• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

河北承德偏硅酸矿泉水成因模式: 岩石风化与水岩作用证据

孙厚云, 孙晓明, 卫晓锋, 陈自然, 刘卫, 黄行凯, 李霞, 殷志强, 刘文波

孙厚云, 孙晓明, 卫晓锋, 陈自然, 刘卫, 黄行凯, 李霞, 殷志强, 刘文波. 河北承德偏硅酸矿泉水成因模式: 岩石风化与水岩作用证据[J]. 中国地质, 2022, 49(4): 1088-1113. DOI: 10.12029/gc20220405
引用本文: 孙厚云, 孙晓明, 卫晓锋, 陈自然, 刘卫, 黄行凯, 李霞, 殷志强, 刘文波. 河北承德偏硅酸矿泉水成因模式: 岩石风化与水岩作用证据[J]. 中国地质, 2022, 49(4): 1088-1113. DOI: 10.12029/gc20220405
SUN Houyun, SUN Xiaoming, WEI Xiaofeng, CHEN Ziran, LIU Wei, HUANG Xingkai, LI Xia, YIN Zhiqiang, LIU Wenbo. Formation mechanism of metasilicate mineral water in Chengde, Hebei Province: Evidence from rock weathering and water-rock interaction[J]. GEOLOGY IN CHINA, 2022, 49(4): 1088-1113. DOI: 10.12029/gc20220405
Citation: SUN Houyun, SUN Xiaoming, WEI Xiaofeng, CHEN Ziran, LIU Wei, HUANG Xingkai, LI Xia, YIN Zhiqiang, LIU Wenbo. Formation mechanism of metasilicate mineral water in Chengde, Hebei Province: Evidence from rock weathering and water-rock interaction[J]. GEOLOGY IN CHINA, 2022, 49(4): 1088-1113. DOI: 10.12029/gc20220405

河北承德偏硅酸矿泉水成因模式: 岩石风化与水岩作用证据

基金项目: 

中国地质调查局项目“承德市生态文明示范区综合地质调查” DD20190536

“地球关键带生态地质调查” DD20190822

详细信息
    作者简介:

    孙厚云,男,1990年生,博士生,研究方向水文地球化学与环境地球化学;E-mail: shyun@cugb.edu.cn

  • 中图分类号: P641.5

Formation mechanism of metasilicate mineral water in Chengde, Hebei Province: Evidence from rock weathering and water-rock interaction

Funds: 

the project of China Geological Survey DD20190536

the project of China Geological Survey DD20190822

More Information
    Author Bio:

    SUN Houyun, male, born in 1990, doctor candidate, engaged in the research on hydrogeochemistry and environmental geochemistry; E-mail: shyun@cugb.edu.cn

  • 摘要:
    研究目的 

    承德地处京津冀水源涵养功能区, 矿泉水资源丰富, 研究其赋存分布与形成机制对矿泉水可持续利用与水源涵养优化具有重要意义。

    研究方法 

    采用岩石地球化学和水化学分析、化学风化指数、矿物表面微观形态分析, 同位素示踪等方法系统梳理了研究区地下水偏硅酸空间分异的影响因素, 从岩石风化与水化学耦合角度探讨了偏硅酸矿泉水的成藏机制。

    研究结果 

    结果表明: 研究区常温水体偏硅酸含量达30 mg/L以上样品占比达5.16%, 地热水偏硅酸平均含量达61.76 mg/L。偏硅酸矿泉水成藏受岩石风化和地质构造控制, 风化酸性介质影响, 水化学形成作用制约。风化敏感程度愈高, 易风化矿物含量愈高的含水介质赋存地下水偏硅酸含量愈高。研究区硅酸盐岩总体处于初等化学风化--长石类矿物和辉石等镁铁质矿物风化形成高岭石、蒙脱石和伊利石阶段。构造深部幔源CO2、工矿活动和人类生产生活输入的外源硫酸和硝酸共同参与岩石风化脱硅过程, 偏硅酸矿泉水、地热水温泉出露处多为构造复合部位或主干断裂与次级断裂的交汇部位。

    结论 

    承德市偏硅酸矿泉水成因模式可概化为构造断裂深循环淋溶型、风化裂隙浅循环淋溶型和层间孔隙裂隙-补给富集埋藏型3类。植被覆盖较好的玄武岩、火山碎屑岩、陆源碎屑岩流域山前宽缓沟谷与导水断裂交汇带, 侵入岩导水导热断裂带、侵入岩与围岩接触带, 花岗岩、片麻岩和陆源碎屑岩与碳酸盐岩接触带为偏硅酸矿泉水开采潜力区。

    创新点:(1)从岩石风化与水岩作用水化学耦合角度探讨了偏硅酸矿泉水的成藏机制;(2)系统总结了承德市偏硅酸矿泉水空间分布的影响因素与成因模式。

    Abstract:

    This paper is the result of the hydrogeological survey engineering.

    Objective 

    The orientation of Chengde City's primary function of ecological environment in Beijing-Tianjin-Hebei Urban Agglomeration is a water conservation area due to its abundant water resource endowment.It is of great significance to clarify the occurrence, spatial variation, and formation mechanism of metasilicate mineral water for the sustainable utilization of water resources and the optimization of water conservation.

    Methods 

    Multivariate statistical analysis, rock-wreathing lithogeochemical, hydrogeochemical, and multiple isotopic (δD, δ18O and δ13C) approaches were systematically conducted to identify the influencing factors of the enrichment and spatial variation of metasilicic acid in groundwater in the study area under a water-rock interaction perspective of the Earth's Critical Zone.

    Results 

    The results showed that the normal temperature water samples with soluble SiO2 concentrations higher than 30 mg/L accounted for 5.16%, while the average concentration of soluble SiO2 of geothermal water reaches 61.76 mg/L.The enrichment of soluble SiO2 in groundwater was controlled by the rock-weathering desiliconization process and water yield property and transmissivity of geological structures, simultaneously restricted by the recharge of weathering medium acidic substances and hydrochemical formation process in aqueous porous media.The higher the weathering sensitivity of water-bearing media, or the higher the content of easily weathered minerals in exposed strata, the higher the concentration of soluble SiO2 in aquifers tend to obtain.The hypergene silicate rock of the study area was generally in the primary chemical weathering stage that kaolinite, montmorillonite, and illite were formed during the dissolution of feldspar minerals, pyroxene, and other mafic minerals.The mantle-derived CO2, exogenous sulfuric acid, nitric acid generated by mining, artificial and agricultural activities were demonstrated to be jointly involved in the rock weathering process.The metasilicate mineral water and geothermal springs were mostly occurring or exposed in the composite parts of the structure or the intersection of main and secondary faults.

    Conclusions 

    The genetic model of metasilicate mineral water in Chengde City can be generalized into three types: Deep circulation leaching of tectonic faults, shallow circulation leaching of weathered fissures, and interlayer pore and fracture-recharge enrichment burial type.The intersection zones of the piedmont wide-gentle valley and the water-transmitting faults in the basalt, pyroclastic rock, terrigenous clastic rock basin with high vegetation coverage, water-thermal conduction fracture zone of intrusive rock, contact zones between the intrusive rocks and surrounding rocks, carbonate rocks and granite, gneiss or terrigenous clastic rocks turn out to be the potential exploitation areas of metasilicate mineral water in the bulk horizons.

