高级检索

    含砷地下水的治理技术现状与进展

    曹文庚, 王妍妍, 任宇, 费宇红, 李谨丞, 李泽岩, 张栋, 帅官印

    曹文庚, 王妍妍, 任宇, 费宇红, 李谨丞, 李泽岩, 张栋, 帅官印. 含砷地下水的治理技术现状与进展[J]. 中国地质, 2022, 49(5): 1408-1426. DOI: 10.12029/gc20220504
    引用本文: 曹文庚, 王妍妍, 任宇, 费宇红, 李谨丞, 李泽岩, 张栋, 帅官印. 含砷地下水的治理技术现状与进展[J]. 中国地质, 2022, 49(5): 1408-1426. DOI: 10.12029/gc20220504
    CAO Wengeng, WANG Yanyan, REN Yu, FEI Yuhong, LI Jincheng, LI Zeyan, ZHANG Dong, SHUAI Guanyin. Status and progress of treatment technologies for arsenic-bearing groundwater[J]. GEOLOGY IN CHINA, 2022, 49(5): 1408-1426. DOI: 10.12029/gc20220504
    Citation: CAO Wengeng, WANG Yanyan, REN Yu, FEI Yuhong, LI Jincheng, LI Zeyan, ZHANG Dong, SHUAI Guanyin. Status and progress of treatment technologies for arsenic-bearing groundwater[J]. GEOLOGY IN CHINA, 2022, 49(5): 1408-1426. DOI: 10.12029/gc20220504

    含砷地下水的治理技术现状与进展

    基金项目: 

    国家自然科学基金项目 41972262

    河北自然科学基金优秀青年科学基金项目 D2020504032

    详细信息
      作者简介:

      曹文庚,男,1985年生,博士,副研究员,主要从事水文地质、水文地球化学方面研究;E-mail:caowengeng@mail.cgs.gov.cn

    • 中图分类号: X523

    Status and progress of treatment technologies for arsenic-bearing groundwater

    Funds: 

    National Natural Science Foundation of China 41972262

    the Excellent Youth Science Fund of Hebei Natural Science Foundation of China D2020504032

    More Information
      Author Bio:

      CAO Wengeng, male, born in 1985, doctor, associate researcher, mainly engaged in hydrogeology and hydrogeochemistry; E-mail: caowengeng@mail.cgs.gov.cn

    • 摘要:
      研究目的 

      全世界有70多个国家的上亿人口面临高砷地下水的威胁,长期饮用高砷地下水会导致慢性砷中毒,诱发癌症,严重危害身体健康。地下水中砷的浓度分布和变化是受到沉积环境、气象水文、矿物环境、人类活动影响等多种因素共同作用的结果,因此需要从砷的不同理化性质特征进行着手,选择适当且有针对性的治理技术。

      研究方法 

      基于现阶段含砷地下水的污染现状,综合考虑去除量、处理成本、修复速率、可逆性等多种因素,分析含砷地下水的治理现状与进展。

      研究结果 

      本文全面地介绍含砷地下水治理技术,涵盖了化学氧化、混凝沉淀、吸附、离子交换、膜技术和生物修复等修复方式的研究成果,展现了不同类型处理方式对地下水中砷的去除效果,总结各技术发挥除砷效果的内在机理及最新优化措施,并对含砷地下水治理技术的发展趋势进行了展望,以期为含砷地下水的综合整治提供有意义的参考。

      结论 

      目前的砷污染水处理技术存在诸多缺陷,产生的废物或污泥可能成为二次污染的潜在来源。因此,为了更好地保护环境免受As的影响,需要新的混合技术以及对As负载废物/污泥的安全处置方法。缺乏饮用水安全意识和偏远地区的适用性也给砷的治理带来了挑战,因此需要一种价格合理、易于构建、在社区或家庭层面运行的技术来解决这个问题。

      创新点:(1)考虑去除量、处理成本、修复速率、可逆性等多种因素,选择适当且有针对性的治理技术;(2)总结各技术发挥除砷效果的内在机理及最新优化措施,并对含砷地下水治理技术的发展趋势进行了展望。

      Abstract:

      This paper is the result of groundwater geological survey engineering.

      Objective 

      There are hundreds of millions of people in more than 70 countries in the world facing the threat of high arsenic groundwater. Long-term drinking high-arsenic groundwater will lead to chronic arsenic poisoning, cancer, and seriously endanger health. The distribution of arsenic concentration in groundwater is the result of multiple factors including sedimentary environment, meteorological hydrology, mineral environment, and human activities. Therefore, it is necessary to start from the different physical and chemical properties of arsenic and select appropriate and targeted treatment technologies.

      Methods 

      Based on the current pollution status of arsenic-bearing groundwater, the current situation and progress of arsenic-bearing groundwater treatment were analyzed by comprehensively considering various factors such as removal amount, treatment cost, remediation rate, and reversibility.

      Results 

      This study comprehensively introduces the arsenic-bearing groundwater treatment technology, covering the research results of chemical oxidation, coagulation- sedimentation, adsorption, ion exchange, membrane technology and bioremediation, and shows the removal effect of different types of treatment methods on high- arsenic groundwater. In order to provide a meaningful reference for the comprehensive treatment of arsenic-bearing groundwater, the internal mechanism and the latest optimization measures for the technology are summarized, and the development trend of the arsenic- bearing groundwater treatment technology is prospected.

      Conclusions 

      The current arsenic-bearing water treatment technology has many defects, and the generated waste or sludge may become a potential source of secondary pollution. Therefore, to better protect our environment from As, new mixing techniques and safe disposal methods for As- laden waste/sludge are required. The lack of awareness of drinking water safety and availability in remote areas also presents challenges for arsenic management, so an affordable, easy-tobuild technology that operates at the community or household level is needed to address the problem.

    • 喀喇昆仑地处青藏高原西北部,西北起于帕米尔高原,东南止于西藏高原西北部,加勒万河地区位于喀喇昆仑山脉西南侧。近年来随着火烧云超大型铅锌矿以及红柳滩一带伟晶岩型锂矿的发现,喀喇昆仑地区近年的地质工作程度得到了大幅提升。火烧云—加勒万河—河尾滩一带岩浆活动极弱,仅见有少量中基性岩脉、岩滴以及侏罗系中见有玄武岩,所以该区域的岩浆岩研究程度较低。团结峰一带的龙山组(J2l)玄武岩获得锆石U–Pb同位素年龄为(174.4±2.7)Ma(菅坤坤等, 2019);而在火烧云北多宝山一带获得巴工布兰莎组(J1bg)中英安岩的锆石U–Pb同位素年龄为(195.5±1.1)Ma(周能武等, 2019);董连慧等(2015)获得火烧云闪锌矿Rb–Sr同位素为(186±6)Ma。

      喀喇昆仑地区已发现有众多的铅锌矿床,有火烧云、萨岔口、加勒万河、兴山北、红山湖南、甜水海、化石山、豹子山、团结峰等(图1)。其中火烧云估算铅+锌资源量为1895.0万t(范廷宾等, 2019),已成为国内探明储量最大的超大型铅锌矿床;萨岔口铅锌矿床估算铅+锌资源量已大于150万t,达到大型规模(范廷宾等, 2019)。笔者2015—2018年在火烧云西北约50 km的加勒万河谷中新发现了加勒万河铅锌矿以及加岔口铜矿。加勒万河铅锌矿与火烧云及萨岔口铅锌矿在同一地层构造带上(图1),成矿地质条件极为相似。范廷宾等(2019)对甜水海地区近39处不同大小的铅锌矿床特征进行了归纳总结,划分了密西西比河谷型(MVT)和沉积喷流型(SEDEX)两大类型,二者的主要典型矿床为多宝山铅锌矿与火烧云铅锌矿。高永宝等(2019)从矿物学、地球化学及同位素示踪对火烧云铅锌矿进行了详细的研究与分析,提出了盆地边缘褶皱逆冲+构造流体+次生交代3阶段成矿模式。

      图  1  喀喇昆仑区域地质矿产图(据高永宝等, 2019修改)
      1—上更新统;2—始新统;3—上白垩统;4—上侏罗统;5—中侏罗统;6—中—下侏罗统;7—上三叠统;8—中三叠统;9—早二叠统;10—中二叠统;11—上石炭统;12—中泥盆统;13—下—中奥陶统;14—长城系;15—三叠纪二长花岗岩;16—三叠纪石英闪长岩;17—侏罗纪花岗闪长岩;18—地质界线/角度不整合界线;19—断裂/大断裂;20—地理位置;21—研究区范围
      Figure  1.  Regional geological map of the Karakoram (modified from Gao Yongbao et al., 2019)
      1–Upper Pleistocene; 2–Eocene series; 3–Upper Cretaceous; 4–Upper Jurassic; 5–Middle Jurassic; 6–Middle–Lower Jurassic; 7–Upper Triassic; 8–Middle Triassic; 9–Upper Permian; 10–Middle Permian; 11–Upper Carboniferous; 12–Middle Devonian; 13–Lower/Middle Ordovician; 14–Changchengian System;15–Triassic monzogranite; 16–Triassic quartz diorite; 17–Jurassic granodiorite; 18–Geological boundary or angular unconformity boundary; 19–Large fault or fault; 20–Geographical position; 21–Study area

      不同学者提出的不同成矿模式略有不同,但基本上都反映出该区域铅锌矿床是由区域地层、构造、岩浆共同演化的产物。以往的研究主要针对区域内矿床的地质特征、矿物成因、控矿构造、成矿阶段与模式(高永宝等, 2019),虽然都提出成矿流体、金属矿元素来源与深部的岩浆活动有着重要的关系,但由于岩浆出露的局限性,对区域内的岩浆活动了解十分有限。本次工作在研究地层、构造以及找矿的基础上,对加勒万河区域内的各类岩脉以及火山岩进行地球化学及年代学研究,以期为区域的地质演化及成矿理论研究提供宝贵的依据。

