• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

鄂西宜昌斜坡带五峰组—龙马溪组页岩优势岩相及其生气潜力

张保民, 陈孝红, 蔡全升, 陈林, 张国涛, 李培军

张保民, 陈孝红, 蔡全升, 陈林, 张国涛, 李培军. 鄂西宜昌斜坡带五峰组—龙马溪组页岩优势岩相及其生气潜力[J]. 中国地质, 2022, 49(3): 943-955. DOI: 10.2029/gc20220318
引用本文: 张保民, 陈孝红, 蔡全升, 陈林, 张国涛, 李培军. 鄂西宜昌斜坡带五峰组—龙马溪组页岩优势岩相及其生气潜力[J]. 中国地质, 2022, 49(3): 943-955. DOI: 10.2029/gc20220318
ZHANG Baomin, CHEN Xiaohong, CAI Quansheng, CHEN Lin, ZHANG Guotao, LI Peijun. Dominant shale lithofacies and gas generation potential analysis of the WufengLongmaxi Formation in the Yichang slope area, Western Hubei Province[J]. GEOLOGY IN CHINA, 2022, 49(3): 943-955. DOI: 10.2029/gc20220318
Citation: ZHANG Baomin, CHEN Xiaohong, CAI Quansheng, CHEN Lin, ZHANG Guotao, LI Peijun. Dominant shale lithofacies and gas generation potential analysis of the WufengLongmaxi Formation in the Yichang slope area, Western Hubei Province[J]. GEOLOGY IN CHINA, 2022, 49(3): 943-955. DOI: 10.2029/gc20220318

鄂西宜昌斜坡带五峰组—龙马溪组页岩优势岩相及其生气潜力

基金项目: 

中国地质调查局地质调查项目 DD20160194

中国地质调查局地质调查项目 DD20190109

中国地质调查局地质调查项目 DD20221659

详细信息
    作者简介:

    张保民, 男, 1983年生, 教授级高级工程师, 从事页岩气地质调查和研究工作; E-mail: 71533922@qq.com

  • 中图分类号: P618.13

Dominant shale lithofacies and gas generation potential analysis of the WufengLongmaxi Formation in the Yichang slope area, Western Hubei Province

Funds: 

the projects of China Geological Survey DD20160194

the projects of China Geological Survey DD20190109

the projects of China Geological Survey DD20221659

More Information
    Author Bio:

    ZHANG Baomin, male, born in 1983, professor, engaged in shale gas investigation and research; E-mail: 71533922@qq.com

  • 摘要:
    研究目的 

    不同页岩岩相的矿物组分、含气性和可压性等的差异,决定不同岩相的开发潜力不同,页岩岩相的划分及评价对找寻页岩气勘探开发甜点具有重要指导意义。

    方研究法 

    基于钻井、岩心和分析测试资料,综合利用地质理论结合硅质矿物-黏土矿物-碳酸盐矿物含量三端元图解,对鄂西宜昌斜坡带上奥陶统五峰组—下志留统龙马溪组下段含气页岩岩相进行划分,结合有机碳含量、含气量、岩心镜下特征等划分优势岩相。优选有机质丰度、硅质矿物含量、黏土矿物含量3项指标与页岩含气量进行相关性分析,建立了五峰组—龙马溪组含气页岩优势岩相的分级标准。

    研究结果 

    研究区优势岩相均为II类优势岩相,II1类(最优)优势岩相为S-2混合硅质页岩相和S-3含黏土硅质页岩相,位于龙马溪组一亚段和五峰组上段,厚6 m;II2类(次优)优势岩相为S硅质页岩相,位于五峰组下段,厚4 m。

    结论 

    宜昌斜坡带和涪陵地区具有相似的岩相垂向演化序列,优势岩相均位于五峰组—龙马溪组一亚段,但同一岩相组合的页岩厚度和品质差异较大,发生在鲁丹阶早期的湘鄂西水下隆起和鲁丹阶晚期的水下隆起是造成宜昌地区优势岩相的厚度和品质均要差于涪陵地区的主要原因。

    创新点:建立五峰组—龙马溪组含气页岩优势岩相的分级标准,提出龙马溪组一亚段和五峰组是优势岩相发育层位。

    Abstract:

    This paper is the result of oil and gas exploration engineering.

    Objective 

    The differences in mineral composition, gas content and compressibility of shale lithofacies determine the development potential of shale gas. The division and evaluation of shale lithofacies is important to identify the sweet spot for shale gas exploration and development.

    Methods 

    Based on drilling, core analysis, and test data, the comprehensive utilization of geological theory combined with ternary diagram of siliceous mineral, clay minerals, and carbonate mineral content are used to divide the gasbearing shale lithofacies of the Wufeng Formation and the lower part of Longmaxi Formation in Yichang slope of western Hubei province. The dominant lithofacies are also divided combining with the organic carbon content, gas content, and microscopic characteristics. The correlation between the abundance of organic matter, the content of siliceous minerals, the content of clay minerals and the shale gas content are carried out to establish the classification standard of gas-bearing dominant lithofacies of Wufeng-Longmaxi Formation.

    Results 

    The dominant lithofacies in the study area is type II. The type II1 (optimal) dominant lithofacies are mixed siliceous shale facies (S-2) and clay-bearing siliceous shale facies (S-3), located in the first sub-member of Longmaxi Formation and the upper member of Wufeng Formation, with thickness of 6 m. The type II2 dominant lithofacies (suboptimal) is siliceous shale facies (S), located in the lower member of Wufeng Formation, with thickness of 4 m.

    Conclusions 

    The Yichang slope belt and Fuling area have similar vertical evolution sequence of lithofacies, and the dominant lithofacies are both located in the Wufeng Formation and first sub-member of Longmaxi Formation. However, the thickness and quality of same shale lithofacies association are quite different. The subaqueous uplift of western Hunan and Hubei in the Rhuddanian stage is the main reason that caused the thickness and quality of the dominant lithofacies in Yichang area poorer than that in Fuling area.

  • 四川盆地涪陵和长宁—威远等地页岩气的大规模商业化开发,揭示了中国南方上奥陶统五峰组—下志留统龙马溪组巨大的页岩气勘探潜力(郭彤楼等,2013郭旭升,2014Guo,2015王志刚,2015聂海宽等,2016王玉满等,2016马永生等,2018)。黄陵隆起东南缘的宜昌斜坡带鄂宜页2井五峰组—龙马溪组获得日产3.15×104 m3的工业气流,证实了四川盆地外围南方复杂构造区五峰组—龙马溪组的页岩气勘探前景(陈孝红等, 2018a, b张君峰等,2019张保民等,2021)。然而,与四川盆地五峰组—龙马溪组富有机质页岩的钻探成果相比,宜昌地区无论是在储层规模、岩性特征还是含气性方面存在显著差异(严德天等,2008;陈旭等,2015;张晓明等,2015;Meng et al., 2020),分析该区含气页岩岩相特征对于深化该区页岩气富集成藏地质认识具有重要意义。

