 10.3969/j.issn.1672-4135.2016.01.005 [19] 刘建辉, 刘福来, 刘平华, 王舫, 丁正江. 2011. 胶北早前寒武纪变质基底多期岩浆 -变质热事件: 来自TTG 片麻岩和花岗质片麻岩中锆石U-Pb定年的证据[J]. 岩石学报, 27(4): 943−960. [20] 刘建明, 王来明. 1988. 山东省栖霞县幅J-51-98-B 1∶50 000区域地质调查报告[R]. 山东省地矿局区域地质调查队. [21] 苗来成, 罗镇宽, 黄佳展, 关康. 1997. 山东招掖金矿带内花岗岩类侵入体锆石 SHRIMP研究及其意义[J]. 中国科学D辑, 27(3): 207−212. doi: 10.3321/j.issn:1006-9267.1997.03.002 [22] 苗来成, 罗镇宽, 关康, 黄佳展. 1998. 玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义[J]. 岩石学报, 14(2): 198−206. doi: 10.3969/j.issn.1000-0569.1998.02.007 [23] 谢士稳, 王世进, 颉颃强, 刘守偈, 董春艳, 马铭株, 刘敦一, 万渝生. 2014. 华北克拉通胶东地区粉子山群碎屑锆石SHRIMP U-Pb定年[J]. 岩石学报, 30(10): 2989−2998. [24] 薛志忠, 戴金和, 周会青, 周忠福, 孔艳, 刘雪芬. 1996. 大辛店幅J51E015004臧家庄幅J51E016004 1∶50 000区域地质调查报告[R]. 山东省地矿局第三地质队. [25] 薛玉山, 柳振江, 成少博, 朱保霖. 2014. 胶东邢家山大型钼矿地质地球化学特征及成因意义[J]. 中国地质, 41(2): 540−561. doi: 10.3969/j.issn.1000-3657.2014.02.017 [26] 于学峰, 李洪奎, 单伟. 2012. 山东胶东矿集区燕山期构造热事件与金矿成矿耦合探讨[J]. 地质学报, 86(12): 1946−1956. doi: 10.3969/j.issn.0001-5717.2012.12.007 [27] 杨国福, 薛志忠, 杨夕良, 周忠福, 彭秋生, 田华, 刘汝青, 孔艳. 2000. 烟台幅J51E015006高疃幅J51E016005福山西半幅I51E016006岗嵛幅J51E015005巨峰幅J51E014005 1∶50 000区域地质调查报告[R]. 山东省第三地质矿产勘查院. [28] 祝德成, 许庆林, 吕大炜, 杨仕鹏, 杨振毅, 杨庆, 沈晓丽. 2018. 山东牟乳成矿带北段邓格庄金矿煌斑岩与金矿成矿关系[J]. 地球学报, 39(3): 319−328. doi: 10.3975/cagsb.2018.022801 [29] 赵运伦, 王文安. 1990. 牟平幅J-51-88-C福山幅J-51-87-D水道幅J-51-100-A观水幅J-51-99-B冯家幅J-51-100-C崖子幅J-5-99-D 1∶50 000区域地质调查报告. 山东省地矿局第三地质队. [30] 王沛成, 纪壮义, 张志豪, 李洪奎, 纪壮义, 刘广宇. 1991. 烟台幅J-51-20蓬莱幅(含砣矶岛)J-51-19 1∶200 000区域地质调查报告[R]. 山东省地质矿产局区域地质调查队三分队. [31] 王奎峰, 韩祥银, 王岳林, 刘洋. 2016. 山东半岛矿产资源承载力及保障程度研究[J]. 地质调查与研究, 39(1): 47−55. doi: 10.3969/j.issn.1672-4135.2016.01.006 [32] 王天君, 张守防, 张来恩, 孙伟清. 1991. 山东省桃村幅J-51-99-A郭城幅J-51-99-C 1∶50 000水系沉积物测量成果报告[R]. 山东地矿局第一地质队. [33] 翟明国. 2013. 华北前寒武纪成矿系统与重大地质事件的联系[J]. 岩石学报, 29(5): 1759−1773. [34] 张富中, 任志康, 景晓东, 张春池, 董仁国, 周广海, 肖凤利, 王纬山. 1993. 桃村幅J-51-99-A观水幅(西半幅)J-51-99-B郭城幅J-51-99-C崖子幅(西半幅)J-51-99-D 1∶50 000区域地质调查报告[R]. 山东省地矿局第一地质队. [35] 张田, 张岳桥. 2007. 胶东半岛中生代侵入岩浆活动序列及其构造制约[J]. 高校地质学报, 13(2): 323−336. doi: 10.3969/j.issn.1006-7493.2007.02.015 [36] 张丕建, 刘殿浩, 李国华, 丁正江, 李勇, 杨国福, 李平. 2015. 胶东中生代盆地边缘区金矿成矿特征和找矿方向[J]. 地质调查与研究, 38(4): 273−277. doi: 10.3969/j.issn.1672-4135.2015.04.005 [1] Chen Libo. 1992. Geochemical Survey (1∶50 000 Stream Sediments Survey) Results Report of the Daxindian and Zangjiazhuang Map-sheets in Shandong Province[R]. Geophysical and Geochemical Exploration Brigade of Shandong Geology and Mineral Resources Bureau (in Chinese). [2] Chen Yunhuan. 1987. 1∶50 000 Report on Regional Geochemical Survey for Gaotuan, Gangyu, Jufeng Map-sheets of Shandong Province[R]. Geophysical and Geochemical Exploration Brigade of Shandong Geology and Mineral Resources Bureau (in Chinese). [3] Cui Yuanjun, Dong Jian, He Yuhai, Wang Cunlong, Chen Lei, Liu Fukui. 