      加勒万河地区位于红山湖—乔尔天山断裂以南,班公湖—怒江断裂以北地区,属于特提斯构造域西藏—三江造山系(Ⅰ级)、羌塘多岛弧盆系(Ⅱ级)、塔什库尔干—甜水海地块(Ⅲ级)中的乔尔天山—红南山前陆盆地(图2)(潘桂棠等, 2009; 范廷宾等, 2019)。出露地层有加温达坂组、空喀山口组、河尾滩组、克勒青河组、巴工布兰莎组、龙山组(何国建等, 2020)。区域内岩浆活动弱,未见岩体,仅见少量的辉绿岩、辉绿辉长岩等中—基性岩脉,主要侵入于二叠系加温达坂组深色系碎屑岩之中;火山岩主要见于西南峡谷一带侏系纪巴工布兰莎组之中,岩性为杏仁状辉石玄武岩。

      图  2  喀喇昆仑加勒万河地区地质图(a)、大地构造分区图(b)(据范廷宾等, 2019
      1—第四系冲积;2—第四系冲洪积;3—龙山组;4—巴工布兰莎组上段;5—巴工布兰莎组下段;6—克勒青河组上段;7—克勒青河组下段;8—河尾滩组上段;9—河尾滩组下段;10—空喀山口组上段;11—空喀山口组下段;12—加温达坂组上段;13—加温达坂组下段;14—玄武岩;15—花岗闪长岩;16—辉绿玢岩;17—断层;18—整合接触;19—角度不整合接触;20—国界线;21—冰川;22—Ⅲ秦祁昆造山系;23—Ⅳ康西瓦—玛沁对接带;24—Ⅴ羌塘—三江造山系;25—Ⅵ班公湖—怒江结合带;26—Ⅶ冈底斯—喜马拉雅造山系;27—西昆仑湖盆系;28—康西瓦—苏巴什结合带;29—南羌塘增生弧盆系;30—北羌塘—甜水海地块;31—奥依塔格—塔木其岛弧带;32—柳什塔格—上其汗岩浆弧带;33—康西瓦结合带;34—塔什库尔干—甜水海地块;35—北羌塘地块;36—多玛增生地块;37—拉达克—冈底斯—下察隅岩浆弧带;38—同位素样品/硅酸盐样品;39—研究区
      Figure  2.  Geological map of the Galwan Valley area in Karakoram (a) and tectonic division map (b) (modified from Fan Tingbin et al., 2019)
      1–Quaternary alluvial; 2–Quaternary alluvial proluvial; 3–Longshan Formation; 4–Upper member of Bagongbulansha Formation; 5–Lower member of Bagongbulansha Formation; 6–Upper member of Keleqinghe Formation; 7–Lower member of Keleqinghe Formation; 8–Upper member of Heweitan Formation; 9–Lower member of Heweitan Formation; 10–Upper member of Kongkashankou Formation; 11–Lower member of Kongkashankou Formation; 12–Upper member of Jiawendaban Formation; 13–Lower member of Jiawendaban Formation; 14–Basalt; 15–Granodiorite; 16–Diabase porphyrite; 17–Fault; 18–Conformal contact; 19–Angular unconformity contact; 20–Boundary; 21–Glacier; 22–Ⅲ Qinqikun orogenic system; 23–Ⅳ Kangxiwa–Maqin junction zone; 24–Ⅴ Qiangtang–Sanjiang orogenic system; 25–Ⅵ Bangong–Nujiang junction zone; 26–Ⅶ Gangdise–Himalayan orogenic system; 27–West Kunlun lacustrine system; 28–Kangxiwa–Subashi junction zone; 29–South Qiangtang accretionary arc basin system; 30–North Qiangtang–Tianshuihai block; 31–Oytag–Tamuqi island arc zone; 32–Liushitag–Shangqihan magmatic arc zone; 33–Kangxiwa junction zone; 34–Tashkergan–Tianshuihai block; 35–North Qiangtang block; 36–Duoma accretionary block; 37–Ladak–Gangdise–Xiachayu magmatic arc zone; 38–Isotopic samples/silicate samples; 39–Study area

      分布于河尾滩西南侧清水沟—长岭一带早侏罗世巴工布兰莎组上段地层之中(图3),呈夹层出现,岩石类型单一,岩性为杏仁状辉石玄武岩。杏仁状辉石玄武岩呈暗灰绿色、墨绿色(图4a、b),无斑间粒结构,块状构造,由斜长石、辉石、角闪石及少量磷灰石组成。斜长石含量为65%,呈细长条状,斜长石无规则排列,间粒间隐结构,未见次生变化(图4d、e);辉石含量为26%,粒度大多在0.05~0.1 mm,主要为普通辉石,呈粒状或短柱状,局部辉石矿物颗粒蚀变为绿帘石,具环带状结构;角闪石含量为4%,呈粒状,大小在0.2 mm以下,碎屑状分布,岩石中分布不均匀;磷灰石少量,呈柱状,长径在0.01~0.1 mm,岩石中分布不均匀。

      图  3  喀喇昆仑西南达坂一带地质图
      Figure  3.  Geological map of southwest Daban area in Karakoram

      闪长岩分布于加勒万河加岔口冰洞南东部,面积接近1 km2,呈脉状产出,出露宽度1~3 m,与二叠系加温达坂组呈侵入接触。呈灰绿色、灰色,细粒结构、细粒斑状结构,块状构造、微定向构造(图4c、f)。斜长石含量70%左右,普遍具中度绿泥石化、高岭土化、隐晶帘石化;暗色矿物含量15%~30%,均绿泥石化、绿帘石化、阳起石化,仅残留片柱状形态,个别见有鳞片状黑云母;石英闪长岩内见有石英,含量5%左右,呈波状消光。

      加勒万河谷区域内杏仁状辉石玄武岩采集2件样品PM101-RZ1、PM102-RZ1;闪长岩采集了1件样品PM201-RZ1;对这3件样品进行U–Pb同位素年龄测定、主量与微量及稀土元素的分析测试。在区域其他地区采集4件中—基性岩脉样品进行主量与微量元素的分析测试,其中辉绿辉长岩采集了2件样品PM307-HQ9、Pdh1-HQ4,辉绿岩采集了1件样品PM304-HQ1,角闪辉石岩采集了1件样品Pdh1-HQ48。样品采集位置如图2所示。样品均在剖面测制过程中采集的基岩,确保原地采集以及挑选风化蚀变较弱的岩块。

      样品的薄片鉴定、主量元素、微量元素分析测试在新疆地矿局第三地质大队实验室完成。主量元素由原子吸收分光光度仪与紫外可见分光光度仪完成测试;微量元素由电感耦合等离子体质谱仪(ICP–MS)分析测试。

      锆石的挑选在自然资源部南昌矿产资源监督检测中心(江西省地质调查研究院)完成。对样品进行粉碎、重液分离和单辊干式强磁选机磁选,最后通过双目镜进行锆石的挑选。锆石U–Pb同位素分析由武汉上谱科技有限责任公司实验室完成。将已挑选好的锆石使用环氧树脂中制靶,随后进行阴极发光(CL)照相。测年所用等离子体质谱仪为Agilent7700,激光剥蚀系统为GeoLas Pro,激光能量密度80 mJ,频率5 Hz,激光束斑直径32 µm,微量元素校正标准样品为NIST 610,同位素比值校正标准样品为91500,同位素比值监控标准样品采用GJ-1。具体分析条件及流程详见文献Liu et al.(2008),数据采用ICPMS DataCal10.0进行处理。

      岩浆岩中的继承锆石或捕获锆石对研究深部岩石圈结构和演化具有十分重要的意义,被认为是“天然超深样”(赵越等, 2006; 郑建平等, 2008; 李兴奎等, 2018)。虽然加勒万河地区的闪长岩和玄武岩发生了风化或区域变质,但都是浅变质作用,熔融温度大于900℃的锆石基本不受影响,仍可以作为U–Pb的封闭系统,锆石U–Pb同位素年龄依然具有参考价值。

      阴极发光图像(图5a、b)显示,所分析的锆石颗粒晶形整体较好,大部分晶体棱角分明、边界平直,呈长柱状自形—半自形晶,少数呈不规则状。所选测试锆石均发育岩浆韵律环带,PM101-RZ1-01锆石呈长柱状,环带呈扇形、面状构造。岩浆振荡环带较宽显示高温成因的特点,PM101-RZ1-06锆石CL图像显示十分明亮,推测应是后期锆石中U、REE、Th等微量元素含量变化所致,其U–Pb同位素年龄谐和度也只有86%,所以其年龄值不做参考。其他大部分锆石的特征表明锆石为原生的岩浆锆石。

      图  4  加勒万河地区中—基性岩浆岩野外照片和显微照片
      a—杏仁状玄武岩露头;b—气孔状玄武岩露头;c—闪长岩;d—PM101-RZ1杏仁状玄武岩显微镜镜下照片;e—PM102-RZ1气孔状玄武岩显微镜镜下照片;f—P201-RZ1闪长岩显微镜镜下照片
      Figure  4.  Field photographs and microphotographs of intermediate–basic magmatic rocks in the Galwan River area
      a−Amygdaloid basaltic outcrop; b−Vesicular basalt outcrop; c−Diorite; d−Microscopic photograph of PM101-RZ1 amygdaloid basaltic; e−Microscopic photograph of PM102-RZ1 vesicular basalt; f−Microscopic photograph of PM201-RZ1 diorite
      图  5  加勒万河地区玄武岩和闪长岩锆石阴极发光图像
      (年龄大于1000 Ma的锆石采用207Pb/206Pb年龄;年龄小于1000 Ma的锆石采用206Pb/238U年龄)
      Figure  5.  Zircon cathodoluminescence (CL) images of the basalts and diorites in the Galwan Valley area
      (The 207Pb/206Pb age is used to zircons older than 1000 Ma, and the 206Pb/238U age is used to zircons younger than 1000 Ma)