    页岩岩相一直受到大家的关注,从简单的强调单一的矿物成分、结构构造,沉积环境等演变为综合岩石学、地球化学、地球物理学等方法技术进行精细划分和判别页岩性质的一种技术手段(Doyle and Sweet, 1995Yao and Chopra, 2000Jarvie et al., 2007)。不同岩相不仅在含气量、矿物组成、有机质丰度等方面存在明显差异性,而且不同地区划分标准也不尽相同(Liang et al., 2020)。本文基于宜昌斜坡带五峰组—龙马溪组的代表井鄂宜页2井,利用硅质矿物含量-碳酸盐矿物含量-黏土矿物含量三端元图解,结合地质和地球物理资料对宜昌斜坡带五峰组—龙马溪组下段黑色页岩岩相进行精细划分与评价,并结合涪陵气田典型优势岩相划分标准,提出了宜昌斜坡带地区页岩优势岩相评价标准,可以为四川盆地外围复杂构造区的页岩气勘探提供参考,促进南方页岩气主力勘探层系从盆内向盆外战略转移。

    宜昌斜坡带位于中扬子地台黄陵隆起东南缘,北西与黄陵隆起相连,北东以通城河断裂为界,与当阳复向斜相邻,南西以天阳坪断裂为界,与宜都—鹤峰复背斜相靠,为一南东倾向的单斜构造,面积约2150 km2(图 1)。宜昌斜坡带自黄陵隆起向东,依次出露南华纪—白垩纪地层,由于宜昌地区发育古老的结晶基底,构造稳定,利于志留系页岩储层在南方中、新生代发生的多期次强烈构造活动中免遭构造改造和破坏,页岩气保存条件好,是中国南方页岩气勘探的重点区域之一(肖开华等,2005陈孝红等,2018a张君峰等,2019)。

    图  1  鄂宜页2井区域地质略图和地层柱状图
    1—黑色页岩;2—硅质岩;3—煤;4—页岩;5—泥岩;6—粉砂岩;7—石英砂岩;8—泥质灰岩;9—灰岩;10—白云岩;11—黄陵花岗岩;12—侵入体;13—地层;14—井位;15—油气区块;16—主要断层;17—断层;18—构造边界
    Figure  1.  Regional geological sketchand stratigraphic column of well EYY2 field
    1-Black shale; 2—Siliceous rock; 3-Coal; 4-Shale; 5-Mudstone; 6-Siltstone; 7-Quartz sandstone; 8-Argillaceous limestone; 9-Limestone; 10-Dolomite; 11-Huangling granite; 12-Intrusive body; 13-Stratum; 14-Drilling; 15-Oil and gas block; 16-The main fault; 17-Fault; 18-Tectonic boundary

    晚奥陶世—早志留世,受加里东运动的影响,华夏板块与扬子地块之间的板块汇聚作用增强,在扬子地块周缘形成一系列古隆起,尤其是雪峰隆起、川中隆起和黔中隆起出露海平面(Chenand Rong,2004刘伟等,2012金之钧等,2016冯伟明等,2021张保民等,2021),使得扬子地区从中奥陶世时期的浅海陆棚转变为被隆起所围限的隆后滞留盆地,沉积五峰组—龙马溪组富含笔石的富有机质页岩。但由于不同地区所处的古地理位置不同,以及隆后盆地内部发育多个水下隆起,尤其是发生于奥陶—志留纪之交的“宜昌上升”运动,导致扬子部分地区五峰组—龙马溪组界线附近存在不同程度地层缺失,富有机质页岩厚度差异较大,位于隆后盆地中心地区厚度可达100 m,位于“宜昌上升”形成的湘鄂西水下隆起区富有机质页岩厚度较薄,局部地区甚至不发育。作为赫南特阶全球层型剖面和点(GSSP)所在地(陈旭等,2006Chen et al., 2006),宜昌斜坡区与涪陵地区相似,奥陶纪—志留纪之交地层连续并广泛发育,富有机质页岩厚度大,是页岩气勘探的有利区域。

    宜昌斜坡带鄂宜页2井是研究区进行页岩气地质调查取得突破的典型井,能代表研究区富有机质页岩的特征。该井揭示含气页岩主要集中在五峰组—龙马溪组下段,厚度33.61 m(图 2)。其中五峰组厚5.81m,根据岩石类型和生物特征划分为上、下两个岩性段,下段(笔石页岩段)岩性为灰黑色、黑色碳质笔石页岩、硅质页岩和硅质岩,夹丰富的钾质斑脱岩条带,水平纹层发育,富含黄铁矿,硅质岩中富含放射虫,厚度5.61 m,TOC含量为2.55%~5.52%,平均3.74%;上段(观音桥段)岩性为深灰色生物碎屑灰岩,富含赫南特动物群(Hirnantia Fauna),厚度0.2 m,是扬子地区奥陶系与志留系划分的标准层;龙马溪组下段厚27.8 m,岩性以深灰色、灰黑色、黑色炭质笔石页岩、硅质页岩为主,水平层理发育,含丰富的笔石化石,普遍见黄铁矿。根据岩性组合特征,龙马溪组下段可进一步细分为三亚段,由下而上颜色逐渐变浅,一亚段岩性主要为灰黑色硅质页岩、硅质岩,厚度5.2 m,TOC含量为2.17%~5.53%,平均2.82%,二亚段岩性以黑色碳质页岩为主,偶夹深灰色、灰黑色页岩,水平纹层发育,厚度8.6 m,TOC含量为0.98% ~2.92%,平均1.95%,三亚段岩性主要为灰黑色、黑色炭质页岩夹深灰色页岩,水平纹层发育,偶夹深灰色含粉砂质泥岩条带,厚度14 m,TOC含量为0.45%~1.18%,平均0.55%。

    图  2  宜昌斜坡带鄂宜页2井页岩岩相综合柱状图
    1—S—硅质页岩相;2—S-2—混合硅质页岩相;3—S-3—含黏土硅质页岩相;4—CM-1—含硅黏土质页岩相;5—M—混合质页岩相;6—M-2—含黏土/硅混合质页岩相;7—深灰色泥质灰岩;8—深灰色粉砂质泥岩;9—深灰色页岩;10—黑色页岩
    Figure  2.  Comprehensive histogram of shale facies in well EYY2
    1-S-Siliceous shale facies; 2-S-2-Mixed siliceous shale facies; 3-S-3-Clay-bearing siliceous shale facies; 4-CM-1-Siliceous -bearing clay shale facies; 5-M-Mixed shale facies; 6-M-2-Clay/siliceous-bearing mixed shale facies; 7-Charcoal grey argillaceous limestone; 8-Charcoal grey sandy mudstone; 9-Charcoal grey shale; 10-Black shale

    岩相是一定沉积环境中形成的岩石或岩石组合,它是沉积相的主要组成部分。泥页岩岩相与矿物成分、有机质和储集特征密切相关,不同岩相的有机质丰度、矿物成分等差异造成了生烃和储集能力、岩石力学属性的不同。目前,不同学者对页岩岩相划分有着不同依据和分类方法,如宏观沉积特征(结构、构造等)(Hickey and Henk, 2007)、矿物组成(Loucks and Ruppel, 2007Wang and Carr, 2007)、有机碳含量、古生物组合(李志明和全秋琦,1992) 等。本次研究在露头和岩心详细描述基础上,主要根据微观矿物组成和有机碳含量对鄂宜页2井上奥陶统五峰组—下志留统龙马溪组下段含气页岩岩相进行精细划分。