  • 找矿模型,又称勘查模型,是表述目标矿床及其对一定勘查技术产生预期效应的模拟体系,利用已有地质信息及现有找矿手段,并通过找矿模型来实现成矿的预测。找矿模型的建立不仅需要总结地质直接找矿标志,还需要借助地球物理、地球化学等间接找矿标志识别成矿信息,推断矿体空间位置(陈毓川和朱裕生,1993)。陈毓川和朱裕生(1993)指出找矿模型突出的是某类矿床的基本要素和找矿过程中特殊意义的地质、物化探和遥感影像等特征及其在空间的变化情况,总结发展该类矿床的基本标志和找矿使用的方法手段。找矿模型是矿产勘查工作的实际指导,它是缩小勘查区(或靶区)甚至发现矿床的择优技术。当前,地质找矿已由浅部逐步转变为深部矿、隐伏矿,其找矿难度也逐步增大,对隐伏矿预测定位及找矿模型的建立显得尤为关键。

    20世纪80年代以来,中国的地质工作者开始探索建立找矿模型的技术,来处理和分析各类地学资料进行综合分析,为普查和评价矿产资源提供依据,根据所利用的地学数据的不同来源,综合研究成果分别表述为矿田或矿床的地球物理模型、地球化学模型、地质-地球物理-地球化学模型或物理-地质模型。20世纪90年代以来,中国许多研究者对找矿模型的建模技术进行了系统的总结和推广。在寻找隐伏矿床的新方法上,多位研究者也建立了特有的找矿模型,如活动金属离子法、金属活动态法(MOMEO、(MMI) (Mann et al., 1998)、地气法(geogas) (Malmqvistet et al., 1984)。姚金炎(1990)提出综合物探、化探的隐伏矿床预测方法生物地球化学法、离子晕法、电吸附(周奇明,1996)、植物地球化学、地电化学等。

    箭猪坡矿床作为五圩矿田矿集区代表性矿床之一,该矿床于20世纪80年代被发现,先后进行了普查和详查工作,经过20多年的开采,矿山资源量已不能满足矿山开采需求,急需开展地质找矿工作,增加储量。前人对该矿床的地质特征、矿床成因,流体特征等方面开展了较多的研究,普遍认为其受构造控制的岩浆期后热液脉状矿床。然而,箭猪坡矿床乃至五圩矿田的同类型矿床至今缺少找矿模式的研究。笔者所在项目组2012—2016年先后对箭猪坡矿床开展了构造控矿规律、矿体定位预测及外围探矿权找矿预测研究等工作,首次在五圩矿田箭猪坡矿床发现了石英脉型锡矿体,矿体呈脉状,倾角70°~75°,矿体平均品位:锡0.65%,铅0.56%、锑0.73%、银46 g/t,锡石主要呈棕褐色,多沿裂隙发育,呈条带状。经锡物相分析,锡以锡石为主。并对紧邻采矿权外围的花洞、板才探矿权开展了土壤地球化学测量、地电化学测量、瞬变电磁测量、可控源测量工作,大大丰富了找矿信息。本文在综合分析箭猪坡矿床地质、物探、化探特征基础上,构建了箭猪坡锑多金属矿地质-物探-化探测量综合信息找矿模型(经验证找矿效果良好),以期为箭猪坡锑多金属矿集区热液脉型矿床及外围同类型矿床找矿勘查和评价工作提供重要参考。

    五圩矿田位于丹池多金属成矿带南端(图 1)。区内出露的地层为下泥盆统塘丁组(D1t)—中三叠统(T2b);其中赋矿层位为下泥盆统塘丁组条带状绢云母泥岩夹砂岩(箭猪坡矿床),中泥盆统罗富组泥灰岩(三排洞—芙蓉厂矿床),上泥盆统榴江组、五指山组硅质岩。区域构造较为复杂,主要由五圩复式背斜及一系列以NNW向为主的张扭性断裂组成。北北西走向断裂带是五圩矿田内最发育的一组构造形迹,呈帚状构造的形态,向北北西向(箭猪坡—芙蓉厂)逐渐撒开,在花洞南东向成逐渐收敛状态,断裂带控制着区域矿化带的形成与发育。区域上未见岩浆岩出露。

    图  1  五圩矿田区域地质简图
    T—三叠系(粉砂质泥岩、泥质粉砂岩、灰岩);P—二叠系(灰岩、凝灰岩、硅质岩);C—石炭系(条带灰岩、微晶灰岩、泥岩);D—泥盆系(泥岩、灰岩、硅质岩); 1—背斜轴;2—向斜轴;3—断裂;4—铅锌锑银矿床;5—砷汞铅锌锑银矿床;6—锑矿点;7—汞矿床(点);8—矿田
    Figure  1.  Regional geologic map of Wuxu mining area
    T-Triassic system (silty mudstone, argillaceous siltstone, limestone); P-Permian System (Limestone, Tuff, Siliceous Rock); C-Carboniferous system (banded limestone, microcrystalline limestone, mudstone); D-Devonian System (Mudstone, Limestone, Siliceous Rock); 1-Anticlinal Axis; 2-Syncline axis; 3-Fracture; 4-Pb-Zn-Sb-Ag deposit; 5-Arsenic-mercury-lead-zinc-antimony-silver deposit; 6-Antimony ore site; 7-Mercury deposit (spot); 8-Ore field

    箭猪坡矿床范围内出露的地层为下泥盆统塘丁组第一段和第二段,其中以第二段为主,该段为灰黑色条带状及薄层状绢云母泥岩;矿床内发育了两组断裂,一组为北北西向张扭性断裂,第二组为北北东向扭性断裂。在矿区范围内未见到岩浆岩出露。

    箭猪坡矿床矿体主要受北北西向构造破碎带和断裂的控制,呈脉状、细网脉状,条带状充填在断裂带中或节理裂隙中,沿矿体走向和倾向分支复合、尖灭再现和尖灭侧现的现象均有出现。矿石中金属矿物主要有硫化物(铁闪锌矿、闪锌矿、辉锑矿)、硫盐矿物(脆硫锑铅矿等),碳酸盐矿物(含锰菱铁矿、含铁菱锰矿),非金属矿物主要有石英、方解石等(刘伟,2013)。箭猪坡矿床成矿阶段划分为3个阶段,即石英-硫化物阶段(Ⅰ)、石英-硫盐矿物-多硫化物阶段(Ⅱ)和锑硫化物-石英-铁锰碳酸盐阶段(Ⅲ),第Ⅱ成矿阶段为主要成矿阶段(刘伟等,2015)。

    本次研究工作选用的物探工作方法有瞬变电磁测量(TEM)、可控源音频大地电磁测深法(CSAMT)。物探测线布置图见图 2

    图  2  箭猪坡矿床物化探工作测线分布图
    1—三叠系百逢组中段(细砂岩、泥质粉砂岩); 2—三叠系百逢组下段(含粉砂质泥岩夹凝灰质泥岩); 3—中三叠统罗楼祖上段(粉砂质泥岩夹灰岩); 4—中三叠统罗楼组下段(粉砂质泥岩); 5—下二叠统茅口组(燧石条带灰岩); 6—下二叠统栖霞组(灰岩、泥灰岩、硅质岩); 7—上石炭统南丹组(硅质条带灰岩、微晶灰岩)8—中石炭统大埔组(白云岩、含生物硅质条带灰岩); 9—下石炭统巴平组(泥岩、硅质泥岩); 10—上泥盆统五指山组(灰岩); 11—上泥盆统榴江组(硅质岩、硅质灰岩、灰岩); 12—中泥盆统罗富组上段(泥质灰岩、生物碎屑灰岩); 13—中泥盆统罗富组中段(泥灰岩夹泥岩); 14—中泥盆统罗富组下段(钙质泥岩、泥灰岩); 15—下泥盆统塘丁组四段(泥岩); 16—下泥盆统塘丁组三段(泥岩、粉砂质泥岩); 17—下泥盆统塘丁组二段(泥岩夹砂质泥岩); 18—下泥盆统塘丁组一段(泥岩); 19—实测正断层; 20—实测逆断层; 21—岩层产状; 22—地质界线; 23—大型锑多金属; 24—工作区范围; 25—可控源测量测线及编号; 26—瞬变电磁测量、地电化学测量、土壤地球化学测量测线
    Figure  2.  Distribution of geophysical and chemical detection lines in Jianzhupo Deposit
    1-Middle of Triassic Baifeng Formation (fine sandstone and argillaceous siltstone); 2-Lower of Triassic Baifeng Formation (silty mudstone mixed with tuffaceous mudstone); 3-Upper of Middle Triassic Luolouzu Formation (silty mudstone mixed with limestone); 4-Lower of Middle Triassic Luolou Formation (silty mudstone); 5-Lower Permian Maokou Formation (flint banded limestone); 6-Lower Permian Qixia Formation (limestone, marl, siliceous rock); 7-Upper Carboniferous Nandan Formation (siliceous banded limestone) Microcrystalline limestone); 8-Middle Carboniferous Dapu Formation (dolomite, siliceous banded limestone); 9-Lower Carboniferous Baping Formation (mudstone, siliceous mudstone); 10-Upper Devonian Wuzhishan Formation (limestone); 11-Upper Devonian Liujiang Formation (siliceous rock, siliceous limestone, limestone); 12-Middle Devonian Luofu Formation upper member (argillaceous limestone, Bioclastic limestone); 13-Middle of Middle Devonian Luofu Formation (marl with mudstone); 14-Lower Devonian Luofu Formation (calcareous mudstone and marl); 15-Lower Devonian Tangding Formation 4 (mudstone); 16-Lower Devonian Tangding Formation 3 (mudstone, Silty mudstone); 17-Member 2 of Lower Devonian Tangding Formation (mudstone mixed with sandy mudstone); 18-Member 1 of Lower Devonian Tangding Formation (mudstone); 19-Measured normal fault; 20-Measured reverse fault; 21-Strata occurrence; 22-Geological boundary; 23-Large antimony polymetallic; 24-Scope of work area; 25-Controlled source measuring line and No; 26-Transient electromagnetic measuring line, geoelectrochemical measuring line and soil geochemical measuring line