      锆石粒度变化范围较大,除PM101-RZ1-01达220 mm,其他锆石长轴基本在50~120 μm,长短轴比1~4。长柱状锆石可能形成于偏基性高温的岩浆之中。从锆石的长短轴比值、形态特征、生长环带特征可以看出,PM101-RZ1玄武岩中的锆石并不是同一生长环境下形成的,而PM102-RZ1中的锆石形态相近,具有同源的特征。PM101-RZ1中16颗锆石的Th含量在50.2×10−6~366×10−6,U含量为251×10−6~705×10−6,Th/U值为0.11~0.89(表1);PM102-RZ1中20颗锆石的Th含量在35.8×10−6~279×10−6,U含量为275×10−6~969×10−6,Th/U值为0.12~0.48(表1),整体Th/U值较低。综合分析认为早侏罗世巴工布兰莎组中玄武岩的锆石为岩浆成因锆石(吴元保和郑永飞, 2004)。

      表  1  加勒万河地区中基性岩锆石U–Pb同位素测试结果
      Table  1.  Zircon U−Pb isotopic results of the intermediate-basic rocks in Galwan Valley area
      测点号 Pb/10−6 Th/10−6 U/10−6 Th/U 同位素比值 同位素年龄/Ma 协和度
      207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      PM201-RZ1(闪长岩)
      1 63.0 63.5 465 0.14 0.0704 0.0024 1.1109 0.0357 0.1145 0.0016 939 65.7 759 17.2 699 9.1 91%
      2 64.8 294 359 0.82 0.0658 0.0018 1.2216 0.0342 0.1338 0.0017 1200 57.4 811 15.6 810 9.7 99%
      3 53.0 84.0 320 0.26 0.0718 0.0022 1.3639 0.0403 0.1378 0.0018 989 61.4 874 17.3 832 10.4 95%
      4 34.1 400 1983 0.20 0.0494 0.0018 0.1059 0.0041 0.0155 0.0002 169 87.0 102 3.8 98.9 1.2 96%
      5 44.4 44.4 298 0.15 0.0739 0.0023 1.3005 0.0426 0.1268 0.0013 1039 63.0 846 18.8 769 7.6 90%
      6 32.9 90.6 202 0.45 0.0662 0.0023 1.2094 0.0432 0.1322 0.0016 813 73.3 805 19.9 801 9.1 99%
      7 54.3 97.1 360 0.27 0.0699 0.0021 1.2338 0.0373 0.1277 0.0014 928 61.1 816 17.0 775 8.0 94%
      8 15.7 33.1 212 0.16 0.0617 0.0031 0.5353 0.0258 0.0634 0.0008 665 107 435 17.0 396 4.7 90%
      10 51.4 63.7 338 0.19 0.0690 0.0019 1.2698 0.0362 0.1330 0.0016 900 63.1 832 16.2 805 9.0 96%
      11 48.0 127 295 0.43 0.0675 0.0019 1.2471 0.0375 0.1332 0.0017 854 63.9 822 16.9 806 9.5 98%
      12 37.3 232 330 0.70 0.0591 0.0021 0.7099 0.0256 0.0870 0.0012 572 77.8 545 15.2 538 7.2 98%
      13 47.6 62.9 314 0.20 0.0671 0.0024 1.2379 0.0413 0.1331 0.0017 843 77.0 818 18.7 805 9.5 98%
      14 49.5 212 288 0.74 0.0680 0.0020 1.2701 0.0371 0.1350 0.0019 878 60.3 832 16.6 816 10.5 98%
      15 29.1 22.3 709 0.03 0.0514 0.0018 0.2737 0.0098 0.0385 0.0004 257 83.3 246 7.8 243 2.7 99%
      16 33.9 61.6 213 0.29 0.0709 0.0024 1.3819 0.0474 0.1407 0.0017 955 74.2 881 20.2 849 9.6 96%
      18 132 307 914 0.34 0.0671 0.0016 1.1507 0.0282 0.1236 0.0012 843 54.6 778 13.3 751 6.7 96%
      PM101-RZ1(辉石玄武岩)
      1 28.9 96.1 409 0.24 0.0542 0.0024 0.4545 0.0206 0.0607 0.0009 389 100 380 14.4 380 5.3 99%
      2 42.9 70.2 288 0.24 0.0652 0.0022 1.1556 0.0411 0.1276 0.0016 789 72.2 780 19.4 774 8.9 99%
      3 26.7 366 582 0.63 0.0510 0.0022 0.2565 0.0110 0.0366 0.0005 239 72.2 232 8.9 232 3.3 99%
      4 44.4 51.7 309 0.17 0.0646 0.0021 1.1147 0.0353 0.1247 0.0014 761 67.7 760 17.0 758 8.1 99%
      7 47.7 50.2 298 0.17 0.0664 0.0022 1.2061 0.0388 0.1313 0.0014 817 70.4 803 17.9 795 8.1 98%
      8 120 79.3 683 0.12 0.0614 0.0034 1.1885 0.0690 0.1375 0.0020 654 119 795 32.0 830 11.5 95%
      9 97.3 75.7 705 0.11 0.0621 0.0019 1.0473 0.0314 0.1215 0.0013 680 64.8 728 15.6 739 7.3 98%
      10 61.3 142 356 0.40 0.0696 0.0025 1.2954 0.0458 0.1346 0.0015 917 75.9 844 20.3 814 8.6 96%
      11 58.9 192 334 0.57 0.0665 0.0020 1.2437 0.0372 0.1348 0.0015 833 60.2 821 16.8 815 8.5 99%
      13 53.0 109 332 0.33 0.0660 0.0019 1.1978 0.0340 0.1306 0.0015 806 59.3 800 15.7 791 8.5 98%
      15 112 224 251 0.89 0.1183 0.0029 5.0616 0.1288 0.3066 0.0037 1931 44.4 1830 21.6 1724 18.2 94%
      PM102-RZ1(辉石玄武岩)
      1 63.8 48.2 403 0.12 0.0677 0.0020 1.2634 0.0364 0.1340 0.0016 861 61.1 829 16.3 811 8.9 97%
      2 44.3 53.3 275 0.19 0.0658 0.0020 1.2378 0.0359 0.1356 0.0016 1200 59.1 818 16.3 819 9.0 99%
      3 51.5 58.8 320 0.18 0.0679 0.0018 1.2710 0.0349 0.1344 0.0014 865 55.6 833 15.6 813 7.8 97%
      4 97.8 131 617 0.21 0.0660 0.0017 1.2156 0.0311 0.1324 0.0013 806 53.7 808 14.2 802 7.3 99%
      5 45.6 71.1 283 0.25 0.0674 0.0022 1.2370 0.0384 0.1326 0.0015 852 67.4 818 17.4 803 8.7 98%
      6 56.6 53.1 364 0.15 0.0648 0.0018 1.2112 0.0345 0.1345 0.0015 769 59.3 806 15.8 814 8.4 99%
      7 44.8 35.8 282 0.13 0.0692 0.0021 1.2964 0.0375 0.1354 0.0014 906 63.0 844 16.6 818 7.9 96%
      8 101 274 720 0.38 0.0643 0.0015 1.0009 0.0234 0.1121 0.0011 750 48.9 704 11.9 685 6.2 97%
      9 56.4 55.6 356 0.16 0.0663 0.0019 1.2446 0.0369 0.1354 0.0016 817 61.1 821 16.7 819 9.2 99%
      10 94.0 99.7 612 0.16 0.0647 0.0017 1.1849 0.0330 0.1320 0.0016 765 55.6 794 15.3 799 9.0 99%
      11 98.2 279 585 0.48 0.0636 0.0017 1.1630 0.0315 0.1322 0.0016 728 25.0 783 14.8 800 8.9 97%
      12 151 131 969 0.13 0.0644 0.0015 1.2190 0.0303 0.1363 0.0015 754 249.1 809 13.9 824 8.3 98%
      13 61.8 76.0 387 0.20 0.0655 0.0019 1.2181 0.0360 0.1340 0.0017 791 59.3 809 16.5 811 9.4 99%
      14 70.4 57.7 449 0.13 0.0659 0.0018 1.2471 0.0354 0.1364 0.0018 806 57.4 822 16.0 824 10.1 99%
      15 50.2 47.9 296 0.16 0.0707 0.0021 1.4306 0.0479 0.1449 0.0022 950 61.1 902 20.0 872 12.5 96%
      16 65.1 51.4 427 0.12 0.0637 0.0019 1.1719 0.0363 0.1322 0.0015 731 64.8 788 17.0 800 8.4 98%
      17 61.9 67.8 396 0.17 0.0638 0.0018 1.2019 0.0354 0.1353 0.0016 744 59.3 801 16.4 818 9.0 97%
      18 51.0 71.7 330 0.22 0.0672 0.0019 1.2224 0.0356 0.1309 0.0014 843 59.3 811 16.3 793 7.9 97%
      19 46.2 43.1 307 0.14 0.0650 0.0019 1.1959 0.0344 0.1325 0.0014 776 56.5 799 15.9 802 8.1 99%
      20 67.6 110 422 0.26 0.0634 0.0018 1.2037 0.0340 0.1367 0.0016 720 63.9 802 15.7 826 9.1 97%
      下载: 导出CSV 
      | 显示表格