    通过碳酸盐矿物-黏土矿物-硅质矿物(石英+ 长石)三端元图解对页岩进行分类,划分出4个岩相组合(大类)(即硅质页岩相、碳酸盐质页岩相、黏土质页岩相和混合页岩相)和16个岩相(类)。如当硅质矿物含量大于75%、碳酸盐岩和黏土矿物含量小于25%时,为硅质岩相;当碳酸盐矿物含量大于75%、硅质和黏土矿物含量小于25%时,为碳酸盐质页岩相;当黏土矿物含量大于75%、碳酸盐岩和硅质矿物含量小于25%时,为黏土质页岩相;而当硅质、碳酸盐以及黏土矿物的含量均小于50%且大于25%时,为混合页岩相。按三端元含量的25%、50%、75%可将上述4个页岩相组合进一步细分为16种页岩岩相(图 3表 1)。

    图  3  页岩矿物组成三端元图解(a—涪陵页岩气田;b—鄂宜页2井;a图数据来自吴蓝宇等,2016)
    硅质页岩相组合:S—硅质页岩相;S-1—含灰硅质页岩相;S-2—混合硅质页岩相;S-3—含黏土硅质页岩相;灰质页岩相组合:C—灰质页岩相;C-1—含硅灰质页岩相;C-2—混合灰质页岩相;C-3—含黏土灰质页岩相;黏土质页岩相组合:CM—黏土质页岩相;CM-1—含硅黏土质页岩相;CM-2—混合黏土质页岩相;CM-3—含灰黏土质页岩相;混合质页岩相组合:M—混合质页岩相;M-1—含灰/硅混合质页岩相;M-2—含黏土/硅混合质页岩相;M-3—含黏土/灰混合质页岩相
    Figure  3.  Meta-diagram of shale mineral composition at three ends(a-Fuling shale gas field; b-Well EYY2;Date of Fig.a, from Wu Lanyu et al., 2016)
    Siliceous shale facies association: S -Siliceous shale facies; S-1-Calcareous-bearing siliceous shale facies; S-2-Mixed siliceous shale facies; S-3-Clay-bearing siliceous shale facies; Calcareous shale facies association: C-Calcareous shale facies; C-1-Siliceous-bearing shale facies; C-2-Mixed calcareous shale facies; C-3-Clay-bearing calcareous shale facies; Clay shale facies association: CM -Clay shale facies; CM-1 -siliceous-bearing clay shale facies; CM-2-Mixed clay shale facies; CM -3 -Calcareous-bearing clay shale facies; Mixed shale facies: M-Mixed shale facies; M-1-Calcareous/siliceous-bearing mixed shale facies; M-2 -Clay/siliceous-bearing mixed shale facies; M-3 -Clay/calcareousbearing shale facies
    表  1  鄂宜页2井矿物含量与岩相划分数据
    Table  1.  data of mineral composition and advantageous shale facies in Well EYY2
    下载: 导出CSV 
    | 显示表格

    基于宜页2井分析测试数据,将其硅质含量、碳酸盐和黏土矿物含量投影到三端元图内,据此可以看出研究区五峰组—龙马溪组含气页岩主要发育6种岩相:硅质页岩相(S)、混合硅质页岩相(S-2)、含黏土硅质页岩相(S-3)、含黏土/硅混合质页岩相(M-2)、含硅黏土质页岩相(CM-1)和混合质页岩相(M)。其中大部分样品点落在混合硅质页岩相(S-2)和含黏土硅质页岩相(S-3)区域,其他4个区域相对较少。同时, 本文研究的目的层位和国内典型页岩气区涪陵气田都属于上奥陶统五峰组—下志留统龙马溪组黑色页岩, 两者具有极高的相似性。与涪陵气田页岩岩相发育特征对比(图 3b),硅质含量、碳酸盐和黏土矿物含量投影点都落在硅质含量较高区域。不同之处在于研究区分析测试资料揭示含硅黏土质页岩相(CM-1)所占比例较高。

    研究区硅质页岩相主要发育在龙马溪组底部和五峰组下段,岩相厚度比(单层岩相累计厚度占五峰组底部至龙马溪组下段顶部总岩相厚度的百分比) 为8.50%。其中硅质含量平均值为79.6%,黏土矿物含量+碳酸盐矿物含量均小于25%,TOC平均值为3.64%。该岩相为黑色,页理发育,富含黄铁矿,岩性脆,在镜下可观察到大量放射虫(图 4a),表明其沉积环境为相对低能、缺氧的还原环境。

    图  4  宜昌斜坡区五峰组—龙马溪组一亚段典型岩相特征
    a—硅质页岩相,2721 m,五峰组,见大量硅质放射虫;b—混合硅质页岩相,2722.5 m,五峰组,见海绵骨针与陆源碎屑石英;c-含黏土硅质页岩相,2715.7 m,龙马溪组,见少量海绵骨针;d—含黏土/硅混合质页岩相,2710 m,龙马溪组,以陆源碎屑为主,见单个海绵骨针个体;e—含硅黏土质页岩相,2705 m,龙马溪组,碎屑石英发育,水平纹层发育;f—混合质页岩相,2713.4 m,龙马溪组,见陆源碎屑石英
    Figure  4.  Typical lithofacies characteristics of Wufeng Formation-First submember of Longmaxi Formation in Yichang slope area
    a-Siliceous shale facies, 2721 m, Wufeng Formation, abundant siliceous radiolarians; b-Mixed siliceous shale facies, 2722.5 m, Wufeng Formation, sponge spicules and terrigenous clastic quartz; c-Clay-bearing siliceous shale facies, 2715.7 m, Longmaxi Formation, with a few sponge spicules; d-Clay/siliceous-bearing mixed shale facies, 2710 m, Longmaxi Formation, mainly terrigenous clasts, a single sponge spicicle can be seen; eSiliceous-bearing clay shale facies, 2705 m, Longmaxi Formation, clastic quartz, horizontal laminar; f-Mixed shale facies, 2713.4 m, Longmaxi Formation, terrigenous clastic quartz can be seen

    研究区混合硅质页岩相主要发育在龙马溪组下段底部和五峰组上段附近,岩相厚度比7.72%,其中硅质含量平均值为69.56%,黏土矿物含量和碳酸盐矿物含量均小于25%,TOC平均值为3.84%。该岩性为黑色,页理发育,镜下观察见海绵骨针与陆源碎屑石英(图 4b)。

    研究区含黏土硅质页岩相主要发育在龙马溪组中下部,岩相厚度比为20.08%,其中硅质含量的平均值为58.89%,黏土矿物含量平均值为29.28%,碳酸盐矿物含量平均值为11.83%,TOC平均值为3.24%。该岩相为黑色,页理发育,可见黄铁矿结核,镜下可见少量海绵骨针(图 4c)。