2016. 1∶50 000 High Precision Gravity and Magnetic Measurement Report of Guanshui (J51E017006), Shuidao (J51E017007), Yazi (J51E018006), Fengjia (J51E018007), Rushanzhai (J51E019006), Rushan (J51E019007) Map-sheets for Shandong Province[R]. Shandong Institute of Geological Survey (in Chinese). [4] Ding Zhengjiang, Sun Fengyue, Liu Jianhui, Liu Dianhao, Li Bile, Zhang Pijian, Qian Ye, Li Jie. 2012. Re-Os dating of molybdenites from the Xingjiashan molybdenum-tungsten deposit in Jiaodong Peninsula, China and its geological significance[J]. Acta Petrologica Sinica, 28(9): 2721−2732 (in Chinese with English abstract). [5] Ding Zhengjiang, Sun Fengyue, Liu Fulai, Liu Jianhui, Peng Qiming, Ji Pan, Li Bile, Zhang Pijian. 2015a. Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula, China[J]. Acta Petrologica Sinica, 31(10): 3045−3080 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252016378.html [6] Ding Zhengjiang, Sun Fengyue, Li Guohua, Ji Pan, Kong Yan. 2015b. Accurate zircon U-Pb dating of Early Yanshanian molybdenum-tungsten mother rocks in Xingjiashan area of Jiaodong Peninsula and its significance[J]. Geology in China, 42(2): 556−569 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201502015.htm [7] Fu Chao, Peng Li’na, Dai Guangkai, Zhu Xueqiang, Zou Jian, Ma Fang. 2020. 1∶50 000 Geological and Mineral Survey Database of Qixia–Muping Area, Jiaodong Metallogenic Province[DB/OL]. Geoscienctific Data & Discovery Publishing System. (2020-12-30). DOI: 10.35080/data.C.2020.P26. [8] Guan Kang, Luo Zhenkuan, Miao Laicheng, Huang Jiazhan. 1998. SHRIMP in zircon chronology for Guojialing suite granite in Jiaodong Zhaoye district[J]. Chinese Journal of Geology, 33(3): 318−328 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/80010469409 [9] Huang Feng, Zhang Yingde, Chen Yunlong, Wang Xinhai, Shao Weizhu, Lyu Jianzhi.1990. 1∶200 000 Regional Heavy Sand Survey Report of Penglai (J-51-19), Yantai (J-51-20) Map-sheets in Shandong Province[R]. Regional Geological Survey Brigade of Shandong Geology and Mineral Resources Bureau (in Chinese). [10] Hou Minglan, Ding Xin, Jiang Shaoyong. 2004. Lead and sulfur isotope geochemistry of the Hexi gold deposit in Penglai, Eastern Shandong[J]. Acta Geoscientica Sinica, 25(2): 145−150 (in Chinese with English abstract). [11] Hou Minglan, Jiang Shaoyong, Jiang Yaohui, Ling Hongfei. 