      PM101-RZ1玄武岩锆石U–Pb同位素测年结果数据谐和性整体较好(图6a),PM101-RZ1的16颗锆石有11颗年龄值谐和度均大于等于90%。PM101-RZ1-14、PM101-RZ1-16这2颗锆石被打穿;M101-RZ1-05、PM101-RZ1-06、PM101-RZ1-12此3颗锆石年龄值谐和度低于90%,这5颗锆石年龄中不作为参考数据,年龄数据详见表1。11个有效年龄值,大致可以分为4个年龄组,分别为232 Ma、380 Ma、739~830 Ma、1931 Ma(图6a)。其中PM101-RZ1-15号锆石年龄大于1400 Ma,采用207Pb/206Pb表面年龄值。4个年龄群组中,739~830 Ma的样品数达到8个,谐和度都在95%以上,6个谐和度达98%。

      图  6  加勒万河地区中基性岩锆石U–Pb年龄谐和图
      Figure  6.  Zircons U–Pb concordia diagrams of the intermediate–basic rock in the Galwan Valley area

      PM102-RZ1样品的20颗锆石年龄值谐和度都在96%以上(图6b)。PM102-RZ1样品的20颗锆石年龄值更加集中,除PM102-RZ1-08、PM102-RZ1-15两锆石206Pb/238U年龄分别为685 Ma、872 Ma,其余18粒锆石206Pb/238U年龄均在793~826 Ma。793~826 Ma年龄段的谐和年龄为(810.1±2.0)Ma,MSWD=0.056;加权平均年龄为(810.3±5.0)Ma,MSWD=1.4(图6b)。

      地层中火山岩夹层的就位时间与地层的形成时间基本一致。但火山岩中的继承锆石或捕获锆石的年龄一般老于火山岩的就位时间。西南达坂一带早侏罗世巴工布兰莎组(J1bg)的火山岩喷发或溢流时间为早侏罗世,晚于最年轻锆石组PM101-RZ-03的结晶时间(232±9)Ma,说明玄武岩的这些锆石年龄是岩浆房的结晶年龄,而非喷发年龄。

      PM201-RZ1花岗闪长岩共挑选出65颗锆石,阴极发光下多为棱角分明、边界平直的长柱状自形—半自形晶,少数呈不规则状。挑选了18颗(图5c)形态较好的锆石进行U–Pb同位素测年(表1)。所选测试锆石均发育岩浆韵律环带,4、6、18锆石岩浆振荡环带较宽,显示高温成因的特点,14号锆石最外层可见薄增生边,以上特征表明锆石为原生的岩浆锆石。锆石长50~120 μm,长短轴比值为1~4;4、5、6、15、18号锆石长柱状显示中基性岩浆锆石的特点。从锆石的长短轴比值、形态以及生长环带特征可以看出,这些锆石并不是同一环境下形成的,应该是岩浆中的继承锆石或捕获锆石,反映的是岩浆来源地深部地壳的特征和性质。

      18颗锆石的Th含量在22.3×10−6~400×10−6,U含量为212×10−6~1983×10−6,Th/U值为0.03~0.82(表1),6颗锆石的Th/U值大于0.3,锆石地球化学特征表明这些锆石主要为岩浆成因锆石(吴元保和郑永飞, 2004)。

      18颗锆石的年龄数据谐和性整体较好,16颗谐和度大于等于90%,其中11颗锆石的年龄数据谐和度大于96%,4颗锆石的年龄数据谐和度为98%,3颗锆石的年龄数据谐和度为99%。在207Pb/235U–206Pb/238U谐和图上(图5c)(7、19号谐和度低于90%,不做参考),数据投点多位于谐和曲线上或其附近。18颗锆石年龄变化范围特别大,从新元古代一直跨越到中生代,其中最老的一颗锆石(PM201-RZ-16)207Pb/206Pb年龄为849 Ma,最年轻的年龄值为98.9 Ma。16个有效年龄数据大致分为5个年龄组,分别为98.9 Ma、243 Ma、396 Ma、538 Ma、751~849 Ma(图6c)。其中751~849 Ma年龄组共10颗锆石,而年龄峰值组801~816 Ma共计6颗锆石,对此6个锆石的谐和年龄为(807.9±3.9)Ma(图6c),加权平均年龄为(806.7±7.6)Ma(图6c),MSWD=0.29。

      PM201-RZ1闪长岩侵入于下二叠统加温达坂组(P1-2j)深灰色粉砂岩,约束其侵位时代为早二叠世之后。锆石U–Pb同位素年龄只有PM201-RZ-04、PM201-RZ-15是晚于地层的形成时代。这两颗锆石形态都是长轴状,长短轴比基本接近。PM201-RZ-15内部结构较复杂,可能受后期溶蚀作用,使封闭的锆石中U–Pb系统被打开,同位素时钟重启;而PM201-RZ-04锆石形态完整,韵律环带清晰,晶体表面光洁明亮,未发现有溶蚀或变质的特征,年龄值谐和度达96%。综合分析认为PM201-RZ-04锆石的U–Pb同位素年龄可靠,对整个岩浆形成的时间具有最晚年龄的制约,(98.9±1.2)Ma可作为冰洞闪长岩的形成年龄。

      冰洞闪长岩中锆石U–Pb年龄出现了5个频谱,其中继承锆石的年龄频谱243 Ma、396 Ma、538 Ma、751~849 Ma共4个,认为本测区在早白垩世以前(98.9±1.2)Ma至少发生了5次被记录的岩浆活动。751~849 Ma新元古代锆石U–Pb同位素年龄峰值表明闪长岩熔融时将深部基底中的锆石裹挟进入岩浆并一同侵位到了浅地表。

      加勒万河地区玄武岩以及闪长岩都携带了大量的739~830 Ma新元古代的继承锆石,这不是一个偶然事件。西南达坂巴工布兰莎组玄武岩与冰洞加温达坂组闪长岩在空间上相隔约40 km,岩性差异大,形成时代也存在一定的差异。两者同时携带了大量新元古代锆石,充分指向和说明两者同源的一个事实,源区即新元古代深部的老基底。

      分别对PM101-RZ1中11颗、PM102-RZ1中20颗、PM201-RZ1中16颗测年锆石进行了稀土元素含量的测定,测试结果见表2。锆石稀土元素配分型式图(图7)表明,各样品中出现了主体样式和少量的不同稀土元素配分样式,但可以发现加勒万河地区玄武岩、闪长岩中主体锆石(黑色线型)稀土元素配分样式基本一致;表现为轻稀土含量低,而重稀土含量较高,明显的La、Pr、Sm、Eu亏损的“MW”型。加勒万河地区玄武岩、闪长岩主体原生锆石的稀土配分样式与Greenland西南部Gothabsfjord地区的中太古代(GGU125540)样品锆石稀土元素配分图基本一致(Whitehouse and Kamber, 2002)。锆石U–Pb同位素年龄结合锆石稀土元素分配特征进一步说明玄武岩与闪长岩均有新元古代同一源区的物质来源。