    研究区含黏土/硅混合质页岩相主要分布在龙马溪组下段中部和五峰组下段底部,岩相厚度比为22.40%,其中硅质含量的平均值为46.41%,黏土矿物含量平均值为45.35%,碳酸盐矿物含量为8.23%,TOC分布范围为0.52%~3.01%,平均值为1.88%。该岩相为灰黑色,水平纹层发育,页岩中夹有灰色极薄层粉砂质条带,镜下可见单个海绵骨针个体(图 4d)。

    研究区含硅黏土质页岩相主要分布在龙马溪组下段顶部和中部,岩相厚度比为39.53%,其中硅质含量平均值为40.70%,黏土矿物平均含量为52.95%,碳酸盐矿物含量平均值为6.35%,TOC分布范围为0.45%~1.18%,平均值为0.79%。该岩相为灰黑色和深灰色,水平纹层发育,页岩中夹薄层粉砂岩,粉砂岩发育递变层理,镜下见碎屑石英发育(图 4e)。

    研究区只有1个混合质页岩相数据点,该岩相分布在龙马溪组下段中下部,岩相厚度比为1.16%,硅质含量为40.19%,黏土矿物含量为32.90%,碳酸盐矿物含量为26.90%,TOC平均值为2.17%。镜下观察云母与白云石发育,见陆源碎屑石英(图 4f)。

    页岩含气量是判别研究区是否具有页岩气经济开采价值的重要参数(邹才能等,2010),目前北美已具商业开采价值页岩气区页岩的含气量范围为1.1~9.91 m3/t, 中国已发现页岩气区涪陵气田页岩含气量中值为2.5 m3/t (王社教等,2012)。结合中国页岩气研究现状, 参考前人研究成果, 定义优势岩相为页岩的含气量达到特定工业标准的岩相,优势岩相与“甜点区”岩相一致, 一般将优势岩相定义为2类,I类优势岩相要求页岩的含气量大于4.0 m3/t,当页岩含气量在2.0~4.0 m3/t时,定义为II类优势岩相。

    五峰组与龙马溪组含气页岩在宜昌斜坡区与涪陵地区沉积环境相似,奥陶纪—志留纪之交地层连续并广泛发育,富有机质页岩厚度大,是页岩气勘探的有利区域。借鉴涪陵气田页岩岩相、“甜点区”等优选指标,基于页岩气富集控制因素,筛选出有机质丰度、硅质矿物含量、黏土矿物含量3项关键参数来建立研究区五峰组—龙马溪组含气页岩优势岩相的分级标准。

    涪陵气田页岩优势岩相区对应的有机碳含量标准为:I类优势岩相要求TOC大于3.0%,TOC分布在1.5%~3.0%时,为II类优势岩相(吴蓝宇等,2016)。而一些国内学者认为在中国成熟度比较高的地区,当TOC大于1.0%时,页岩也具有很好的开采价值(李延钧等,2011)。研究区五峰组—龙马溪组页岩含气量与TOC有很好的正相关性,相关系数R2为0.8316(图 5c)。由此计算得到当含气量Q为4.0 m3/t时,对应的有机碳含量约为5.7%;当含气量Q为3.5 m3/t时,对应的有机碳含量为5.0%左右;当含气量Q为3.0 m3/t时,对应的有机碳含量为4.3% 左右;当含气量Q为2.0 m3/t时,对应的有机碳含量为2.9%。由于有机质类型和成熟度同样是影响页岩含气性的重要因素,两者直接影响着页岩含气量大小,根据研究区现有资料情况,重点研究TOC对页岩含气量的控制作用。研究区TOC大于4.3%(图 5),三端元图显示页岩的岩相特征表现为S-2混合硅质页岩相和S-3含黏土硅质页岩相;TOC分布在2.9%~ 4.3%时,三端元图显示页岩的岩相特征表现为S硅质页岩相,少量点分布落在M-2含黏土/硅混合质页岩相;而当TOC分布在0~2.9%时,页岩岩相特征表现不规律,分别分布在S-2混合硅质页岩相,S-3含黏土硅质页岩相,M-2含黏土/硅混合质页岩相,CM-1含硅黏土质页岩相和M混合质页岩相。

    图  5  宜昌斜坡带五峰组—龙马溪组页岩含气量与TOC、硅质含量、黏土矿物关系图
    Figure  5.  The relationship between shale gas content, TOC, siliceous content and clay minerals in Wufeng-Longmaxi Formation

    页岩硅质含量与含气量之间的关系图显示(图 5a)两者之间有很好的正相关性,随着页岩硅质含量的不断增加,页岩的含气量呈不断上升的趋势。鄂宜页2井揭示五峰组—龙马溪组黑色页岩的含气量最高段分布在2.0~3.5 m3/t,主要表现为II类优势岩相。当硅质含量大于50%时,大部分页岩的含气量有明显增加,开始超过2.0 m3/t;当硅质含量达到60%~70%时,页岩含气量最高达到3.0~3.5 m3/t。因此宜昌斜坡带页岩II类优势岩相中硅质含量的下限值为50%。

    页岩含气量与黏土矿物含量呈明显负相关性(图 5b),这与前人研究结果一致,当黏土矿物含量增加时,页岩的脆性度降低不利于压裂,影响裂缝的产生和发育。研究区不同岩相组合中,当黏土矿物含量大于20%时,含气量与黏土矿物含量基本呈负相关性。当黏土矿物含量大于30%时,页岩含气量小于2.0 m3/t,未达到优势岩相标准。当含气量大于2.0 m3/t时,达到II类优势岩相下限值时,黏土矿物含量普遍小于30%。因此研究区页岩II类优势岩相中须满足黏土矿物含量小于30%。

    综合页岩含气量、有机碳含量、硅质含量和黏土矿物含量4个评价指标,对研究区的优势岩相进行划分。因为国内其他页岩气田相同层位研究成果认为I类优势岩相页岩含气量必须大于4.0 m3/t,研究区页岩含气量未达到I类优势岩相指标。因此研究区页岩可划分为II类优势岩相,具体指标为含气量分布在2.0~4.0 m3/t,有机碳含量为2.9%~5.7%,硅质矿物含量为60%~80%,黏土矿物含量为15%~30%。基于页岩含气量,将研究区II类优势岩相进一步划分为最优II1类(最优)优势岩相和次优II2类(次优)优势岩相(图 2表 2),即II1类优势岩相要求含气量分布在3.0~4.0 m3/t,有机碳含量4.3%~5.7%,硅质矿物含量大于65%,黏土矿物含量为15%~25%;II2类优势岩相指标为含气量分布在2.0~3.0 m3/t,有机碳含量2.9%~4.3%,硅质矿物含量大于50%~65%,黏土矿物含量为20%~30%。基于以上指标确定了研究区II1类(最优)优势岩相为:S-2混合硅质页岩相,S-3含黏土硅质页岩相;II2类(次优) 优势岩相为:S硅质页岩相。

    表  2  宜昌斜坡带五峰组—龙马溪组下段页岩优势岩相评价标准
    Table  2.  The relationship between shale gas content, TOC, siliceous content and clay minerals in Wufeng-Longmaxi Formation
    下载: 导出CSV 
    | 显示表格