    可控源音频大地电磁法(CSAMT)是在大地电磁法(MT)和音频大地电磁法(AMT)基础上发展起来的一种方法。可控源频率测深方法具有勘探深度范围大(通常可达2 km)、分辨能力强、观测效率高,兼有测深和剖面研究双重特点,是研究深部地质构造和寻找隐伏矿的有效手段,越来越多应用于受构造控制的脉状金属矿床的找矿工作。通过可控源音频大地电磁测深法(CSAMT)测量,探索箭猪坡矿床深部隐伏构造的空间形态。

    磁瞬变电磁法(TEM)是基于电性差异,利用不接地回线或接地线源向地下发送一次脉冲电场,利用线圈或接地电极观测二次涡流场或电场的方法。该方法具有穿透低阻覆盖的能力,故探测深度大。在低阻围岩地区地形的起伏仅对早期道有影响,这种影响又是易于分辨的。瞬变电磁法异常响应强,多测道曲线形态简单,分层能力较强。工作效率高,同时完成剖面测量与测深工作。通过瞬变电磁测量(TEM),查明构造和矿(化)体空间展布特征。

    在物探方法工作前,先对矿区内的主要岩矿石进行物性参数取样分析。矿区内出露的主要矿石划分为5类,围岩划分为7类。每类岩(矿)石进行系统的物性参数取样。所采集标本均来自新鲜露头及坑道,大小约10 cm×10 cm×10 cm,使用测试方式为强迫电流法,获得岩矿石标本的电阻率参数,使用GDD型标本测试仪,测定结果如表 1所示。根据表 1,矿区内与低阻因素有关的是断裂破碎带、矿化蚀变及炭质岩层,因此,圈定低阻异常区是本次电法工作的重点。

    表  1  五圩铅锌锑矿岩石的物性特征
    Table  1.  Physical properties of Wuxu Pb-Zn-Sb ore and rocks
    下载: 导出CSV 
    | 显示表格

    (1)密度特征

    区域出露的地层从下泥盆统塘丁组至中三叠统均有,是高密度层,以泥岩、碳酸盐岩为主,其岩性主要有泥岩、白云质泥灰岩、泥质粉砂岩、炭质泥岩、硅质泥岩、泥灰岩、白云岩、硅质岩、硅质灰岩、生物碎屑灰岩等,以上岩性密度值相对较高且较为稳定,一般为2.71 g/cm3左右。

    根据实测及前人的资料,五圩矿区的各类岩石中,以松散的砂岩、砾岩等密度最低,一般为2.48 g/cm3,这些岩层的厚度不大;泥岩、碳酸盐岩建造为主的岩层,其厚度可达数千米,密度平均值为2.71 g/cm3,构成高密度背景;花岗岩类岩石密度平均值为2.61 g/cm3,与泥岩、碳酸盐岩为围岩的密度存在0.1 g/cm3左右的差异,当花岗岩体具有一定规模时,可以引起重力低异常。

    (2)电性特征

    矿床中岩石在宏观上电阻率ρ与电极化率η呈负相关,即η增大,ρ有减小的趋势。矿床中的炭质泥岩、钙质泥岩具有“低电阻率”特征,电阻率常见为5.2×101~5.1×102 Ω·m,最大为3.9×103 Ω·m,而矿床中方解石、白云岩、硅质泥岩、灰岩具有“高电阻率”特征,电阻率常见为4.1×103~7.3×105 Ω·m,最大为9.8×105 Ω·m。含矿岩石具有低电阻、高极化率、高密度特征。矿床围岩普遍具有中高电阻率、低极化率、中等密度特征。矿区内炭质泥岩普遍发育,其具有低电阻率、高极化率特征,且具有成层出现的特点,其矿石与围岩存在较明显的电性差异,为电磁法测量工作提供了有利条件。

    (3)磁性特征

    工作区内绝大部分岩石为无磁性或弱磁性,花岗岩呈弱磁性,一些矿石含有少量磁性矿物磁性相对较强,但仍呈弱磁性。

    结合矿床地质特征,笔者在五圩箭猪坡矿床开展了可控源剖面测量工作(位置见图 2),试验剖面有3条,测量方位线与勘探线方位一致为80°,点距40 m。投入本次工作的仪器为GDP-32II多功能电磁仪。工作选择的是GGT-30大功率(30 kAV)发射机,工作频率:DC~8 kHz;最大输出功率:30 kW;最大输出电流:30 A;最高输出电压:1000 V;关断时间:≤125 μs;稳流精度:0.1%;同时配合工作的是一个ZMG-10(10 kW)发电机。CSAMT资料反演软件是GDP-32II机器所带的带地形平面波反演软件SCS2D。

    本次CSAMT工作各技术参数如下:工作频率:1~8192 Hz。发射系统:供电偶极子长度AB=1000 m;方位角117°,偶极子中心与测线中心偏差<15°。收发距R最小为7 km,最大为12.7 km;基本电流大于6 A,1024 Hz以下频率电流大于8 A。供电线使用耐高压、大电流的电缆线,供电极则将大张铝箔置于挖好的坑中埋好,并将盐水浇于其中。接收系统:采用一个磁道带两个电道测量方式。测量电偶极子长度MN=40 m。接收电极使用不极化电极,稳固地置于土中20~30 cm,并浇入盐水。观测数据叠加次数为32~16384次,数据离差SEM < 20时,方可认定为可靠数据,并将其记录。

    图 3(317线CSAMT测深)可以看出,物探CSAMT测深曲线圆滑,其卡尼亚电阻率均方相对误差为5.783%;大于200 mrad的阻抗相位均方相对误差为8.698%,小于200 mrad的阻抗相位均方误差为40.997 mrad,测量结果为Ⅰ级精度。根据测区岩石电性特征,矿区内与低阻因素有关的是断裂破碎带、矿化蚀变及炭质岩层,由此圈定低阻异常区是本次电法工作的重点。根据电阻率剖面结果,反演的低阻异常,对应的阻抗相位高值异常,因此低阻异常可信度高。

    图  3  箭猪坡矿床CSAMT测深视电阻率曲线图
    Figure  3.  Apparent resistivity curve of CSMAT sounding in Jianzhupo Deposit

    以317号勘探线剖面图为例(图 4)。选取该线的3160~4520点号,作为反演剖面,长度1.36 km,317线低阻异常及推断解释见图 4,其特征如下:3840~4080号点范围存在⑤号低阻异常,电阻率低于100 Ω·m,呈带状分布,异常上窄下宽,向东倾斜,延深约1200 m,⑤号低阻异常位于下泥盆统塘丁组第二岩性段(D1t2),主要为灰—深灰色中薄层泥岩夹深灰色中薄层条带状泥岩,局部夹有薄层砂岩透镜体和砂质泥岩,岩石中普遍见有浸染状黄铁矿,该岩性段为矿区主要含矿层位。已知含矿破碎带F3及F7位于⑤号低阻异常边部或异常内,且有钻孔ZK317-1揭露,其破碎带产状与⑤号低阻异常形态一致,推测⑤号低阻异常是由含矿破碎带F3和F7引起。目前钻孔只揭露了含矿破碎带F3及F7浅部垂深200 m范围的情况,从电阻率剖面图看出,⑤号低阻异常往深部延深至标高-700 m,说明含矿破碎带F3及F7往深部仍有延伸,该异常深部仍具有较大的找矿空间。