      表  2  加勒万河地区中基性岩锆石稀土元素含量
      Table  2.  Rare earth elements data of zircon in the intermediate-basic rocks of the Galwan Valley area
      稀土元素 Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE/HREE δEu δCe
      PM101-RZ1
      1 0.81 0.031 2.35 0.082 1.42 3.45 0.64 25.6 8.93 92.9 32.4 137 27.0 238 48.8 959 617.92 0.013 0.207 11.371
      2 0.55 0.009 1.01 0.069 1.31 4.03 0.30 37.5 15.9 208 84.4 396 82.3 754 150 2504 1735.05 0.004 0.074 10.037
      3 1.27 0.018 14.6 0.080 1.17 1.77 0.60 13.5 4.23 55.7 23.8 123 30.4 313 74.4 784 656.40 0.029 0.379 93.848
      4 0.59 0.020 0.57 0.0096 0.55 3.50 0.019 31.4 13.9 179 72.6 332 71.6 644 129 2135 1477.94 0.003 0.006 10.191
      7 0.73 0.013 1.89 0.072 0.67 2.83 0.17 24.3 11.2 146 53.8 254 54.6 502 106 1629 1157.14 0.005 0.063 15.077
      8 1.74 4.40 8.24 1.47 7.20 5.50 0.71 34.6 17.0 251 106 535 119 1141 231 3365 2461.21 0.011 0.158 0.793
      9 0.83 0.030 0.63 0.060 0.99 3.91 0.099 33.3 15.7 193 70.8 320 66.5 628 128 2157 1460.06 0.004 0.027 3.637
      10 1.72 0.18 13.1 0.16 1.52 3.81 0.61 35.8 15.4 202 80.1 372 77.3 703 141 2439 1645.97 0.012 0.160 19.309
      11 6.37 17.8 71.9 6.75 34.8 12.3 3.31 26.6 7.64 91.2 37.2 184 43.2 437 102 1179 1076.28 0.158 0.560 1.608
      13 1.62 0.032 2.54 0.088 1.40 5.71 0.41 48.4 19.3 246 103 486 101 939 192 3124 2144.34 0.005 0.075 11.675
      15 2.72 0.36 26.2 0.87 8.67 9.79 2.85 29.7 9.74 102 32.8 139 28.0 246 48.9 999 685.75 0.077 0.512 11.389
      PM102-RZ1
      1 0.75 0.034 0.49 0.077 0.95 2.09 0.032 26.1 12.7 189 82.0 401 89.5 842 173 2474 1647 0.003 36.745 0.014
      2 0.60 0.029 0.52 0.035 0.94 3.14 0.10 28.3 12.2 168 68.1 323 69.2 631 132 2044 1305 0.004 30.628 0.013
      3 0.77 0.044 0.84 0.056 0.87 3.51 0.12 34.0 14.1 194 77.9 368 77.5 708 145 2361 1481 0.004 32.745 0.013
      4 1.67 0.056 2.51 0.040 1.15 3.88 0.31 40.4 18.8 269 114 559 119 1109 224 3516 2238 0.004 19.925 0.007
      5 0.70 0.15 0.96 0.15 2.31 4.97 0.13 35.4 15.5 212 88.5 420 89.8 830 168 2733 1700 0.005 27.689 0.046
      6 0.67 0.001< 0.39 0.001< 0.66 2.94 0.068 28.0 14.5 203 84.7 419 90.2 831 168 2701 1676 0.003 42.301 1.000
      7 0.55 0.058 0.53 0.056 0.80 2.59 0.043 23.8 11.4 159 66.3 321 70.3 651 136 1971 1308 0.004 42.827 0.026
      8 3.65 0.079 10.4 0.14 1.13 3.20 1.34 19.0 7.31 85.2 33.7 156 33.2 328 67.7 1011 682.5 0.028 7.920 0.003
      9 0.90 0.001< 0.50 0.059 0.50 2.60 0.069 27.9 13.4 184 75.8 369 79.7 753 154 2316 1508 0.003 42.809 1.000
      10 1.04 3.24 2.97 1.98 11.2 11.8 2.65 61.1 25.9 355 146 688 149 1330 270 4617 2789 0.012 6.643 0.453
      11 3.06 0.047 3.87 0.26 5.30 11.3 0.92 72.6 22.3 206 54.8 175 29.1 235 43.1 1696 819.5 0.030 15.646 0.003
      12 1.17 0.57 3.11 0.62 3.71 5.38 0.39 45.1 22.8 331 143 712 158 1533 316 4638 2960 0.005 13.653 0.073
      13 0.88 0.081 2.75 0.040 1.12 4.37 0.054 34.2 16.4 218 89.8 431 90.0 824 167 2826 1713 0.005 54.255 0.013
      14 0.73 0.017 0.56 0.042 0.91 3.21 0.11 34.3 17.0 242 103 513 111 1031 212 3308 2057 0.003 31.455 0.006
      15 0.62 0.019 0.79 0.026 0.95 3.19 0.15 28.1 13.3 174 68.6 315 67.5 601 123 2126 1274 0.004 25.603 0.007
      16 0.75 0.0038 0.48 0.033 0.49 3.20 0.091 29.4 15.0 219 91.4 452 98.2 922 189 2900 1832 0.003 46.335 0.002
      17 0.73 0.001< 0.54 0.026 0.71 3.70 0.12 35.9 16.7 220 89.8 427 88.8 812 166 2828 1695 0.003 37.996 1.000
      18 0.94 0.0029 1.14 0.048 0.91 3.83 0.085 35.6 16.0 213 85.3 393 83.1 743 149 2669 1575 0.004 41.878 0.001
      19 0.74 0.090 0.60 0.046 0.53 2.51 0.059 22.5 11.3 163 69.5 339 72.1 661 137 2103 1343 0.003 43.376 0.033
      20 0.77 0.022 0.82 0.032 1.03 4.66 0.12 40.7 17.4 249 100 473 98.5 887 181 3179 1874 0.004 40.391 0.007
      PM201-RZ1
      1 1.13 4.34 2.56 3.02 17.8 15.7 4.21 55.3 23.5 296 112 505 105 943 193 3432 2280 0.021 0.437 0.173
      2 1.54 0.14 10.7 0.11 1.36 5.91 0.42 37.4 13.9 177 69.5 314 62.8 550 113 2007 1356 0.014 0.087 21.230
      3 3.54 0.31 2.92 0.24 2.34 4.86 0.35 37.4 15.0 202 81.4 375 79.7 719 147 2516 1668 0.007 0.080 2.639
      4 5.79 0.059 4.44 0.040 0.80 2.76 0.21 18.9 7.85 109 43.7 220 48.7 462 97.4 1357 1015.4 0.008 0.089 22.311
      5 1.65 0.13 1.59 0.074 0.84 2.85 0.16 24.6 13.0 177 70.0 337 73.0 653 136 2117 1490 0.004 0.059 3.906
      6 0.82 0.090 3.83 0.16 2.38 7.15 0.54 52.5 18.8 243 97.2 438 89.3 800 161 2950 1914 0.007 0.085 7.828
      7 0.91 0.25 1.41 0.19 2.52 6.24 0.34 47.3 19.3 255 101 466 96.4 849 174 3206 2019 0.005 0.060 1.591
      8 0.61 0.10 1.98 0.11 0.70 1.58 0.28 12.5 4.88 58.8 23.3 105 21.9 205 44.0 686 480.4 0.010 0.192 4.562
      10 0.57 0.028 0.53 0.037 0.97 4.11 0.093 34.7 15.2 199 78.2 364 74.8 672 137 2424 1580 0.004 0.024 3.998
      11 0.59 0.023 0.91 0.13 2.32 7.92 0.19 48.4 15.4 167 60.2 264 53.9 479 93.6 1842 1192.4 0.010 0.030 4.113
      12 1.34 7.44 43.8 2.13 11.2 5.92 1.11 21.8 6.81 72.5 26.4 113 22.4 202 41.1 777 578.0 0.141 0.298 2.696
      13 0.57 0.034 0.71 0.049 0.81 4.24 0.056 34.9 15.5 203 82.4 388 80.1 713 148 2571 1672 0.004 0.014 4.297
      14 1.40 0.40 9.25 0.17 1.36 2.51 0.60 14.2 4.06 44.9 15.0 68.6 14.8 140 31.7 513 348.0 0.043 0.309 8.833
      15 6.56 0.014 3.55 0.010 0.21 0.41 0.092 4.59 1.98 26.5 12.4 63.8 15.1 157 36.9 391 322.1 0.013 0.205 73.353
      16 0.58 0.013 1.03 0.092 2.20 4.83 0.18 38.5 14.8 191 76.5 352 73.5 669 136 2382 1560 0.005 0.040 7.323
      18 2.45 0.065 3.98 0.16 2.84 9.71 0.85 82.6 32.7 433 173 779 157 1362 267 5356 3303 0.005 0.091 9.435
      下载: 导出CSV 
      | 显示表格

      加勒万河地区7件中基性岩主量与微量元素分析结果见表3

      表  3  加勒万河地区中基性岩主量元素(%)和微量元素含量(10−6
      Table  3.  Whole–rock major (%) and trace (10−6) elements data of intermediate–basic rocks in the Galwan Valley area
      样品号PM101-RZ1PM102-RZ1PM201-RZ1PM307-HQ9Pdh1-HQ4Pdh1-HQ48PM304-HQ1
      岩性辉石玄武岩气孔状辉石玄武岩闪长岩辉绿辉长岩辉绿辉长岩角闪辉石岩辉绿岩
      SiO238.5940.8051.9145.1637.8238.6239.13
      TiO24.554.770.993.025.855.636.25
      Al2O310.5010.7014.4215.5312.6512.489.63
      FeO6.567.047.297.227.858.4311.66
      Fe2o39.878.272.503.106.038.272.77
      MnO0.180.170.160.190.180.190.20
      MgO6.176.096.633.027.096.738.85
      CaO8.858.534.746.209.298.657.39
      K2O0.970.331.230.431.481.361.53
      Na2O3.683.863.455.532.443.442.01
      P2O51.731.870.131.342.861.121.49
      LOI6.775.524.106.694.753.864.35
      H2O1.561.030.350.160.580.360.77
      Total99.9898.9797.8997.5998.8499.1596.01
      A/NK1.602.061.481.632.261.751.94
      A/CNK0.480.920.450.750.560.550.52
      Cr6.892.68222.56.561.7944.9917.73
      Ni26.0517.2950.467.9127.7231.7521.97
      Rb29.129.334114.4481.7847.4153.41
      Ba447.6152.0575.32102170711691138
      Th19.9517.856.17.265.174.894.77
      Nb152.8149.711.879.957.1452.0661.27
      K80002700102003600122001120012700
      Ta9.719.781.096.34.674.414.11
      Pr39.7243.555.1325.1725.0618.0618.46
      Sr764.7726.8323.4374.6498.6471.01050
      Nd152.4167.320.47102.211177.6978.62
      Zr993.8964.5184.5434.3307.6306.5269.4
      Hf21.3121.735.2210.198.878.736.75
      Sm26.128.924.4317.3520.9314.5914.78
      Eu7.488.371.436.397.164.965.02
      Ti2827730204564218111353273405237470
      Gd23.2625.434.1515.4917.4411.9512.41
      Tb3.133.390.772.132.471.771.74
      Dy14.4215.624.959.7211.498.558.49
      Y60.1362.2724.4440.0145.3233.8934.5
      Ho2.462.670.971.651.931.441.45
      Er6.987.342.814.715.063.863.63
      Tm0.830.820.420.560.570.460.44
      Yb4.925.012.773.243.382.812.51
      Lu0.730.730.420.460.490.410.36
      P75838366546.459871251949316500
      Li40.5247.8649.8744.0282.243.97148.2
      Cs7.080.478.680.9299.856.0237.14
      V127.0125.2131.7118.2157.1175.0137.8
      La168.3177.120.6589.7478.1261.4460.04
      Ce339.4365.141.04205.6193.3134.5127.7
      Co43.2636.8836.8617.0346.1249.1247.28
      ΣREE790.1851.3110.4484.4478.4342.5335.7
      LREE733.4790.393.16446.4435.6311.2304.6
      HREE56.7361.0117.2537.9642.8331.2531.03
      LREE/HREE12.9312.955.411.7610.179.969.82
      (La/Yb)N24.5325.385.3519.8816.5815.6817.16
      DI35.5437.5644.1853.8731.5232.5728.86
      δEu0.910.9211.191.151.151.1
      下载: 导出CSV 
      | 显示表格