    基于鄂宜页2井优势岩相划分结果分析表明龙马溪组一亚段底部和五峰组上段发育II1类优势岩相,其中以硅质页岩相和混合质硅质页岩相为主,厚度为6 m左右,TOC为1.76%~5.53%,平均3.77%,平均测井曲线为高伽玛特征;五峰组下段发育II2类优势岩相,其中以硅质页岩相为主,厚度为4 m左右,TOC为2.58%~5.52%,平均3.44%,测井曲线表现为低伽玛特征。

    宜昌斜坡带五峰组—龙马溪组黑色页岩岩相垂向演化序列为硅质页岩相组合-混合页岩相组合和硅质页岩相组合-黏土质页岩相组合和硅质页岩相组合,这与涪陵地区焦页1井的演化序列具有相似性(吴蓝宇等,2016),反映两者处于相似的沉积背景。五峰组—龙马溪组底部以硅质页岩相组合为主,该类岩相主要由生物沉积作用形成,晚奥陶世爆发了多期火山活动,在宜昌地区五峰组有19层斑脱岩型黏土岩,龙马溪组底部有6层斑脱岩型黏土岩(苏文博等,2002),火山活动为浮游生物爆发提供了大量富营养物质,有利于有机质的形成。同时火山喷发导致气候环境突变,导致古环境发生变化,从古海洋氧化还原环境敏感的U、Th、V、Ni等微量元素分析可知,硅质页岩相组合发育段为厌氧环境(陈孝红等,2018)。无论在宜昌地区和焦石坝地区,五峰组—龙马溪组底部主要发育硅质页岩相组合,但两者页岩厚度、有机质丰度和含气性均存在明显差异(表 3),这主要受古地理控制,晚奥陶世开始的加里东运动,导致扬子台地东南边缘隆升形成湘鄂西水下隆起(“宜昌上升”运动)(陈旭等,2001王怿等,2013陈旭等,2018),造成湘鄂西部分地区地层缺失,宜昌地区靠近隆起,虽然晚奥陶世—早志留系早期笔石带发育完整,地层不存在缺失,但黑色页岩厚度仅10 m,TOC平均为3.43%,含气性平均为2.25 m3/t(表 3),仅为II类优势岩相,而焦石坝地区位于隆后盆地中心,黑色页岩厚度可达31.7 m,TOC平均为4.01%,含气性平均为3.32 m3/t(表 3),为I类优势岩相(吴蓝宇等,2016),无论是页岩厚度,还是页岩品质,涪陵地区均优于宜昌地区。龙马溪组下段中部,随着海平面的下降,陆源碎屑输入,页岩岩相由硅质类页相渐变为以黏土质硅质混合页岩(M-2)和混合质页岩(M) 的混合类页岩相为主,黏土矿物含量略有增加,岩心可见粉砂质条带,从古氧化还原环境判别结果显示,该岩相形成于贫氧环境(陈孝红等,2018),鄂宜页2井和焦页1井的混合质页岩相组合相比,差异性较大,前者厚度仅8 m,TOC平均为2.2%,含气性平均仅1.1 m3/t (表 3),未达到优势岩相评价标准,后者厚度可达30 m,TOC平均为2.65%,含气性平均为2.44 m3/t (表 3),为II类优势岩相,古地理和古环境的变化,是造成两者差异较大的主要原因。宜昌地区最新的精细笔石生物地层研究显示,在鲁丹阶晚期—埃隆阶早期,宜昌斜坡带存在笔石带的缺失,普遍缺失C. cyphus带和D. triangularis带,甚至L. convolutus带也发育不完整(陈孝红等,2018Maletz et al., 2019), 说明在该时期宜昌地区存在水下隆起,造成宜昌地区混合质页岩相页岩厚度薄,同时,伴随着陆源碎屑输入,不利于有机质的富集保存,导致宜昌地区混合质页岩相页岩品质较差。龙马溪组下段上部,随之海平面的进一步下降,陆源碎屑物质大量输入,页岩岩相以黏土质页岩相组合为主,陆源物质供给的增强及常氧的古环境,不利于有机质的形成富集,含气性较硅质页岩相和混合质页岩相差。

    表  3  鄂宜页2井和焦页1井同一岩相页岩厚度、TOC和含气性对比(焦页1井据吴蓝宇等,2016)
    Table  3.  Comparison table of shale thickness, TOC and gas bearing in the same lithofacies in Well EYY2 and Well JY1(Well JY1 after Wu Lanyu et al., 2016)
    下载: 导出CSV 
    | 显示表格

    (1) 宜昌斜坡带上奥陶统五峰组—下志留统龙马溪组下段含气页岩划分为6种岩相类型,即硅质页岩相(S)、混合硅质页岩相(S-2)、含黏土硅质页岩相(S-3)、含黏土/硅混合质页岩相(M-2)、含硅黏土质页岩相(CM-1)和混合质页岩相。

    (2) 宜昌斜坡带上奥陶统五峰组—下志留统龙马溪组下段含气页岩属于II类优势岩相范围,可进一步划分为最优II1类优势岩相和次优II2类优势岩相,II1类优势岩相含气量分布在3.0~4.0 m3/t,有机碳含量4.3%~5.7%,硅质矿物含量大于65%,黏土矿物含量为15% ~25%,岩相主要为S-2混合硅质页岩相和S-3含黏土硅质页岩相,厚度约6 m;II2类优势岩相指标为含气量分布在2.0~3.0 m3/t,有机碳含量2.9% ~4.3%,硅质矿物含量大于50%,黏土矿物含量为20% ~30%,岩相主要为S硅质页岩相,厚度约4 m。

    (3) 晚奥陶世—早志留世,频繁的火山活动有利于有机质的形成和富集,隆后盆地的滞留环境和频繁的火山活动形成的强还原环境有利于有机质的保存,是宜昌地区II类优势岩相页岩形成的主要原因。

    (4) 宜昌斜坡带和涪陵地区具有相似的岩相垂向演化序列,但同一岩相组合的页岩厚度和品质差异较大,发生在鲁丹阶早期的湘鄂西水下隆起和鲁丹阶晚期的水下隆起是造成优势岩相差异大的主要原因,宜昌地区优势岩相的厚度和品质均要差于涪陵地区。

  • 图  1   鄂宜页2井区域地质略图和地层柱状图

    1—黑色页岩;2—硅质岩;3—煤;4—页岩;5—泥岩;6—粉砂岩;7—石英砂岩;8—泥质灰岩;9—灰岩;10—白云岩;11—黄陵花岗岩;12—侵入体;13—地层;14—井位;15—油气区块;16—主要断层;17—断层;18—构造边界

    Figure  1.   Regional geological sketchand stratigraphic column of well EYY2 field

    1-Black shale; 2—Siliceous rock; 3-Coal; 4-Shale; 5-Mudstone; 6-Siltstone; 7-Quartz sandstone; 8-Argillaceous limestone; 9-Limestone; 10-Dolomite; 11-Huangling granite; 12-Intrusive body; 13-Stratum; 14-Drilling; 15-Oil and gas block; 16-The main fault; 17-Fault; 18-Tectonic boundary