2006. S-Pb isotope geochemistry and Rb-Sr geochronology of the Penglai gold field in the eastern Shangdong province[J]. Acta Petrologica Sinica, 22(10): 2525−2533 (in Chinese with English abstract). http://www.oalib.com/paper/1471566 [12] Jahn BM, Liu DY, Wan YS, Song B, Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry[J]. American Journal of Science, 308(3): 232−269. doi: 10.2475/03.2008.03 [13] Li Jie, Song Mingchun, Li Shiyong, Zhou Xiaojian, Song Yingxin, Ding Zhengjiang, Yang Lixin, Wang Shanshan, Jiang Fan, Li Qian. 2016. Geological and geochemical features of the Dadengge gold polymetallic deposit in Jiaodong Peninsula[J]. Geology in China, 43(1): 221−237 (in Chinese with English abstract). http://www.researchgate.net/publication/311435159_Geological_and_geochemical_features_of_the_Dadengge_gold_polymetallic_deposit_in_Jiaodong_Peninsula [14] Li Shoujun, Wang Lili, Han Zhenyu, Wang Xiujing, Tian Chenlong, Liu Qiang, Cui Xiaohui, Wan Yunpeng. 2016. Study on paleontological fossil characteristics and protection plan in Yantai district of Shangdong Province[J]. Geological Survey and Research, 39(1): 39−46 (in Chinese with English abstract). [15] Liu Jianhui, Liu Fulai, Liu Pinghua, Wang Fang, Ding Zhengjiang. 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area: Evidences from the zircon U-Pb dating of TTG and granitic gneisses[J]. Acta Petrologica Sinica, 27(4): 943−960 (in Chinese with English abstract). [16] Liu Jianming, Wang Laiming. 1988. 1∶50 000 Regional Geological Survey Report of the Qixia County Map-sheet (J-51-98-B) in Shandong Province[R]. Regional Geological Survey Brigade of Shandong Geology and Mineral Resources Bureau (in Chinese). [17] Miao Laicheng, Luo Zhenkuan, Huang Jiazhan, Guan Kang. 1997. Zircon SHRIMP study of granitoid intrusives in Zhaoye gold field, Shandong and its significance[J]. Science in China (Series D), 27(3): 207−212 (in Chinese). doi: 10.1007/BF02877567 [18] Miao Laicheng, Luo Zhenkuan, Guan K, Huang Jiazhan. 1998. The implication of the SHRIMP U-Pb age in zircon to the petrogenesis of the Linglong granite, East Shangdong Province[J]. Acta Petrologica Sinica, 14(2): 198−206 (in Chinese with English abstract). [19] Wang Kuifeng, Han Xiangyin, Wang Yuelin, Liu Yang. 2016. Study on the mineral resource carrying capacity and protection degree in Shandong Peninsula[J]. Geological Survey and Research, 39(1): 47−55 (in Chinese with English abstract). [20] Wang Peicheng, Ji Zhuangyi, Zhang Zhihao, Li Hongkui, Ji Zhuangyi, Liu Guangyu. 1991. 1∶200 000 Regional Geological Survey Report of Yaitai (J-51-20), Penglai (Contain Tuojidao) (J-51-19) Map-sheets in Shandong Province[R]. No.3 Geological Brigade of Geology and Mineral Resources of Shandong Province (in Chinese). [21] Wang Tianjun, Zhang Shoufang, Zhang Laien, Sun Weiqing. 1991. 