      PM201-RZ1闪长岩SiO2含量为51.91%,属中性岩类,ALK为5.01,K2O/Na2O比值为0.36,贫钾;A/CNK为0.92,小于1,为亚铝质;PM201-RZ1中CIPW标准矿物基本不含C、Q分子,分异指数(DI)为42.68,按吴利仁(1963)划分属于富铁质超基性岩。里特曼指数为1.99,属于亚碱性系列。综合上述,PM201-RZ1闪长岩具高铝、铁、镁、钙,低钾、钠、钛、磷的特征。在闪长岩TAS图解(图8b)中,落在辉长闪长岩中,在AR–SiO2与SiO2−K2O与SiO−K2O图解中(图9)显示属钙碱性系列。

      图  7  加勒万河地区中基性岩样品锆石稀土元素配分型式图
      a—PM101-RZ1辉石玄武岩;b—PM102-RZ1杏仁状辉石玄武岩;c—PM201-RZ1闪长岩
      Figure  7.  Zircon REE patterns of the intermediate−basic rocks in the Galwan Valley area
      a–Basalt of sample PM101-RZ1; b–Basalt of sample PM102-RZ1; c–Diorite of sample PM201-RZ1
      图  8  玄武岩TAS分类图(a,据Le Maitre, 1989)和中基性侵入岩TAS分类图(b,据Middlemost, 1994
      Figure  8.  TAS diagram of basalt (a, after Le Maitre, 1989); TAS diagram of intermediate-mafic intrusions (b, after Middlemost, 1994)
      图  9  AR–SiO2图解(a,据Maniar and Piccoli, 1989)和SiO2–K2O图解(b,据Peccerillo and Taylor, 1976
      Figure  9.  AR–SiO2diagram (a, after Maniar and Piccoli, 1989) and SiO2–K2O diagram (b, after Peccerillo and Taylor, 1976)

      PM101-RZ1、PM102-RZ1玄武岩SiO2分别为40.44%、44.15%,Al2O3分别为11.46%、13.53%,属基性—超基性;Na2O+K2O含量为4.19%、5.07%;K2O/Na2O为0.08、0.61,变化范围较大,低钾。在TAS图解中(图8a),均落在碱玄岩/碧玄岩区。杏仁状辉石玄武岩PM101-RZ1里特曼指数为1.5,小于3.3,属钙碱性岩石;气孔状玄武岩PM102-RZ1里特曼指数为17.84,大于9,属过碱性岩石。固结指数SI值中等,分别为23.01、28.65;分异指数DI低,分别为31.45、37.56,反映出岩浆结晶分异程度低。

      基性岩脉Pdh1-HQ4、Pdh1-HQ48、PM304-HQ1、PM307-HQ9镜鉴岩性分别为辉绿辉长岩、角闪辉石岩、辉绿岩、辉绿辉长岩。主量元素含量特征基本一致,SiO2含量基本在45%以下,均为基性岩。分异指数(DI)分别为31.52、32.57、28.86、53.87;除PM307-HQ9分异程度较高以外,其余3条岩脉的分异程度很低,甚至低于早侏罗世玄武岩的分异程度。

      闪长岩微量元素含量见表3,其不相容元素Rb、K、Ba、Th强富集,高场强元素Nb、Zr、Hf弱富集,Ta具一定亏损。轻稀土、重稀土均基本不亏损,总体接近MORB。

      玄武岩微量元素含量及特征参数见表2。玄武岩微量元素含量与基性岩维氏值相比,一般高于其维氏值的元素主要有Zn、Nb、Ta、Hf,尤其是大离子亲石元素Hf,其平均含量高于维氏值4~5倍,呈较强烈的富集趋势;一般低于维氏值的元素有Rb、Ba、Sr、Ni、Co、Cs,尤其是大离子亲石元素Rb其平均含量低于维氏值5~10倍,其他元素Ga、V、Cr变化规律不明显。Sr的负异常结合烧失量较高的情况,认为Sr负异常可能是由样品处于地表经过蚀变而造成的。与上、下地壳元素相比(Wedepohl, 1995),其大离子亲石元素Rb、Ba、Cs低于上、下地壳丰度,Nb、Ta、Hf高于上、下地壳丰度;相容元素中Cr、Co、Ni、V元素含量多高于上、下地壳元素含量。微量元素中亲幔源元素(Cr、Co、Ni、V)含量明显偏高。

      闪长岩稀土元素含量见表2。可以看出闪长岩具有较低含量的∑REE、∑LREE、LREE/HREE,其稀土总量ΣREE为110.41×10−6,LREE/HREE为5.40,轻稀土富集不明显;(La/Yb)N为5.35,轻重稀土略有分馏;δEu=1,Eu无亏损;在球粒陨石标准化配分型式图(图10a)上,呈右倾曲线。稀土元素球粒陨石标准化配分型式图呈左陡右缓的趋势,说明轻稀土富集重稀土相对亏损,且轻稀土分异强度大于重稀土。

      图  10  加勒万河地区中基性岩球粒陨石标准化稀土配分图(a)和原始地幔标准化微量元素蛛网图(b)(据Sun and McDonough, 1989
      Figure  10.  Chondrite normalized REE diagram (a) and primitive−mantle normalized trace elements diagram(b) of the intermediate−basic rocks in the Galwan Valley area (chondrite normalized and primitive–mantle normalized values after Sun and McDonough, 1989)

      玄武岩PM101-RZ1、PM102-RZ1的ΣREE分别为790.08×10−6、851.31×10−6,总量较高,同时显示轻稀土富集重稀土相对亏损的右倾样式;LREE/HREE=10.17~12.95、(La/Yb)N为16.58~25.38都显示玄武岩发生强烈的轻重稀土分馏的过程,属于轻稀土富集型(图10a)。δEu=0.91~1.11,铕无明显亏损,表明岩浆可能没有经历明显的分离结晶作用。δCe=0.98~1.06,显示为弱负Ce异常,说明岩石受低温蚀变作用的影响较弱。

      西昆仑造山带经历了多期次的构造−岩浆演化阶段(毕华等, 1999; 张传林等, 2007, 2019),加勒万河地区做的岩浆锆石、碎屑锆石均有反映。将闪长岩与玄武岩3个岩石样品共47个有效(谐和度>90%)锆石U–Pb年龄进行频率统计,结果呈现约6个年龄组(图11),由老至新分别是1724 Ma、685~872 Ma、538 Ma、380~396 Ma、243 Ma、98.9 Ma。因此,闪长岩与玄武岩3个岩石样品共记录了区域内的6次岩浆活动。

      图  11  加勒万河地区玄武岩、闪长岩锆石U–Pb同位素年龄频谱图
      Figure  11.  Spectrum diagram of zircon U–Pb isotopic ages of basalts and diorites in the Galwan Valley area

      目前甜水海地块中记录的最古老的锆石U–Pb年龄为在西段古元古界布伦阔勒岩群中片理化变流纹岩的单颗粒锆石,年龄为(2481±14)Ma(计文化等, 2011),研究区南屏山—俘虏沟一带出露较大面积的长城系甜水海群(ChT)。据1∶25万岔路口幅区调报告记录甜水海群夹有一定量绿泥钠长片岩的火山质成分,与本文的1724 Ma年锆石可能来源于深部地壳形成初期的残留物质或者是来源于加勒万河下部长城系甜水海岩群变质岩系中的残留锆石。

      最集中的年龄组685~872 Ma时间跨度在南华纪至青白口纪,而峰值在810 Ma的青白口纪末期,峰值时间与晋宁运动一致,而此时正在发生Rodinia超大陆的裂解事件(郝杰和翟明国, 2004)。全球范围内剧烈的板块运动也伴随着活跃的岩浆活动,来自地幔熔融的玄武质岩浆上涌底侵至下地壳,发生壳幔混合作用并形成北羌塘地体的古老基底。

      近年从甜水海地块古元古界布伦阔勒岩群解体出了一套寒武纪火山−沉积岩系(张传林等, 2007; 张辉善等, 2020),主要岩性为中基性火山岩,夹少量酸性火山岩和沉积岩。张辉善等(2020)认为可能存在早寒武世和中晚寒武世两期火山岩浆事件,其可能反映的是特提斯麻扎—康西瓦洋向南俯冲形成寒武纪岩浆弧带。PM201-RZ1-12号锆石年龄为538 Ma正是记录了早寒武世的岩浆活动。

      震旦纪开始喀喇昆仑北羌塘进入了原特提斯演化阶段,库地蛇绿岩带中的枕状熔岩标志着原特提斯洋壳的成熟(邓万明, 1989)。原特提斯祥在奥陶纪晚期消亡的过程中伴随着两侧大陆发生加里东期碰撞造山作用,至泥盆系原特提斯消亡,昆仑整体处于一个相对稳定的沉积环境(潘裕生和方爱民, 2010)。闪长岩与玄武岩记录的380 Ma与396 Ma可能为一次小规模的板内岩浆活动。