    图  2   宜昌斜坡带鄂宜页2井页岩岩相综合柱状图

    1—S—硅质页岩相;2—S-2—混合硅质页岩相;3—S-3—含黏土硅质页岩相;4—CM-1—含硅黏土质页岩相;5—M—混合质页岩相;6—M-2—含黏土/硅混合质页岩相;7—深灰色泥质灰岩;8—深灰色粉砂质泥岩;9—深灰色页岩;10—黑色页岩

    Figure  2.   Comprehensive histogram of shale facies in well EYY2

    1-S-Siliceous shale facies; 2-S-2-Mixed siliceous shale facies; 3-S-3-Clay-bearing siliceous shale facies; 4-CM-1-Siliceous -bearing clay shale facies; 5-M-Mixed shale facies; 6-M-2-Clay/siliceous-bearing mixed shale facies; 7-Charcoal grey argillaceous limestone; 8-Charcoal grey sandy mudstone; 9-Charcoal grey shale; 10-Black shale

    图  3   页岩矿物组成三端元图解(a—涪陵页岩气田;b—鄂宜页2井;a图数据来自吴蓝宇等,2016)

    硅质页岩相组合:S—硅质页岩相;S-1—含灰硅质页岩相;S-2—混合硅质页岩相;S-3—含黏土硅质页岩相;灰质页岩相组合:C—灰质页岩相;C-1—含硅灰质页岩相;C-2—混合灰质页岩相;C-3—含黏土灰质页岩相;黏土质页岩相组合:CM—黏土质页岩相;CM-1—含硅黏土质页岩相;CM-2—混合黏土质页岩相;CM-3—含灰黏土质页岩相;混合质页岩相组合:M—混合质页岩相;M-1—含灰/硅混合质页岩相;M-2—含黏土/硅混合质页岩相;M-3—含黏土/灰混合质页岩相

    Figure  3.   Meta-diagram of shale mineral composition at three ends(a-Fuling shale gas field; b-Well EYY2;Date of Fig.a, from Wu Lanyu et al., 2016)

    Siliceous shale facies association: S -Siliceous shale facies; S-1-Calcareous-bearing siliceous shale facies; S-2-Mixed siliceous shale facies; S-3-Clay-bearing siliceous shale facies; Calcareous shale facies association: C-Calcareous shale facies; C-1-Siliceous-bearing shale facies; C-2-Mixed calcareous shale facies; C-3-Clay-bearing calcareous shale facies; Clay shale facies association: CM -Clay shale facies; CM-1 -siliceous-bearing clay shale facies; CM-2-Mixed clay shale facies; CM -3 -Calcareous-bearing clay shale facies; Mixed shale facies: M-Mixed shale facies; M-1-Calcareous/siliceous-bearing mixed shale facies; M-2 -Clay/siliceous-bearing mixed shale facies; M-3 -Clay/calcareousbearing shale facies

    图  4   宜昌斜坡区五峰组—龙马溪组一亚段典型岩相特征

    a—硅质页岩相,2721 m,五峰组,见大量硅质放射虫;b—混合硅质页岩相,2722.5 m,五峰组,见海绵骨针与陆源碎屑石英;c-含黏土硅质页岩相,2715.7 m,龙马溪组,见少量海绵骨针;d—含黏土/硅混合质页岩相,2710 m,龙马溪组,以陆源碎屑为主,见单个海绵骨针个体;e—含硅黏土质页岩相,2705 m,龙马溪组,碎屑石英发育,水平纹层发育;f—混合质页岩相,2713.4 m,龙马溪组,见陆源碎屑石英

    Figure  4.   Typical lithofacies characteristics of Wufeng Formation-First submember of Longmaxi Formation in Yichang slope area

    a-Siliceous shale facies, 2721 m, Wufeng Formation, abundant siliceous radiolarians; b-Mixed siliceous shale facies, 2722.5 m, Wufeng Formation, sponge spicules and terrigenous clastic quartz; c-Clay-bearing siliceous shale facies, 2715.7 m, Longmaxi Formation, with a few sponge spicules; d-Clay/siliceous-bearing mixed shale facies, 2710 m, Longmaxi Formation, mainly terrigenous clasts, a single sponge spicicle can be seen; eSiliceous-bearing clay shale facies, 2705 m, Longmaxi Formation, clastic quartz, horizontal laminar; f-Mixed shale facies, 2713.4 m, Longmaxi Formation, terrigenous clastic quartz can be seen

    图  5   宜昌斜坡带五峰组—龙马溪组页岩含气量与TOC、硅质含量、黏土矿物关系图

    Figure  5.   The relationship between shale gas content, TOC, siliceous content and clay minerals in Wufeng-Longmaxi Formation

    表  1   鄂宜页2井矿物含量与岩相划分数据

    Table  1   data of mineral composition and advantageous shale facies in Well EYY2

    下载: 导出CSV

    表  2   宜昌斜坡带五峰组—龙马溪组下段页岩优势岩相评价标准

    Table  2   The relationship between shale gas content, TOC, siliceous content and clay minerals in Wufeng-Longmaxi Formation

    下载: 导出CSV

    表  3   鄂宜页2井和焦页1井同一岩相页岩厚度、TOC和含气性对比(焦页1井据吴蓝宇等,2016)

    Table  3   Comparison table of shale thickness, TOC and gas bearing in the same lithofacies in Well EYY2 and Well JY1(Well JY1 after Wu Lanyu et al., 2016)

    下载: 导出CSV
  • Chen Xiaohong, Zhang Baomin, Chen Lin, Zhang Guotao, Li Peijun, Zhang Miao. 2018a. Main geological controlling factors and enrichment pattern of shale gas reservoirs in the Late OrdovicianEarly Silurian strata of Yichang, Werstern Hubei Province[J]. Acta Geoscientica Sinica, 39(3): 257-268(in Chinese with English abstract).

    Chen Xiaohong, Zhang Baomin, Zhang Guotao, Chen Lin, Zhang Miao, Li Peijun. 2018b. High shale gas industry flow obtained from the Ordovician Wufeng Formation and the Silurian Longmaxi Formation of Yichang area, Hubei Province[J]. Geology in China, 45 (1): 199-200(in Chinese with English abstract).

    Chen Xu, Chen Qing, Zhen Yongyi, Wang Hongyan, Zhang Linna, Zhang Junpeng, Wang Wenhui, Xiao Chaohui. 2018. Circumjacent distribution pattern of the Lungmachian graptolitic black shale (Early Silurian) on the Yichang Uplift and its peripheral region[J]. Scientia Sinica Terrae, 61: 1195-1203(in Chinese with English abstract).

    Chen Xu, Fan Junxuan, Zhang Yuandong, Wang Hongyan, Chen Qing, Wang Wenhui, Liang Feng, Guo Wei, Zhao Qun, Nie Haikuan, Wen Zhidong, Sun Zongyuan. 2015. Subdivision and delineation of the Wufeng and Lungmachi Black Shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 39(4): 351-358(in Chinese with English abstract).