1∶50 000 Stream Sediment Survey Report of Taocun (J-51-99-A), Guocheng (J-51-99-C) Map-sheets in Shandong Province[R]. No.1 Geological Brigade of Geology and Mineral Resources of Shandong Province (in Chinese). [22] Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY, Zhou HY. 2006. SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event[J]. Precambrian Research, 149(3–4): 249−271. http://www.sciencedirect.com/science/article/pii/S0301926806001471 [23] Xie SW, Xie HQ, Wang SJ, Kroner A, Liu SJ, Zhou HY, Ma MZ, Dong CY, Liu DY, Wan YS. 2014a. Ca. 2.9 Ga granitoid magmatism in eastern Shandong, North China Craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry[J]. Precambrian Research, 255: 538−562. doi: 10.1016/j.precamres.2014.09.006 [24] Xie Shiwen, Wang Shijin, Xie Hangqiang, Liu Shoujie, Dong Chunyan, Ma Mingzhu, Liu Dunyi, Wan Yusheng. 2014b. SHRIMP U-Pb dating of detrital zircons from the Fenzishan Group in eastern Shandong, North China craton[J]. Acta Petrologica Sinica, 30(10): 2989−2998 (in Chinese with English abstract). [25] Xue Yushan, Liu Zhenjiang, Cheng Shaobo, Zhu Baolin. 2014. Geological-geochemical characteristics of the Xingjiashan Mo deposit in Jiaodong and their geological significance[J]. Geology in China, 41(2): 540−561 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201402017.htm [26] Xue Zhizhong, Dai Jinhe, Zhou Huiqing, Zhou Zhongfu, Kong Yan, Liu Xuefen. 1996. 1∶50 000 Regional Geological Survey Report of Daxindian (J51E015004), Zangjiazhuang (J51E016004) Map-sheets in Shandong Province[R]. No.3 Geological Brigade of Geology and Mineral Resources of Shandong Province (in Chinese). [27] Yang KF, Jiang P, Fan HR, Zuo YB, Yang YH. 2018. Tectonic transition from a compressional to extensional metallogenic environment at ~120 Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton[J]. Journal of Asian Earth Sciences, 160: 408−425. doi: 10.1016/j.jseaes.2017.08.014 [28] Yu Xuefeng, Li Hongkui, Shan Wei. 2012. Study on coupling between Yanshannian tectonic thermal events and gold mineralization in Jiaodong ore concentrating area in Shandong Province[J]. Acta Geologica Sinica, 86(12): 1946−1956 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201212008&dbcode=CJFD&year=2012&dflag=pdfdown [29] Yang Guofu, Xue Zhizhong, Yang Xiliang, Zhou Zhongfu, Peng Qiusheng, Tian Hua, Liu Ruqing, Kong Yan. 2000. 1∶50 000 Regional Geological Survey Report of Yantai (J51E015006), Gaotuan (J51E016005), Fushan (west part) (I51E016006), Gangyu (J51E015005), Jufeng (J51E014005) Map-sheets in Shandong Province[R]. No.3 Institute of Geology and Mineral Resources of Shandong Province (in Chinese). [30] Zhang Fuzhong, Ren Zhikang, Jing Xiaodong, Zhang Chunchi, Dong Renguo, Zhou Guanghai, Xiao Fengli, Wang Weishan. 1993. 1∶.50 000 Regional Geological Survey Report of Taocun (J-51-99-A), Guanshui (west part) (J-51-99-B), Guocheng (J-51-99-C), Yazi (west part) (J-51-99-D) Map-sheets in Shandong Province[R]. No.1 Geological Brigade of Geology and Mineral Resources of Shandong Province (in Chinese). [31] Zhai Mingguo. 