      石炭纪时期大陆裂解,进入了古特提斯洋演化,羌塘地体处于多岛弧盆系的演化阶段。晚石炭世至早二叠世冈瓦纳大陆发生大陆极地冰川事件,冈底斯的拉嘎组、南羌塘的曲地组均有来自南大陆冰川漂砾的记录,而本区的加温达坂组未出现这一现象。二叠纪古特提斯洋已经开始快速向南、北两侧消减收缩。二叠纪晚期,古特提斯停止了扩张,扩张洋脊已死亡,古特提斯中的陆壳岛链与两侧大陆最终发生碰撞,使羌塘、可可西里与昆仑山拼合到一起,成为亚州大陆新的一部分(潘裕生和方爱民, 2010)。至中三叠世,加勒万河区域接受古特提斯残留洋盆的沉积。区内汽车达坂一带见中三叠世河尾滩组覆盖于中二叠世空喀山口组之上,底部为复成分砾岩,随后出现一层厚约11 m的熔岩。PM201-RZ1-15的243 Ma同位素年龄可能为该时期的岩浆活动记录(张宇等,2023)。

      晚三叠世新特提斯洋开始形成,侏罗纪时期继续扩张,期间印支运动使得本区的早侏罗世巴工布兰莎组不整合于晚三叠世克勒清河组之上。早侏罗世新特提斯洋壳已经开始形成,但根据资料显示班怒带具有新特提斯洋蛇绿岩套与龙木错双湖结合带在三叠纪已经闭合的事实,认为甜水海地区在新特提斯洋时期处于无成熟洋壳的弧后盆地沉积构造环境。喀喇昆仑地区巴工布兰莎组发育一套海相裂隙–中心式喷发的玄武岩–安山岩–英安岩组合火山岩(新疆维吾尔自治区地质矿产局, 1993)。笔者在河尾滩西南达坂—碧兰冰川一带采集的2件玄武岩样品均为该时期的产物。在加勒万河北东侧多宝山一带的巴工布兰莎组双峰式火山岩中的流纹岩获得锆石U–Pb同位素年龄为(195.5±1.1)Ma(周能武等, 2019)。早—中侏罗世海水下渗萃取了Pb、Zn元素,矿质流体受岩浆热液驱动下由断裂构造上涌至近地表并成矿,形成诸如火烧云、多宝山、甜水海以及研究区的加勒万河等铅锌矿床。

      晚侏罗世后新特提斯洋开始消减,班怒洋启动闭合,洋壳俯冲并伴随碰撞造山,甜水海地块抬升为陆。随着南大陆持续的向北俯冲,地壳增厚,温度上升并发生熔融,在龙木错南侧龙角错一带侵位形成花岗岩条带,在芒错岩体获得白云母二长花岗岩中白云母40Ar–39Ar年龄为(101.01±1.13)Ma(安徽省地质调查院, 2005 1)。与加勒万河晚白垩花岗闪长岩(98.9±1.2)Ma的年龄值基本一致。

      玄武岩、闪长岩中携带多个时期的继承锆石反映了区域多期次的岩浆−构造活动。6个锆石U–Pb同位素年龄频谱反映的是由老至新1724 Ma、685~872 Ma、538 Ma、380~396 Ma、243 Ma、98.9 Ma 6个阶段的岩浆构造演化。其对应的分别是中元古代结晶基底、Rodinia超大陆的裂解、寒武纪麻扎—康西瓦洋俯冲、泥盆纪板内岩浆活动、中三叠世河尾滩组岩浆活动、新特提斯洋闭合碰撞造山等6个期次的构造岩浆活动。

      加勒万河晚白垩世闪长岩,岩石类型为辉石闪长岩;在Hf/3–Th–Ta图中(图12b),落入板边岛弧玄武岩区;而Th/Yb–Ta/Yb图解(图12a)上,则落在大陆边缘玄武岩区。喀喇昆仑缺失晚侏罗、早白垩世地层是由于受到班怒洋的俯冲消亡并碰撞造山的结果,该时期喀喇昆仑被抬升为陆地并接受风化剥蚀。晚白垩世随着印度板块持续的向北挤压,北羌塘南侧为被动破坏性板块边缘。挤压造山造成陆壳叠覆增厚,深部发生熔融,形成钙碱系列岩浆。班怒带碰撞造山在本区域的岩浆活动反应主要在龙木错南部一带,侵位了较大面积的花岗岩类岩体。通过40Ar–39Ar法定年的年龄值(安徽省地质调查院, 20051 1)与班怒带碰撞造山的时间吻合,所以综合分析认为加勒万河晚白垩世钙碱性闪长岩是班怒带汇聚碰撞造山,壳幔混合的远端反应。

      图  12  加勒万河地区玄武岩、闪长岩构造环境判别图
      a—Th/Yb–Ta/Yb图解(据Pearce, 1982);b—Hf/3–Th–Ta图解(据Wood, 1980);c—2Nb–Zr/4–Y图解(据Meschede, 1986)WPB—板内玄武岩;MORB—洋中脊玄武岩;IAB—岛弧玄武岩;TH—拉斑系列;TR—过渡系列;ALK—碱性系列;IAT—岛弧拉斑系列;ICA—岛弧钙碱性系列;SHO—岛弧橄榄玄武岩系列;N–MORB—N型洋脊玄武岩;E–MORB—E型洋脊玄武岩;WPT—板内拉斑玄武岩;WPA—板内碱性玄武岩;A1+A2—板内碱性玄武岩;A2+C—板内拉斑玄武岩;B—P型洋中脊玄武岩;D—N型洋中脊玄武岩;C+D—火山弧玄武岩
      Figure  12.  Tectonic setting discrimination diagrams of basalts and diorites in the Galwan Valley area
      a–Th/Yb–Ta/Yb diagram (after Pearce, 1982); b–Hf/3–Th–Ta diagram (after Wood, 1979); c–Nb×2–Zr/4–Y diagram (after Meschede, 1986) WPB–Within plate basalt; MORB–Mid-oceanic ridge basalt; IAB–Island arc basalt; TH–Tholeiitic series; TR–Transitional series; ALK–Alkaline series; IAT–Island arc tholeiitic series; ICA–Island arc calc-alkaline series; SHO–Island arc shoshonite series; N–MORB–N-type mid-oceanic ridge basalt; E–E-type mid-oceanic ridge basalt; WPT–Within plate tholeiite; WPA–Within plate calc-alkaline basalt; A1+A2–Within-plate alkaline basalt; A2+C–Within-plate tholeiite; B–P-type mid-ocean ridge basalt; D–N-type mid-oceanic ridge basalt; C+D–Volcanic arc basalt

      对西南达坂—碧兰冰川一带的玄武岩PM101-RZ1与PM102-RZ1进行构造环境判别分析。在Th/Yb–Ta/Yb图解(图12a)上,PM101-RZ1与PM102-RZ1分别落在板内玄武岩与碱性玄武岩区。在Hf/3–Th–Ta图解(图12b)上,均落在板内碱性玄武岩区。在Nb×2–Zr/4–Y图解(图12c)上,两样品落在板内碱性玄武岩区边缘。

      加勒万河北侧河尾滩断裂以北的团结峰—兴山—岔路口一带火山岩较为发育。菅坤坤等(2019)认为团结峰龙山组玄武岩来源于陆壳基底的初始洋盆。而周能武等(2019)认为多宝山巴工布兰莎组中的双峰式火山岩形成于无洋壳的弧后盆地环境。团结峰玄武岩的稀土配分图为近于平躺的E–MORB型(菅坤坤等, 2019);而多宝山(火烧云北)玄武岩与英安岩的稀土配分图为似OIB型,英安岩出现明显的Eu中等负异常(周能武等, 2019)。而本次西南达坂—碧兰冰川的巴工布兰莎组碱性拉斑玄武岩稀土配分模式呈高角度的右倾轻稀土富集OIB型,且无Eu异常。结合野外没有发现其他类型火山岩,同时玄武岩中携带大量的继承锆石的事实,综合分析认为西南达坂—碧兰冰川一带巴工布兰莎组玄武岩为一套未经分离结晶的海相裂隙–中心式喷发火山岩。造成这三处火山岩中锆石组成、岩石地球化学性质的差别,可能是三者离壳幔混合岩浆通道的时空距离不一致,进而使得岩浆混合和分异的程度不一。西南达坂—碧兰冰川的巴工布兰莎组玄武岩是未经分离结晶的近火山通道快速溢流冷却的产物。

      (1)加勒万河地区西南达坂巴工布兰莎组杏仁状辉石玄武岩据碱性拉斑OIB玄武岩性质,为未经分离结晶快速溢流冷却的产物,岩浆成因环境为弧后盆地。玄武岩中含有约4个阶段的继承或原生锆石,最年轻的锆石U–Pb同位素年龄为(232±9)Ma,可能代表玄武岩岩浆房的结晶年龄。加勒万河晚白垩世花岗闪长岩中携带约5个时代的继承锆石或原生锆石,最年轻的锆石U–Pb同位素年龄为(98.9±1.2)Ma,为岩浆成因的原生锆石。闪长岩是壳幔混合、地壳增厚的产物,是新特提斯洋闭合碰撞造山远端反映。

      (2)加勒万河地区的玄武岩、闪长岩及中基性岩脉具有极为相似的OIB轻稀土富集型稀土元素配分模式;玄武岩、闪长岩中携带最多的锆石均为新元古代岩浆锆石,且锆石具有与Gothabsfjord地区中太古代(GGU125540)样品锆石相一致的稀土元素分配样式,说明玄武岩、闪长岩均来源于新元古代基底物质的熔融。

      (3)玄武岩、闪长岩中携带多个时期的继承锆石反映了区域多期次的岩浆−构造活动。6个锆石U−Pb同位素年龄频谱反映的是由老至新1724 Ma、685~872 Ma、538 Ma、380~396 Ma、243 Ma、98.9 Ma 6个阶段的岩浆构造演化,分别对应中元古代结晶基底、Rodinia超大陆的裂解、寒武纪麻扎—康西瓦洋俯冲、泥盆纪板内岩浆活动、中三叠世河尾滩组岩浆活动、新特提斯洋闭合碰撞造山等6个期次的构造岩浆活动。

      致谢: 感谢南京大学地球科学与工程学院于津海教授、夏炎副教授、杨涛副教授对文章提出的宝贵意见!感谢南京大学地球科学与工程学院薛伟伟博士、李娟博士以及江西省地质调查研究院张芳荣教授级工程师、陈士海高级工程师给予的建议与指导,以及新疆地矿局第三地质大队实验室、江西省地质调查研究院实验室、武汉上谱科技有限责任公司实验室在样品分析测试过程中给予的技术支持!