    Chen Xu, Rong Jiayu, Fan Junxuan, Zhan Renbin, Mitchell C E, Harper D A T, Melcjin M J, Peng Ping'an, Finney S C, Wang Xiaofeng. 2006. The global boundary stratotype section and point (GSSP) for the base of the Hirnantian stage (the uppermost of the Ordovician system) [J]. Episodes, 29(3): 183-196. doi: 10.18814/epiiugs/2006/v29i3/004

    Chen Xu, Rong Jiayu, Fan Junxuan, Zhan Renbin, Mitchell C E, Harper D A T, Melchin M J, Peng Pingan, Finney S C, Wang Xiaofeng. 2006. A final report on the global stratotype section and point (GSSP) for the Hirnantian stage(Upper Ordovician) [J]. Journal of Stratigraphy, 30(4): 289-305(in Chinese with English abstract).

    Chen Xu, Rong Jiayu, Li Yue, Boucot A J. 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3): 353-372.

    Doyle J, Sweet M L. 1995. Three-dimension distribution of lithofacies, bounding surfaces, porosity, and permeability in a fluvial sandstone: Gypsy sandstone of Northern Oklahoma[J]. AAPG Bulletin, 79(1): 70-96.

    Fan Junxuan, Michael J Melchin, Chen Xu, Wang Yi, Zhang Yuandong, Chen Qing, Chi Zhaoli, Chen Feng. 2011. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi Black Shales in South China[J]. Sci. China Earth Sci., 54: 1854-1863. doi: 10.1007/s11430-011-4301-3

    Feng Weiming, Li Rong, Zhao Zhan, Yu Qian, Yang Han, Xie Yuan, Ye Dingnan. 2021. Boundary definition of Wufeng Formation and Longmaxi Formation in well DD1 and sedimentary environment evolution of Northeastern Yunnan[J]. Geology in China, 48(1): 297-308(in Chinese with English abstract).

    Guo T L. 2015. The Fuling shale gas field: A highly productive Silurian gas shale with high thermal maturity and complex evolution history, southeastern Sichuan Basin, China[J]. Interpretation, 3(2): 1-10.

    Guo T. 2013. Evaluation of highly thermally mature shale-gas reservoirs in complex structural parts of the Sichuan Basin[J]. Journal of Earth Science, 24(6): 863-873. doi: 10.1007/s12583-013-0384-4

    Guo Tonglou, Liu Ruobing. 2013. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience, 24(4): 643-651 (in Chinese with English abstract).

    Guo Xusheng. 2014. Rules of Two-Factor Enrichiment for marine shale gas in Southern Chine-Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 88(7): 1209-1218 (in Chinese with English abstract).

    Hickey J J, Henk B. 2007. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T.P. Sims well, Wise County, Texas[J]. AAPG Bulletin, 91(4): 437-443. doi: 10.1306/12040606053

    Hu Yanhua, Sun Weidong, Ding Xing, Wang Fangyue, Ling Mingxing, Liu Jian. 2009. Volcanic event at the Or-dovician-Silurian boundary: The message from K-bentonite of Yan-gtze Block[J]. Acta Petrologica Sinica, 25(12) : 3298-3308

    Jarvie D M, Hill R J, Ruble T E. 2007. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068

    Jin Zhijun, Hu Zongquan, Gao Bo, Zhao Jianhua. 2016. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 23(1): 1-10(in Chinese with English abstract).

    Li Yanjun, Liu Huang, Liu Jiaxia, Cao Liqun, Jia Xuecheng. 2011. Geological regional selection and an evaluation method of resource potential of shale gas[J]. Journal of Southwest Petroleum University (Science Technology Edition), 33(2): 28-34(in Chinese with English abstract).

    Li Zhiming, Quan Qiuqi. 1992. Lithofacies types and tectonic palaeogeogaphy of Ordovician and Silurian graptolite bearing strata in South China[J]. Earth Science-Journal of China University of Geosciences, 17(3): 261-269(in Chinese with English abstract).

    Liang Mingliang, Wang Zongxiu, Zheng Guodong, Greenwell Hugh Christopher, Li Huijun, Zhang Linyan, Feng Xingqiang, Zhang Kaixun. 2020. Occurrence and influence of residual gas released by crush methods on pore structure in Longmaxi shale in Yangtze Plate, Southern China[J]. China Geology, 3: 545-557. doi: 10.31035/cg2020070.

    Liu Wei, Xun Xiaosong, Yu Qian, Yan Jianfei, Men Yunpeng, Zhang Haiquan. 2012. Lithofacies palaeogeography of the Late Ordovician Hirnantion in the middle-upper Yangtze region of China[J]. Journal of Chengdu University of Technology(Science Technology Edition) 39(1): 32-39(in Chinese with English abstract).

    Loucks R G, Ruppel S C. 2007. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 91 (4): 579-601. doi: 10.1306/11020606059

    Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2018. China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 45(4): 561-574(in Chinese with English abstract).

    Maletz J, Wang Chuangshang, Wang Xiaofeng. 2019. Katian (Ordovician) to Aeronian (Silurian, Llandovery) graptolite biostratigraphy of the YD-1 drill core, Yuan County, Hubei Province, China [J]. Papers in Palaeontology, 1-32.

    Meng Fanyang, Li Shizhen, Wei Siyu, Zhang Shousong, Wang Peng, Wang Chao. 2020. Discovery of shale gas from WufengLongmaxi Formation in Xianfeng area, Hubei Province, China[J]. China Geology, 3: 493-495. doi: 10.31035/cg2020030.

    Nie Haikuan, Jin Zhijun, Bian Ruikang, Du Wei. 2016. The"sourcecap hydrocarbon-controlling"enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 37(5): 557-571(in Chinese with English abstract).

    Wang G C, Carr T R. 2012. Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian Basin[J]. Computer & Geosciences, 49(2): 51-163.

    Wang Shejiao, Yang Tao, Zhang Guosheng, Li Denghua, Chen Xiaoming. 2012. Shale gas enrichment factors and the seletion and evaluation of the core area[J]. Strategic Study of CAE, 14(6): 94-100(in Chinese with English abstract).

    Wang Yi, Rong Jiayu, Zhan Renbin, Huang Bin, Wu Rongchang, Wang Guanxu. 2013. On the Ordovician-Silurian boundary strata in Southwestern Hubei, and the Yichang uplift[J]. Journal of Stratigraphy, 37(3): 264-274(in Chinese with English abstract).

    Wang Yuman, Huang Jinliang, Wang Shufang, Dong Dazhong, Zhang Chenchen, Guan Quanzhong. 2018. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 27(3): 423-432.

    Wang Zhigang. 2015. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 36(1): 1-6(in Chinese with English abstract).

    Wu Lanyu, Hu Dongfeng, Lu Yongchao, Liu Ruobing, Liu Xiaofeng. 2016. Advantageous shale lithofacies of Wufeng FormationLongmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum exploration and development, 43(2): 189-197 (in Chinese with English abstract).

    Xiao Kaihua, Chen Hong, Wo Yujin, Zhou Yan, Zhang Yunxia. 2005. Impact of tectonic evolution on Paleozoic and Mesozoic petroleum systems in Jianghan plain[J]. Oil and Gas Geology, 26(5): 688-693(in Chinese with English abstract).

    Yao T, Chopra A. 2000. Integration of seismic data attribute map into 3D faciesmodeling[J]. Journal of Petroleum Science & Engineering, 27(1): 69-84.