    图  4  箭猪坡矿床317号勘探线电阻率剖面与推断解释剖面图
    1—泥盆系下统塘丁组第三段;2—泥盆系下统塘丁组第二段;3—断裂;4—钻孔;5—电阻率异常带
    Figure  4.  Resistivity profile and inferred interpretation profile of 317 geological profile in Jianzhupo Deposit
    1-Third Member of Tangding Formation of Lower Devonian system; 2-Second Member of Tangding Formation of Lower Devonian system; 3-Fault; 4-Drill holel; 5-Resisttivity anomaly band

    从以上结果看出,CSAMT法探测深度大,对断裂构造反应较灵敏,在五圩矿田可以取得较好的找矿效果。

    本次TEM法采用重叠回线装置(接收线圈Rx和发送线圈Tx相重合敷设的装置),发射和接收线圈均为100 m×100 m,网度为100 m×50 m;通过试验应采用1 Hz和4 Hz作为发射基频,观测参数为归一化的感应电动势,单位为μV/A。本次使用仪器为重庆奔腾数控技术研究所研制的WTEM-1瞬变电磁仪。以箭猪坡矿床320号勘探线剖面为例(测线分布见图 2),运用一维电阻率反演(图 5),结合地质特征分析得出:通过320线多测道剖面图可见,在23~34点之间存在凸起异常,与相对低阻异常吻合较好,从形态上看,呈脉状,表明在中深部存在导电性较好的脉状地质体,反映了中深部硫化物矿(化)体的存在。从电阻率反演图中可以得出,标高200~300 m,异常带晕为一个呈现倾向东的低阻带,电阻率值一般小于100 Ω·m,多为0~50 Ω·m,倾角为50~60°,与高阻区域区别明显,且该异常带由近地表往深部有变宽的趋势。该地段构造发育,结合矿区岩矿石物性特征及矿区的地质特征推测为含金属硫化物的岩(矿)石引起的异常。通过在地表实施探槽及钻孔(ZK320-2、ZK320-3、ZK320-4、ZK320-5)验证,均揭露到含黄铁矿化的硅化破碎带或矿(化)体,已知硅化破碎带或矿(化)体,均分布在电阻率低阻区。

    在箭猪坡矿区开展了土壤剖面地球化学测量工作,以箭猪坡矿床320号勘探线剖面为例,结果显示矿区土壤地球化学化学主成矿元素Pb、Zn、Sb异常与隐伏矿体(含矿破碎带)的分布范围相一致,各异常同步性较好,并且有很好的重叠性。Pb最高值为97.4×10-6,异常带Pb均值大于65×10-6;Zn最高值为255.9×10-6,异常带均值大于220×10-6;Sb最高值为154.8×10-6,异常带均值大于90×10-6;推测异常由破碎带(含矿)引起,并经钻探工作验证,在钻孔中见到真厚0.71m,Zn品位5.05%的锌矿体(钻孔ZK320-2、J144)。

    地电化学提取方法是将地球物理、地球化学及电化学综合交叉为一体的综合找矿方法,该方法利用电场作用,选择性提取近地表介质中的电活动态物质,通过研究电提取元素组合、含量分布及异常特征,进而提供找矿信息的一种勘查方法。而大量的找矿勘探实践证明,地电化学勘探新技术、新方法能够发现500 m以下,其中包括150~200 m浮土以下的有色金属矿床、贵金属矿床、稀有金属矿床。在箭猪坡矿床南端开展了6条地电化学剖面测量工作(测线分布见图 2),方位线与勘探线方位一致为80°,点距一般20 m,以320号勘探线剖面地电化学特征为例(图 5):地电化学异常与隐伏矿体或含矿破碎带的分布吻合度高,即矿体的分布范围与地电化学综合异常范围一致,异常分布的规模、强度与含矿破碎带规模呈正比关系。矿体产出均较陡,倾角75°~80°,异常为多个异常点组成的“驼峰”或者“倒钟”形态,在地表矿头对应部位附近有异常峰。Pb、Zn、Sb元素异常规模大、强度高,异常同步清晰,因此Pb、Zn、Sb可以作为本区地电化学方法寻找隐伏锌矿的指示元素。当出现Pb、Zn、Sb为主异常时,则显示深部具有隐伏矿体(矿化)存在的可能性。经钻探验证,ZK320-2、ZK320-4、ZK320-5钻孔均揭露到了含锌锑的矿体及富含黄铁矿的硅化破碎带,亦说明地电化学能很好的圈定金属硫化物异常。

    图  5  箭猪坡矿床320号勘探线地质-物探(TEM)-化探(地电化学)综合剖面图
    1—构造破碎带;2—铅锌锑矿体;3—下泥盆统塘丁组第二段;4—钻孔
    Figure  5.  Electrogeochemical comprehensive profile of 320 exploration line in Jianzhupo Deposit
    1-Tectonic fracture zone; 2-Lead-zinc-antimony ore body; 3-Second member of Tangding Formation of Lower Devonian system; 4-Drill hole

    根据箭猪坡矿床地质特征、地球物理特征、地球化学特征,总结了该矿床地质、地球物理,地球化学的找矿标志(表 2),并建立了矿床的地质-化探-物探找矿模型(图 6),实质是反映化探特征、物理特征与地质构造、矿体的空间关系。

    表  2  箭猪坡矿床地质-地球物理-地球化学找矿标志
    Table  2.  Geological-geophysical -geochemical prospecting criteria of JianZhuPo Deposit
    下载: 导出CSV 
    | 显示表格
    图  6  箭猪坡矿床地质-地球化学-地球物理找矿模型
    1—条带状泥岩;2—破碎带;3—矿(化)体
    Figure  6.  Prospecting model of geological - geochemical-geophysical in Jianzhupo Deposit
    1-Ribbon mudstone; 2-Broken belt; 3-Mineralized bodies

    从矿床成矿条件分析,箭猪坡矿床矿体赋存在断裂构造中,矿体形态呈脉状、透镜体状,空间分布具有斜列状,叠瓦状排列等。区内矿体具有明显的低阻异常,表现为低电阻率特征,且瞬变电磁反演断面图与硅化破碎带及地质内容吻合较好。

    模型的地质特征:矿体受层位控制,控矿层位为下泥盆统塘丁组沉积建造,因构造变形,控矿层位位于褶皱翼部,产状一般较陡;近矿围岩蚀变发育范围有限,蚀变类型有硅化、黄铁矿化、绢云母化、绿泥石化等。矿体形态以陡产状脉状、细脉状、透镜状为主,倾角60°~80°,厚度0.1~4.5 m不等,最大10.72 m,矿石类型分致密块状和条带状;矿石以金属硫化物为主,并含硫盐矿物;矿床类型属低温热液充填型。

    模型的地球物理特征:以工业矿体为中心的矿化系统,具有低电阻率,稍高密度,高极化率特征。

    模型的地球化学特征:常规土壤异常较小或无异常,而地电化学异常能较清晰地反映盲矿体成矿元素的异常,且各元素间连续性较好,异常的分布范围与深部盲矿体的垂直投影基本一致,通过钻孔揭露,能较准确的反映深部埋藏盲矿体(矿化体)的分布范围。

    (1)通过近几年的找矿勘查,在箭猪坡矿床,矿带走向延伸控制总长度为1400 m,并根据物探可控源测量结果,经钻探工程控制,在标高为-300~-400 m)仍能见到矿体, 从而扩大了该区的找矿空间,在该矿带南、北两个延伸方向及东部矿体倾向延深方向都是寻找隐伏矿体的有利部位,勘查平面图、剖面图等资料表明矿体的倾向延深和南北走向延伸还未完全控制,尚有较大找矿空间。而且随着深部石英脉型锡矿体的发现,为该矿区增加了新的找矿方向。

    (2)矿区中局部构造陡倾或直立,且构造中有炭质、硅质等围岩,具有极低或极高的电阻率,故引起了CSAMT测量反演结果出现电阻率非常大和非常小的值。

    (3)受整个区围岩炭质泥岩背景影响,该区矿化不均匀,极化率值波动较大,矿区未采样激发极化法, 其还难以识别矿异常和非矿异常。

    因此,对于箭猪坡矿床成因需要加强研究,勘查模型需要逐步完善,找矿方法手段的选择也需要不断探索。

    物化探工作是目前找矿工作中的重要手段。在充分分析、深入研究物化探成果特征,选出与成矿有关的异常范围,尤其是物化探重叠异常范围,再以地质条件为基础,化探信息为先导,选取地质、化探、物探等成矿有关的综合信息标志重叠的地区或地段,是寻找成矿有利地段的保障。