2013. Secular changes of metallogenic systems link with continental evolving of the North China Craton[J]. Acta Petrologica Sinica, 29(5): 1759−1773 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB201305023.htm [32] Zhang Tian, Zhang Yueqiao. 2007. Geochronological sequence of Mesozoic intrusive magmatism in Jiaodong Peninsula and its tectonic constraints[J]. Geological Journal of China Universities, 13(2): 323−336 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200702014.htm [33] Zhang Pijian, Liu Dianhao, Li Guohua, Ding Zhengjiang, Li Yong, Yang Guofu, Li Ping. 2015. Gold metallogenic features and prospecting in the margin of the Mesozoic basins, Jiaodong Peninsula[J]. Geological Survey and Research, 38(4): 273−277 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ201504005.htm [34] Zhao Yunlun, Wang Wen’an. 1990. 1∶50 000 Regional Geological Survey Report of Muping (J-51-88-C), Fushan (J-51-87-D), Shuidao (J-51-100-A), Guanshui (J-51-99-B), Fengjia (J-51-100-C), Yazi (J-5-99-D) Map-sheets in Shandong Province[R]. No.3 Geological Brigade of Geology and Mineral Resources of Shandong Province (in Chinese). [35] Zhou JB, Wilde SA, Zhao GC, Zheng CQ, Jin W, Zhang XZ, Cheng H. 2008. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications[J]. Precambrian Research, 160(3–4): 323−340. http://www.sciencedirect.com/science/article/pii/S0301926807002173 [36] Zhu Decheng, Xu Qinglin, Lyu Dawei Yang Shipeng, Yang Zhenyi, Yang Qing, Shen Xiaoli. 2018. The relationship between lamprophyre and gold mineralization in the Denggezhuang gold deposit along the northern section of the Mouping–Rushan metallogenic belt[J]. Acta Geoscientica Sinica, 39(3): 319−328 (in Chinese with English abstract). -
期刊类型引用(7)
1. 张昌民,张祥辉,王庆,冯文杰,李少华,易雪斐,Adrian J.HARTLEY. 分支河流体系沉积学工作框架与流程. 岩性油气藏. 2024(01): 1-13 . 百度学术
2. 张倩,王永诗,王学军,杨怀宇,王天福. 东营凹陷缓坡带陆相红层砂岩粒度特征及沉积环境意义. 地质科技通报. 2024(05): 81-94 . 百度学术
3. 陈春峰,陈忠云,万延周,陈建文,徐东浩,冯桢鸣,俞伟哲,姜雪. 东海盆地西湖凹陷南部花港组上段浅水曲流河三角洲发育特征. 海洋地质与第四纪地质. 2024(06): 175-185 . 百度学术
4. Xianghui Zhang,Changmin Zhang,Adrian Hartley,Qinghai Xu,Wenjie Feng,Taiju Yin,Rui Zhu. Analysis of the Sedimentary Characteristics of a Modern Distributive Fluvial System:A Case Study of the Great Halten River in the Sugan Lake Basin, Qinghai, China. Journal of Earth Science. 2023(04): 1249-1262 . 必应学术
5. 张昌民,张祥辉,朱锐,冯文杰,尹太举,尹艳树,Adrian J.HARTLEY. 分支河流体系研究进展及应用前景展望. 岩性油气藏. 2023(05): 11-25 . 百度学术
6. 张祥辉,张昌民,冯文杰,徐清海,朱锐,刘帅,黄若鑫. 干旱地区分支河流体系沉积特征——以疏勒河分支河流体系为例. 石油勘探与开发. 2021(04): 756-767 . 百度学术
7. 赵芸,张昌民,朱锐,冯文杰,赵康. 分支河流体系(DFS)研究进展. 大庆石油地质与开发. 2021(06): 1-11 . 百度学术
其他类型引用(2)