    Zhang Baomin, Cai Quansheng, Chen Xiaohong, Wang Chuanshang, Zhang Guotao, Chen Lin, Li Peijun, Li Yangui. 2021. Reservoir characteristics and gas-bearing capacity of the Wufeng-Longmaxi Formation in the Well Eyy2, east Huangling Uplift, western Hubei Province[J]. Geology in China, 48(5): 1485-1498(in Chinese with English abstract).

    Zhang Junfeng, Xu Hao, Zhou Zhi, Ren Pengfei, Guo Jingzhen, Wang Qiong. 2019. Geological characteristics of shale gas reservoir in Yichang area, western Hubei [J]. Acta Petrolei Sinica, 40(8): 887-899.

    Zou Caineng, Dong Dazhong, Wang Shejiao, Li Jianzhong, Li Xinjing, Wang Yuman, Li Denghua, Cheng Keming. 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 37 (6): 641-653(in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3

    陈孝红, 张保民, 陈林, 张国涛, 李培军, 张淼. 2018. 鄂西宜昌地区晚奥陶世—早志留世页岩气藏的主控地质因素与富集模式[J]. 地球学报, 39(3): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201803001.htm
    陈孝红, 张保民, 张国涛, 陈林, 张淼, 李培军. 2018. 湖北宜昌地区奥陶系五峰组—志留系龙马溪组获页岩气高产工业气流[J]. 中国地质, 45(1): 199-200. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180119&flag=1
    陈旭, 陈清, 甄勇毅, 王红岩, 张琳娜, 张俊鹏, 王文卉, 肖朝晖. 2018. 志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式[J]. 中国科学: 地球科学, 48(9): 1198-1206. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201809006.htm
    陈旭, 樊隽轩, 张元动, 王红岩, 陈清, 王文卉, 梁峰, 郭伟, 赵群, 聂海宽, 文治东, 孙宗元. 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 39(4): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201504001.htm
    陈旭, 戎嘉余, 樊隽轩, 詹仁斌, Mitchell C E, Harper D A T, Melchin M J, 彭平安, Finney S C, 汪啸风. 2006. 奥陶系上统赫南特阶全球层型剖面和点位的建立[J]. 地层学杂志, 30(4): 289-305. doi: 10.3969/j.issn.0253-4959.2006.04.001
    陈旭, 戎嘉余, 周志毅, 张元动, 詹仁斌, 刘建波, 樊隽轩. 2001. 上扬子区奥陶—志留纪之交的黔中隆起和宜昌上升[J]. 科学通报, (12): 1052-1056. doi: 10.3321/j.issn:0023-074X.2001.12.021
    冯伟明, 李嵘, 赵瞻, 余谦, 杨瀚, 谢渊, 叶定南. 2021. 滇东北DD1井五峰组—龙马溪组地层界线划分及沉积环境演变[J]. 中国地质, 48(1): 297-308. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20210120&flag=1
    郭彤楼, 刘若冰. 2013. 复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 24(4): 643-651. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201304000.htm
    郭旭升. 2014. 南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm
    胡艳华, 孙卫东, 丁兴. 2009. 奥陶纪—志留纪边界附近火山活动记录: 来华南周缘钾质斑脱岩的信息[J]. 岩石学报, 25(12) : 3298-3308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912019.htm
    金之钧, 胡宗全, 高波, 赵建华. 2016. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm
    李延钧, 刘欢, 刘家霞, 曹利春, 贾学成. 2011. 页岩气地质选区及资源潜力评价方法[J]. 西南石油大学学报(自然科学版), 33(2): 28-34. doi: 10.3863/j.issn.1674-5086.2011.02.004
    李志明, 全秋琦. 1992. 中国南部奥陶—志留纪笔石页岩相类型及其构造古地理[J]. 地球科学——中国地质大学学报, 17(3): 261-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199203003.htm
    刘伟, 许效松, 余谦, 闫剑飞, 门玉澎, 张海全. 2012. 中上扬子晚奥陶世赫南特期岩相古地理[J]. 成都理工大学学报(自然科学版), 39 (1): 32-39. doi: 10.3969/j.issn.1671-9727.2012.01.005
    马永生, 蔡勋育, 赵培荣. 2018. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
    聂海宽, 金之钧, 边瑞康, 杜伟. 2016. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气"源-盖控藏"富集[J]. 石油学报, 37(5): 557-571. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605001.htm
    苏文博, 何龙清, 王永标, 龚淑云, 周湖云. 2002. 华南奥陶-志留系五峰组及龙马溪组底部斑脱岩与高分辨率地层[J]. 中国科学(D辑), 32(3): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200203004.htm
    王社教, 杨涛, 张国生, 陈晓明. 2012. 页岩气主要富集因素与核心区选择及评价[J]. 中国工程科学, 14(6): 94-100. doi: 10.3969/j.issn.1009-1742.2012.06.013
    王怿, 戎嘉余, 詹仁斌, 黄冰, 吴荣昌, 王光旭. 2013. 鄂西南奥陶系—志留系交界地层研究兼论宜昌上升[J]. 地层学杂志, 37(3): 264-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201303003.htm
    王玉满, 黄金亮, 王淑芳, 董大忠, 张晨晨, 管全中. 2016. 四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J]. 天然气地球科学, 27(3), 423-432. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603006.htm
    王志刚. 2015. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htm
    吴蓝宇, 胡东风, 陆永潮, 刘若冰, 刘晓峰. 2016. 四川盆地涪陵气田五峰组一龙马溪组页岩优势岩相[J]. 石油勘探与开发, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm
    肖开华, 陈红, 沃玉进, 周雁, 张云霞. 2005. 江汉平原区构造演化对中、古生界油气系统的影响[J]. 石油与天然气地质, 26(5): 688-693. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200505022.htm
    张保民, 蔡全升, 陈孝红, 王传尚, 张国涛, 陈林, 李培军, 李炎桂. 2021. 鄂西黄陵隆起东缘鄂宜页2井五峰组—龙马溪组页岩气储层特征与含气性[J]. 中国地质, 48(5): 1485-1498. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20210513&flag=1
    张君峰, 许浩, 周志. 2019. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报, 40(8): 887-899. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908001.htm
    邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 2010. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
  • 期刊类型引用(3)

    1. 谢通,陈威,潘诗洋,石万忠,王亿,张焱林,段轲,任志军. 鄂西地区二叠系大隆组含气页岩岩相类型及储层特征. 吉林大学学报(地球科学版). 2024(04): 1154-1176 . 百度学术
    2. 李勇,徐立富,吴鹏,胡维强,刘成,李铭. 鄂尔多斯盆地东缘海陆过渡相页岩岩相特征及储层差异. 天然气工业. 2023(08): 38-54 . 百度学术
    3. 王川,董田,蒋恕,张钰莹,杨柳青,梁兴,王高成. 中扬子地区上奥陶统-下志留统五峰组-龙马溪组页岩纵向非均质性及主控因素. 地质科技通报. 2022(03): 108-121 . 百度学术

    其他类型引用(3)

图(5)  /  表(3)
计量
  • 文章访问数:  1621
  • HTML全文浏览量:  803
  • PDF下载量:  2870
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2020-04-15
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2022-06-24

目录

/

返回文章
返回
x 关闭 永久关闭