    (1)物探研究表明:CSAMT出现的所有低阻异常,均具有找矿意义。这类低阻异常范围、形态大致反映矿(化)脉组在空间的展布特征,为深部勘查工程布置提供了重要依据;CSAMT异常显示该区往南北两端仍具有较大的找矿空间,中深部层状低阻异常出现在较低标高,均具有较大规模,且没有完全控制,这类异常推测与炭质层或新类型矿化有关。瞬变电磁表明:矿(化)体多分布在归一化电位高值区或低电阻率区,已知构造主要分布在归一化电位较高值区域或较低电阻率区和电位值梯度带,已知矿化体与物探异常特征吻合较好。

    (2)常规的化探次生晕及地电化学研究表明:地电化学异常在已知矿体上方有比较清晰的Pb、Zn、Sb元素异常,为典型的共生组合元素,它们之间也存在良好的正相关关系,说明这些元素组合可以作为找矿指示元素,在该地区利用地电化学在该地区寻找隐伏矿,方法是可行的。化探次生晕Sb、Pb、Zn等元素套和较好,异常特征相近,可以作为寻找本区矿区的主要指示元素,进而推断矿体存在的大致位置和特征。

    综上所述,可控源音频大地电磁法、瞬变电磁法、土壤地球化学、地电化学在异常区和非异常区有效性明显,利用这四种集成方法对深部勘查预测具有良好的找矿效果,达到技术集成示范,值得在类似的矿床中应用。

  • 图  1   研究区地质建造分区, 水样偏硅酸含量与构造耦合分布图

    Figure  1.   Geological formation, sampling sites and coupling distribution of soluble SiO2 concentration and structure

    图  2   研究区水样水化学Piper图

    Figure  2.   Piper diagram of hadrochemical parameters

    图  3   不同地质建造和土地利用类型分区水体可溶性SiO2浓度

    BA—玄武岩;PY—火山碎屑岩;TC—陆源碎屑岩;GR—花岗岩;QU—第四系;DI—闪长岩;GN—片麻岩;CA—碳酸盐;ME—草地;IM—工矿用地;RE—住宅用地;IP-水浇地和水田;FL—林地;DL—旱地;GL—园地;WB—水域滩涂

    Figure  3.   Statistical boxplot of soluble SiO2 concentration in different geological formations and land-use types

    BA-Basalt; PY- Pyroclastic rock; TC-Terrigenous clastic rocks; GR-Granite; QU-Quaternary; DI-Diorite; GN-Gneiss; CA-Carbonate; ME-Meadow; IM- Industrial and mining land; RE-Residential land; IP-Irrigated land and paddy fields; FL-Forest land; DL-Dryland; GL-Garden land; WB-Water beach

    图  4   地下水水化学组分与地质建造和土地利用类型RDA对应分析

    Figure  4.   RDA ordination graph between hydrochemical parameters and geological formation, land-use types

    图  5   典型岩石样品镜下特征显微照片和风化样品扫描电镜图像

    a—玻基橄榄玄武岩—斜长石贯穿橄榄石;b—安山玄武岩—过渡相斑晶熔融蚀变斜长石;c—含绿泥石杏仁安山岩;d—岩屑长石砂岩;e—大庙基性杂岩角闪辉石岩;f—透辉石横切面的正交节理及平直裂理;g—安山玄武岩含有多合成孪晶的新鲜斜长石(BSE);h—含有多合成孪晶的新鲜斜长石颗粒(SEM);i—风化斜长石表面—蒙脱石(SEM);j—斜长角闪岩表面片状卷曲结构(SEM);k—斜长石斑晶微裂缝和溶蚀孔隙(SEM);l—大庙斜长岩新鲜斜长石光洁表面(SEM);Bi—黑云母;Chl—绿泥石;Di—透辉石;Hb—角闪石;K—钾长石;Ol—橄榄石;Pl—斜长石;Q—石英

    Figure  5.   Micrographs of typical bedrock samples and SEM images of weathering profile samples

    a-Olivine basalt-plagioclase penetrates olivine; b-Andesite basalt- phenocryst melt altered plagioclase; c-Chlorite bearing almond andesite; d-Lithic arkose; e-Damiao basic complex-hornblende pyroxenite; f-Orthogonal joints and straight cleavage of diopside cross section; g-Andesite basalt contains fresh plagioclase with multiple synthetic twins (BSE); h-Fresh plagioclase particles containing multiple synthetic twins (SEM); i-Weathered plagioclase surface-montmorillonite (SEM); j-Sheet curl structure of plagioclase amphibolite surface (SEM); k- Microcracks and dissolution pores of anorthosite porphyry (SEM); l-Bright and clean surface of fresh plagioclase of Damiao anorthosite (SEM); Bi-Biotite; Chl-Chlorite; Di-Diopside; Hb- Hornblende; K-K-feldspar; Ol-Olivine; Pl-Plagioclase; Q-Quartz

    图  6   不同岩组岩相判断与岩(土)IOL、CIA、MIA风化指数三元图

    a—原岩类型判断图;b—SiO2-Al2O3-Fe2O3 (SAF) 砖红土化指数(IOL);c—Al2O3-CaO+ Na2O-K2O (A-CN-K) 化学蚀变指数(CIA)图;d-A-CNK—FM还原镁铁质蚀变指数(MIAR);e—A-L-F氧化镁铁质蚀变指数(MIAo);f—AF-CNK-M氧化镁铁质蚀变指数(MIAo

    Figure  6.   The lithofacies diagram and the CIA, IOL and MIA weathering index of rock (soil)

    a- Original rock discrimination diagram; b-SiO2-Al2O3-Fe2O3 (SAF) index of lateritisation (IOL); c-Al2O3-CaO+ Na2O-K2O (A-CN-K) Chemical alteration index (CIA); d-A-CNK-FM Reduced mineralogical index of alteration (MIAR); e-A-L-F Oxide mineralogical index of alteration (MIAo); f-AF-CNK-M Oxide mineralogical index of alteration (MIAo)

    图  7   岩(土)样品CIA、PIA和MIA指数与SiO2含量关系

    Figure  7.   Relationships of CIA, PIA, MIA value and SiO2 content of rock (soil) samples

    图  8   研究区水化学Ca2+/ Na+与HCO3-/ Na+、Ca2+/Na+与Mg2+/ Na+关系图

    Figure  8.   Relationship of Ca2+/ Na+ and HCO3- /Na+, Ca2+/Na+ and Mg2+/Na+ in study area

    图  9   硅酸盐岩和碳酸盐岩风化的相对贡献

    Figure  9.   Relative contributions from silicate and carbonate weathering by carbonic acid

    图  10   研究区水样Ca-Na-TDS关系

    Figure  10.   Relationship of the Ca-Na-TDS in groundwater in study area

    图  11   地下水水化学组分离子比值相关图

    Figure  11.   Relationships between the ratios of the selected ions of groundwater

    图  12   研究区地下水系统矿物平衡体系图

    Figure  12.   Mineral equilibrium phase diagram for the groundwater in study area

    图  13   地下水pCO2与pH相关关系(a),δ18O与δD(b)及总无机碳(TDIC)与δ13C关系(c)图

    Figure  13.   Relationships between pCO2 and pH, δ18O and δD, versus TDIC and δ13C of groundwater

    图  14   承德市不同地下水系统分区偏硅酸矿泉水成因模式图(参考周训, 2010孙智杰等, 2018孙厚云等,2020b

    Figure  14.   Genetic model of metasilicate mineral water in different groundwater system zones of Chengde City (Zhou Xun, 2010; Sun Zhijie et al., 2018; Sun Houyun et al., 2020b)

    表  1   研究区水化学参数统计

    Table  1   Statistics of hydrochemical parameters of the study area

    下载: 导出CSV

    表  2   研究区水化学组分相关系数矩阵

    Table  2   Correlation coefficient of hydrochemical parameters of the study area

    下载: 导出CSV

    表  3   不同化学风化指数计算方法一览

    Table  3   Calculation formula of weathering Index

    下载: 导出CSV
  • Alexandra Maskell, Niko Kampman, Hazel Chapman, Daniel J. Condon, Mike Bickle. 2015. Kinetics of CO2-fluid-rock reactions in a basalt aquifer, Soda Springs, Idaho [J]. Applied Geochemistry, 61: 272-283. doi: 10.1016/j.apgeochem.2015.06.010

    Anderson Suzanne Prestrud, Drever James L, Frost Carol D, Holden Pete. 2000. Chemical weathering in the foreland of a rtreating glacier[J]. Geochimica Cosmochimica Acta, 64(7): 1173-1189. doi: 10.1016/S0016-7037(99)00358-0

    Babechuk Michael G, Widdowson Mike, Kamber Balz S. 2014. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India [J]. Chemical Geology, 363: 56-75. doi: 10.1016/j.chemgeo.2013.10.027

    Baletabieke Bahedaer, Zhao Zhongbao, Wang Genhou, Sun Lijing, Zhao Pengbin. 2019. Research advances of microstructuralde formation mechanism of feldspar[J]. Acta Geologica Sinica, 93(10): 2678-2697(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201910019.htm

    Barbara Nisi, Orlando Vaselli, FrancoTassi, Javierde Elio, António Delgado Huertas, Luis Felip, Mazadiego, Marcelo F Ortega. 2013. Hydrogeochemistry of surface and spring waters in the surroundings of the CO2 injection site at Hontomín-Huermeces (Burgos, Spain) [J]. International Journal of Greenhouse Gas Control, 14: 151-168. doi: 10.1016/j.ijggc.2013.01.012

    Chen Xijie, Wang Longfeng, Jia Liqiong, Jia Ting. 2021. China's water resources in 2020[J]. China Geology, 4(3): 536-538. http://www.sciencedirect.com/science/article/pii/S2096519221001658

    Cheng Menglin. 2015. Study on Water-rock Interaction in the Fault Zone and its Hydrological Significance[D]. Nanjing: Nanjing University(in Chinese with English abstract).

    Dogramaci Shawan, McLean Laura, Skrzypek Grzegorz. 2017. Hydrochemical and stable isotope indicators of pyrite oxidation in carbonate-rich environment; the Hamersley Basin, Western Australia[J]. Journal of Hydrology, 545: 288-298. doi: 10.1016/j.jhydrol.2016.12.009

    Fan Qicheng, Du Xingxing, Sui Jianli, Zhao Yongwei. 2010. Genesis of carbonatite from Hannuoba and Yangyuan[J]. Acta Petrologica Sinica, 26(11): 3189-3194(in Chinese with English abstract). http://www.goldschmidtabstracts.info/2011/827.pdf

    Fan Ying. 2015. Groundwater in the Earth's Critical Zone: Relevance to Large-Scale patterns and processes [J]. Water Resources Research, 51(5): 3052-3069. doi: 10.1002/2015WR017037

    Fedo Christopher M, Nesbitt H. Wayne, Young Grant M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rock and paleosols, with implications for paleo weathering conditions and provenance[J]. Geology, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    Foroutan Maziar, Ghazanfari Ehsan, Amirlatifi Amin, Perdrial Nicolas. 2021. Variation of pore-network, mechanical and hydrological characteristics of sandstone specimens through CO2-enriched brine injection[J]. Geomechanics for Energy and the Environment, 26: 100217. doi: 10.1016/j.gete.2020.100217

    Gibbs Ronald J. 1970. Mechanisms Controlling World Water Chemistry[J]. Science, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088

    Goldich S S. 1938. A study in rock weathering [J]. Journal of Geology, 46: 17-59. doi: 10.1086/624619

    Guo Qinghai, Wang Yanxin. 2014. Simulation of geochemical processes affecting groundwater in Quaternary porous aquifers of Taiyuan basin: A typical Cenozoic rift basin[J]. Earth Science Frontiers, 21(4): 83-90(in Chinese with English abstract). http://www.researchgate.net/publication/286806915_Simulation_of_geochemical_processes_affecting_groundwater_in_Quaternary_porous_aquifers_of_Taiyuan_basin_A_typical_Cenozoic_rift_basin

    He Jin, Ma Xuemei, Deng Qijun, Li Wei, Ma Xuejun, Zheng Yidi, Liu Zhao. 2021. Hydrochemical characteristics and formation mechanism of metasilicate mineral water in a cenozoic basaltic aquifer in Zhangbei county, Hebei Province[J/OL]. Geology in China, 1-20. http://kns.cnki.net/kcms/detail/11.1167.p.20210111.1113.004.html (in Chinese with English abstract).

    Hodson M E, Langan S J, Wilson M J. 1996. A sensitivity analysis of the PROFILE model in relation to the calculation of soil weathering rate[J]. Applied Geochemistry, 11: 835-844. doi: 10.1016/S0883-2927(96)00048-0

    Huang Qibo, Qin Xiaoqun, Liu Pengyu, Zhang Liankai, Su Chuntian. 2017. The influence of allogenic water and sulfuric acid to Karst carbon sink in Karst subterranean river in southern Hu'nan[J]. Advances in Earth Science, 32(3): 307-318 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201703007.htm

    Kim Seong-Hee, Choi Byoung-Young, Lee Gyemin, Yun Seong-Taek, Kim Soon-Oh. 2019. Compositional data analysis and geochemical modeling of CO2-water-rock interactions in three provinces of Korea[J]. Environmental Geochemistry & Health, 41(1): 357-380. doi: 10.1007/s10653-017-0057-9

    Li Lixing, Li Houming, Chen Zhengle, Wang Denghong, Chen Weishi. 2010. Hydrothermal mineralization and fluid inclusion study on the Heishan iron deposit, Chengde County, Hebe Province, China[J]. Acta Petrologica Sinica, 26(3): 858-870(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201003018.htm

    Liang Xiujuan, Li Shu, Li Yunxi, Wu Shili, Xiao Ran, Xiao Changlai. 2013. Experimental study of evolution of aqueous SiO2 in the mineral water in basalt beds of Jingyu County, China[J]. Procedia Earth and Planetary Science, 7: 500-503. doi: 10.1016/j.proeps.2013.03.118

    Ling Sixiang. 2016. Study on Geochemical Behavior and Mechanical Characteristicof Black Shale during Weathering[D]. Chengdu: Southwest Jiaotong University (in Chinese with English abstract).

    Liu Feng, Wang Guiling, Zhang Wei, Yue Chen, Lu Chuan, Huang Qiwei, Ou Xiaoke. 2020. Terrestrial heat flow and lithospheric thermal structure in the middle Yanshan region-A case study from the Qijia-Maojingba geothermal field in Chengde[J]. Acta Geologica Sinica, 94(7): 1950-1959(in Chinese with English abstract).

    Mo Binbin, Lian Bin. 2010. Study on feldspar weathering and analysis of relevant impact factors[J]. Earth Science Frontiers, 17(3): 281- 289(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY201003033.htm

    Moses Cherith, Robinson David, Barlow John. 2014. Methods for measuring rock surface weathering and erosion: A critical review[J]. Earth-Science Reviews, 135: 141-161. doi: 10.1016/j.earscirev.2014.04.006

    Nesbitt H Wayne, Young Grant M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299: 715-717. doi: 10.1038/299715a0

    Nesbitt H Wayne, Young Grant M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3

    Piper A M. 1994. Graphic procedure in geochemical interpretation of water analyses[J]. Eos Transactions American Geophysical Union, 25: 914-923. http://www.researchgate.net/publication/311510303_Graphical_procedure_in_the_geochemical_interpretation_of_water_analysis

    Ren Jianye, Tamaki Kensaku, Li Sitian, Zhang Junjia. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 344(3/4): 175-205. http://www.marine.cug.edu.cn/uploads/jiangt/Ren_paper.pdf?origin=publication_detail

    Schaller M, Blum J D, Hamburg S P, Vadeboncoeurc M A. 2010. Spatial variability of long-term chemical weathering rates in the White Mountains, New Hampshire, USA[J]. Geoderma, 154(3/4): 294-301. http://www.onacademic.com/detail/journal_1000035387768510_971c.html

    Su Chunli, Li Yilian, Wang Yanxin. 2003. Mechanism of form discussion of Donghu mineral water in Shenzhen City[J]. Geological Science and Technology Information, 22(4): 85-90(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ200304016.htm

    Su Hongjian, Yang Rui, Duo Xiaosong, Zhao qing, Sun Zhihui, Zhao Hongrui. 2019. Distribution rules and geochemical conditions of mineral water resources in Chengde city[J]. Geology of Chemical Minerals, 41(1): 27-34(in Chinese with English abstract).

    Suchet P Amiotte, Probast J L. 1995. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks(GEM-CO2)[J]. Tellus, 47(1-2): 273-280. doi: 10.3402/tellusb.v47i1-2.16047

    Sun Houyun, Mao Qigui, Wei Xiaofeng, Zhang Huiqiong, Xi Yuze. 2018. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin[J]. Geology in China, 45(6): 1128-1141(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201806005.htm

    Sun Houyun, Sun Xiaoming, Jia Fengchao, Wang Yanli, Li Duojie, LI Jian. 2020c. The eco-geochemical characteristics of germanium and its relationship with the genuine medicinal material Scutellaria baicalensis in Chengde, Hebei Province[J]. Geology in China, 47(6): 1646-1667(in Chinese with English abstract).

    Sun Houyun, Wei Xiaofeng, Jia Fengchao, Li Duojie, Chen Ziran, Li Jian, Li Xia. 2022. Spatial variation of ecological stoichiometry characteristics of soil biogenic elements in Chengde City, northern Hebei Province, China[J]. Acta Ecologica Sinica, 42(5): 1750-1765(in Chinese with English abstract).

    Sun Houyun, Wei Xiaofeng, Jia Fengchao, Li Duojie, Li Jian, Li Xia, Yin Zhiqiang. 2020d. Source of groundwater nitrate in Luanping basin based on multi-environment media nitrogen cycle and isotopes[J]. Environmental Science, 41(11): 4936-4947(in Chinese with English abstract). http://www.researchgate.net/publication/346581475_Source_of_Groundwater_Nitrate_in_Luanping_Basin_Based_on_Multi-environment_Media_Nitrogen_Cycle_and_Isotopes

    Sun Houyun, Wei Xiaofeng, Sun Xiaoming, Jia Fengchao, Li Duojie, Li Jian. 2021. Element migration and accumulation characteristics of Bedrock-Regolith-Soil-Fruit Plant Continuum of the Earth's Critical Zone in Chengde almond producing area[J]. Earth Science, 46(7): 2621-2645 (in Chinese with English abstract).

    Sun Houyun, Wei Xiaofeng, Sun Xiaoming, Jia Fengchao, Li Duojie, He Zexin, Li Jian. 2020b. Formation mechanism and geological construction constraints of metasilicate mineral water in Yudaokou Hannuoba basalt area [J]. Earth Science, 45(11): 4236-4253 (in Chinese with English abstract).

    Sun Houyun, Wei Xiaofeng, Gan Fengwei, Wang Heng, Jia Fengchao, He Zexin, Li Duojie, Li Jia, Zhang Jing. 2020a. Genetic type and formation mechanism of strontium-rich groundwater in the upper and middle reaches of Luanhe River basin [J]. Acta Geoscientica Sinica, 41(1): 65-79(in Chinese with English abstract).

    Sun Mingzhao. 2018. Silicate Weathering Rate and its Controlling Factors: The Study from the Different"Small Watershed Systerms"[D]. Nanjing: Nanjing University(in Chinese with English abstract).

    Sun Qifa, Sun Zhuoan, Jia Lingang, Tian Hui, Guo Xiaodong, Du Jizhong, Li Xuguang, Li Xiao, Jia Liguo. 2020. Formation mechanism of the strontium-rich and metasilicic acid groundwater in the Lianhuashan area, Changchun, Jilin Province[J/OL]. Geology in China, 1-24. https://kns.cnki.net/kcms/detail/11.1167.P.20201019.1838.018.html (in Chinese with English abstract).

    Sun Zhijie, Gao Zongjun, Wang Xinfeng, Lin Haibin, Song Mian. 2018. Exploration of mineral water outcropping pattern in the mountainous area of South Jiangxi[J]. Acta Geoscientica Sinic, 39(5): 565-572(in Chinese with English abstract).

    Wang Guiling, Wang Wanli, Zhang Wei, Ma Feng, Liu Feng. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing-Tianjin-Hebei region in China[J]. China Geology, 3(1): 173-181. doi: 10.31035/cg2020013

    Wang Jingbing, Wei Xiaofeng, Zhang Huiqiong, Gan Fengwei. 2020. The eco-geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province[J]. Geology in China, 47(6): 1611-1624(in Chinese with English abstract).

    Wang Zunbo, Shen Licheng, Liang Zuobing, Jiang Zeli, Liao Yu. 2015. Characteristics of hydrochemical compositions and stable carbon isotope of natural water in the Daggyia geothermal field, Tibet, China[J]. Carsologica Sinica, 34(3): 201-208(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201503001.htm

    Wu Beijuan, Peng Bo, Zhang Kun, Kuang Xiaoliang, Fang Xiaohong, Zeng Dengzhi. 2016. A New chemical index of identifying the weathering degree of black shales[J]. Acta Geologica Sinica, 90(4): 818-832 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201604016&dbcode=CJFD&year=2016&dflag=pdfdown

    Wu Y, Gibson C E. 1996. Mechanisms controlling the water chemistry of small lakes in Northern Ireland[J]. Water Research, 30(1): 178-182. doi: 10.1016/0043-1354(95)00140-G

    Wu Yanhong, Zhou Jun, Bing Haijian, Luo Ji, Sun Hongyang, He Xiaoli, Wang Jipeng, Sun Shouqin, Yang Zijiang. 2019. Phosphorus and Trace Metal Biogeochemical Cycling in Gongga Mountain and its Eco-environmental Effect[M]. Beijing: Science Press.

    Xu Haijin, Ma Changqian. 2002. Review on weathering rates in the crust weathering system[J]. Advances in Earth Science, 17(5): 670-678(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200205007.htm

    Xu Sen, Li Siliang, Su Jing, Yue Fujun, Zhong Jun, Chen Shuai. 2021. Oxidation of pyrite and reducing nitrogen fertilizer enhanced the carbon cycle by driving terrestrial chemical weathering[J]. Science of the Total Environment, 768: 144343. doi: 10.1016/j.scitotenv.2020.144343

    Xu Zeming. 2013. The chemical water-rock interaction in silicate rock slopes[J]. Acta Geologica Sinica, 87(6): 860-871 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201306010&dbcode=CJFD&year=2013&dflag=pdfdown

    Yang Huifeng, Meng Ruifang, Li Wenpeng, Li Zeyan, Zhi Chuanshun, Bao Xilin, Li Changqing, Liu Futian, Wu Haiping, Ren Yu. 2021. Groundwater resources of the Haihe River Basin and its development potential[J]. Geology in China, 48(4): 1032-1051(in Chinese with English abstract).

    Zhang Bajian, Zhao Tian, Li Yanyan, Xing Yifei, Wang Guiling, Gao Jun, Tang Xianchun, Yuan Wenzhen, Zhang Dailei. 2019. The hydrochemical characteristics and its significance of geothermal water in both sides of large fault: Taking northern section of the Liaokao fault in north China as an example[J]. China Geology, 2(4): 512-521. doi: 10.31035/cg2018132

    Zhang Xue. 2012. A Study of the Characteristics of Hot Springs of Low to Moderate Temperature in Chengde District of Northern Hebei[D]. Beijing: China University of Geosciences (Beijing): 82-85(in Chinese with English abstract).

    Zhou Xun, Jin Xiaomei, Liang Sihai, Shen Ye, Zhang Hongmei. 2010. Monograph on Groundwater Science[M]. Beijing: Geological Press.

    Zhu Xueqin, Liu Wenbo, LZhiming, Chen Tan, Ren Yuxiang, Shao Hai, Wang Longfeng. 2020. Distribution and characterization analyses of strontium-bearing mineral spring water in the Chengde region[J]. Hydrogeology & Engineering Geology, 47(6): 65-73(in Chinese with English abstract).

    巴合达尔·巴勒塔别克, 赵中宝, 王根厚, 孙丽静, 赵鹏彬. 2019. 长石显微变形机制研究进展[J]. 地质学报, 93(10): 2678-2697. doi: 10.3969/j.issn.0001-5717.2019.10.019
    程梦林. 2015. 断裂裂隙中的水岩化学作用及其水文地质意义[D]. 南京: 南京大学.
    樊祺诚, 杜星星, 隋建立, 赵勇伟. 2010. 汉诺坝—阳原火成碳酸岩成因探讨[J]. 岩石学报, 26(11): 3189-3194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011003.htm
    郭清海, 王焰新. 2014. 典型新生代断陷盆地内孔隙地下水地球化学过程及其模拟: 以山西太原盆地为例[J]. 地学前缘, 21(4): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404012.htm
    何锦, 马雪梅, 邓启军, 李伟, 马学军, 郑一迪, 刘昭. 2021. 河北省张北县新生代玄武岩偏硅酸矿泉水化学特征及成因[J/OL]. 中国地质: 1-20. http://kns.cnki.net/kcms/detail/11.1167.p.20210111.1113.004.html.
    黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 2017. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 32(3): 307-318. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201703007.htm
    李立兴, 李厚民, 陈正乐, 王登红, 陈伟十. 2010. 河北承德黑山铁矿床热液成矿特征及流体包裹体研究[J]. 岩石学报, 26(3): 858-870. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003018.htm
    凌斯祥. 2016. 黑色页岩风化的地球化学行为及力学特性研究[D]. 成都: 西南交通大学.
    刘峰, 王贵玲, 张薇, 岳晨, 陆川, 黄起伟, 欧小科. 2020. 燕山中部大地热流及岩石圈热结构特征——以承德市七家—茅荆坝地热田为例[J]. 地质学报, 94(7): 1950-1959. doi: 10.3969/j.issn.0001-5717.2020.07.004
    莫彬彬, 连宾. 2010. 长石风化作用及影响因素分析[J]. 地学前缘, 17(3): 281-289. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003033.htm
    沈照理, 朱宛华, 钟佐燊. 1993. 水文地球化学基础[M]. 北京: 地质出版社.
    苏春利, 李义连, 王焰新. 2003. 深圳市东湖矿泉水形成机理探讨[J]. 地质科技情报, 22(4): 85-90. doi: 10.3969/j.issn.1000-7849.2003.04.016
    苏宏建, 杨瑞, 多晓松, 赵婧, 孙志辉, 赵红瑞. 2019. 承德市矿泉水资源分布规律及其形成的地球化学条件[J]. 化工矿产地质, 41(1): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201901008.htm
    孙厚云, 毛启贵, 卫晓锋, 张会琼, 葸玉泽. 2018. 哈密盆地地下水系统水化学特征及形成演化[J]. 中国地质, 45(6): 1128-1141. http://geochina.cgs.gov.cn/geochina/article/abstract/20180604?st=search
    孙厚云, 孙晓明, 贾凤超, 王艳丽, 李多杰, 李健. 2020c. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系[J]. 中国地质, 47(6): 1646-1667. http://geochina.cgs.gov.cn/geochina/article/abstract/20200604?st=search
    孙厚云, 卫晓锋, 甘凤伟, 王恒, 贾凤超, 何泽新, 李多杰, 李健, 张竞. 2020a. 滦河流域中上游富锶地下水成因类型与形成机制[J]. 地球学报, 41(1): 65-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202001006.htm
    孙厚云, 卫晓锋, 贾凤超, 李多杰, 陈自然, 李健, 李霞. 2022. 冀北承德地区土壤生源要素生态化学计量与空间分异特征[J]. 生态学报, 42(5): 1750-1765. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202205008.htm
    孙厚云, 卫晓锋, 贾凤超, 李多杰, 李健, 李霞, 殷志强. 2020d. 基于多环境介质氮素和同位素的滦平盆地地下水硝酸盐来源示踪[J]. 环境科学, 41(11): 4936-4947. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202011019.htm
    孙厚云, 卫晓锋, 孙晓明, 贾凤超, 李多杰, 何泽新, 李健. 2020b. 御道口汉诺坝玄武岩偏硅酸矿泉水形成机制及其地质建造制约[J]. 地球科学, 45(11): 4236-4253. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011027.htm
    孙厚云, 卫晓锋, 孙晓明, 贾凤超, 李多杰, 李健. 2021. 承德杏仁产区关键带基岩-土壤-作物果实BRSPC系统元素迁聚特征[J]. 地球科学, 46(7): 2621-2645. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107027.htm
    孙明照. 2018. 硅酸盐风化速率及其控制因素: 来自不同"小流域系统"的研究[D]. 南京: 南京大学.
    孙岐发, 孙茁桉, 贾林刚, 田辉, 郭晓东, 都基众, 李旭光, 李霄, 贾立国. 2020. 吉林省长春市莲花山地区地下水中锶及偏硅酸的形成机理研究[J/OL]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20201019.1838.018.html.
    孙智杰, 高宗军, 王新峰, 林海斌, 宋绵. 2018. 赣南山区矿泉水出露模式探讨[J]. 地球学报, 39(5): 565-572. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201805007.htm
    王京彬, 卫晓锋, 张会琼, 甘凤伟. 2020. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611-1624. http://geochina.cgs.gov.cn/geochina/article/abstract/20200601?st=search
    王尊波, 沈立成, 梁作兵, 江泽利, 廖昱. 2015. 西藏搭格架地热区天然水的水化学组成与稳定碳同位素特征[J]. 中国岩溶, 34(3): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201503001.htm
    吴蓓娟, 彭渤, 张坤, 匡晓亮, 涂湘林, 方小红, 曾等志. 2016. 黑色页岩化学风化程度指标研究[J]. 地质学报, 90(4): 818-832. doi: 10.3969/j.issn.0001-5717.2016.04.015
    吴艳宏, 周俊, 邴海健, 罗辑, 孙宏洋, 何晓丽, 王吉鹏, 孙守琴, 杨子江. 2019. 贡嘎山磷及微量金属元素地球化学循环与生态效应[M]. 北京: 科学出版社.
    徐则民. 2013. 硅酸盐岩斜坡水岩化学作用[J]. 地质学报, 87(6): 860-871. doi: 10.3969/j.issn.0001-5717.2013.06.010
    续海金, 马昌前. 2002. 地壳风化速率研究综述[J]. 地球科学进展, 17(5): 670-678. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200205007.htm
    杨会峰, 孟瑞芳, 李文鹏, 李泽岩, 支传顺, 包锡麟, 李长青, 柳富田, 吴海平, 任宇. 2021. 海河流域地下水资源特征和开发利用潜力[J]. 中国地质, 48(4): 1032-1051. http://geochina.cgs.gov.cn/geochina/article/abstract/20210404?st=search
    张雪. 2012. 河北省北部承德地区中低温温泉特征研究[D]. 北京: 中国地质大学(北京).
    周训, 金晓媚, 梁四海, 沈晔, 张红梅. 2010. 地下水科学专论[M]. 北京: 地质出版社.
    朱雪芹, 刘文波, 李志明, 陈坦, 任玉祥, 邵海, 王龙凤. 2020. 承德地区天然含锶矿泉水空间分布及特征分析[J]. 水文地质工程地质, 47(6): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202006009.htm
  • 期刊类型引用(4)

    1. 王学阳,杨言辰,刘志宏,张继武,戴台鹏. 长江中下游成矿带大金山地区综合信息找矿效果及深部找矿潜力分析. 吉林大学学报(地球科学版). 2025(01): 125-138 . 百度学术
    2. 谭杰,徐文杰,赵毅,罗达,赵俊宏,钟玉龙,陶明荣. 广西五圩矿田多金属矿成矿模式及找矿预测. 中国矿业. 2024(S1): 508-514 . 百度学术
    3. 李双飞,黄鹂,陈建,朱伟,孙丽莎,王欣,彭永和,商祥鸿,邹占春,唐名鹰,高远,赵家强. 山东省五莲七宝山金铜矿床成矿模式与找矿勘查模型——来自综合物化探的证据. 地质与勘探. 2023(05): 961-973 . 百度学术
    4. 李玉坤,王兴龙,廖阿托,李科. 东天山梧桐沟钨矿区综合信息找矿模型. 新疆地质. 2023(04): 530-537 . 百度学术

    其他类型引用(2)

图(14)  /  表(3)
计量
  • 文章访问数:  2679
  • HTML全文浏览量:  947
  • PDF下载量:  1568
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-03-22
  • 修回日期:  2021-12-27
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2022-08-24

目录

/

返回文章
返回
x 关闭 永久关闭