    • 图  1   世界高砷地下水分布(据Smedley et al., 2002)

      Figure  1.   Distribution of High As groundwater in the world (after Smedley et al., 2002)

      图  2   改性生物炭对砷的不同吸附机制(据Alkurdi et al., 2019修改)

      Figure  2.   Different adsorption mechanisms of modified biochar to arsenic (modified from Alkurdi et al., 2019)

      图  3   电絮凝法去除污染物机理图(据Nidheesh et al., 2017)

      Figure  3.   Pollutant removal mechanism by electrocoagulation process (after Nidheesh et al., 2017)

      图  4   压力驱动膜工艺及其特点(据Rezende et al., 2021)

      Figure  4.   Overview of pressure-driven membrane processes and their characteristics (after Rezende et al., 2020)

      图  5   细菌对砷的作用示意图(据Kruger et al., 2013)

      Figure  5.   Schematic diagram of the effect of bacteria on arsenic (after Kruger et al., 2013)

      表  1   全球地下水砷污染状况(据Nordstorm, 2002)

      Table  1   Global arsenic contamination in groundwater(after Nordstorm, 2002)

      下载: 导出CSV

      表  2   治理技术方法的对比分析

      Table  2   Comparative analysis of treatment methods

      下载: 导出CSV
    • Abejón Azucena, Garea Aurora, Ángel Irabien. 2015. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption[J]. Separation and Purification Technology, 144: 46-53. doi: 10.1016/j.seppur.2015.02.017

      Ahn Joo. 2012. Geochemical occurrences of arsenic and fluoride in bedrock groundwater: A case study in Geumsan County, Korea[J]. Environmental Geochemistry & Health, 34(1): 43-54.

      Aliaskari Mehran, Andrea I S. 2021. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater[J]. Water Research, 190: 116683. doi: 10.1016/j.watres.2020.116683

      Alkurdi Susan S A, Herath Indika, Bundschuh Jochen, Raed A Al-Juboori, Vithanage Meththika, Mohan Dinesh. 2019. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research[J]. Environment International, 127: 52-69. doi: 10.1016/j.envint.2019.03.012

      Amalia Terracciano, Jie Ge, Xiaoguang Meng. 2015. A comprehensive study of treatment of arsenic in water combining oxidation, coagulation, and filtration[J]. Journal of Environmental Sciences, 36(10): 178-180.

      Amen Rabia, Bashir Hamna, Bibi Irshad, Sabry M Shaheen, Nabeel Khan Niazi, Shahid Muhammad, Muhammad Mahroz Hussain, Antoniadis Vasileios, Muhammad Bilal Shakoor, Samir G Al-Solaimani, Wang Hailong, Bundschuh Jochen, Rinklebe Jörg. 2020. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions[J]. Chemical Engineering Journal, 396: 125195. doi: 10.1016/j.cej.2020.125195

      Amrose Susan E, Bandaru Siva R S, Delaire Caroline, Genuchten Case M van, Dutta Amit, DebSarkar Anupam, Orr Christopher, Roy Joyashree, Das Abhijit, Gadgil Ashok J. 2014. Electro-chemical arsenic remediation: Field trials in West Bengal[J]. Science of the Total Environment, 488/489: 539-546. doi: 10.1016/j.scitotenv.2013.11.074

      An Byungryul, Liang Qiqi, Zhao Dongye. 2011. Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles[J]. Water Research, 45(5): 1961-1972. doi: 10.1016/j.watres.2011.01.004

      An Byungryul, Thomas R Steinwinder, Zhao Dongye. 2005. Selective removal of arsenate from drinking water using a polymeric ligand exchanger[J]. Water Research, 39(20): 4993-5004. doi: 10.1016/j.watres.2005.10.014

      Arif Sadia, Saqib Hira, Mubashir Muhammad, Malik Shaukat Iqbal, Mukhtar Ahmad, Saqib Sidra, Ullah Sami, Show Pau Loke. 2021. Comparison of Nigella sativa and Trachyspermum ammi via experimental investigation and biotechnological potential[J]. Chemical Engineering and Processing-Process Intensification, 161: 108313. doi: 10.1016/j.cep.2021.108313

      Ayoob S, Gupta A K, Bhat Venugopal T. 2008. A conceptual overview on sustainable technologies for the defluoridation of drinking water[J]. Critical Reviews in Environmental Science & Technology, 38(6): 401-470.

      Bachate Sachin P, Khapare Rashmi M, Kodam Kisan M. 2012. Oxidation of arsenite by two β-proteobacteria isolated from soil[J]. Applied Microbiology and Biotechnology, 93(5): 2135-2145. doi: 10.1007/s00253-011-3606-7

      Basu Ankita, Saha Debabrata, Saha Rumpa, Ghosh Tuhin, Saha Bidyut. 2014. A review on sources, toxicity and remediation technologies for removing arsenic from drinking water[J]. Research on Chemical Intermediates, 40(2): 447-485. doi: 10.1007/s11164-012-1000-4

      Battaglia-Brunet F, Dictor M C, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P. 2002. An arsenic(III)-oxidizing bacterial population: Selection, characterization, and performance in reactors[J]. Journal of Applied Microbiology, 93(4): 656-667. doi: 10.1046/j.1365-2672.2002.01726.x

      Bhattacharjee Santanu, Chakravarty Sanchita, Maity S, Dureja V, Gupta K K. 2005. Metal contents in the groundwater of Sahebgunj district, Jharkhand, India, with special reference to arsenic[J]. Chemosphere, 58(9): 1203-1217. doi: 10.1016/j.chemosphere.2004.09.055

      Bhattacharya Sayan, Sharma Prabhakar, Mitra Sayantan, Mallick Ivy, Ghosh Abhrajyoti. 2021. Arsenic uptake and bioaccumulation in plants: A review on remediation and socio-economic perspective in Southeast Asia[J]. Environmental Nanotechnology, Monitoring & Management, 15: 100430.

      Bose Purnendu, Sharma Archana. 2002. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment[J]. Water Research, 36(1): 4916-4926.

      Brandhuber Philip, Amy Gary. 2001. Arsenic removal by a charged ultrafiltration membrane——influences of membrane operating conditions and water quality on arsenic rejection[J]. Desalination, 140(1): 1-14. doi: 10.1016/S0011-9164(01)00350-2

      Cao Wengeng, Guo Huaming, Zhang Yilong, Ma Rong, Li Yasong, Dong Qiuyao, Li Yuanjie, Zhao Ruike. 2017. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Science of the Total Environment, 613-614(1): 958-968.

      Casiot C, Pedron V, Bruneel Odile, Duran Robert, Personné Jean Christian, Gérard Grapin, Drakidès Christian, Elbaz-Poulichet Françoise. 2006. A new bacterial strain mediating as oxidation in the Fe-rich biofilm naturally growing in a groundwater Fe treatment pilot unit[J]. Chemosphere, 64(3): 492-496. doi: 10.1016/j.chemosphere.2005.11.072

      Cesaro Patrizia, Cattaneo Chiara, Bona Elisa, Berta Graziella and Cavaletto Maria. 2015. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases[J]. Scientific Reports, 5(1): 14525. doi: 10.1038/srep14525

      Chen Baoliang, Zhou Dandan, Zhu Lizhong. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 42(14): 5137-5143.

      Chen Bo, Zhu Zhiliang, Ma Jie, Qiu Yanling, Chen Junhong. 2013. Surfactant assisted Ce-Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance[J]. Journal of Materials Chemistry A, 1(37): 11355-11367. doi: 10.1039/c3ta11827d

      Cheng Wenpo. 2002. Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution[J]. Chemosphere, 47(9): 963-969. doi: 10.1016/S0045-6535(02)00052-8

      Choong Thomas S Y, Chuah T G, Robiah Y, Gregory Koay F L, Azni I. 2007. Arsenic toxicity, health hazards and removal techniques from water: An overview[J]. Desalination, 217(1/3): 139-166.

      Clark William Mansfield. 1918. The differentiation of bacteria of the Colon-Aerogenes family[J]. American Water Works Association, 5(1): 26-32. doi: 10.1002/j.1551-8833.1918.tb11649.x

      Criscuoli Alessandra, Majumdar Swachchha, Figoli Alberto, Sahoo Ganesh C, Bafaro Patrizia, Bandyopadhyay Sibdas, Drioli Enrico. 2012. As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules[J]. Journal of Hazardous Materials, 211-212: 281-287. doi: 10.1016/j.jhazmat.2011.11.023

      Cui Jinli, Jing Chuanyong, Che Dongsheng, Zhang Jianfeng, Duan Shuxuan. 2015. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study[J]. Journal of Environmental Sciences, 32: 42-53. doi: 10.1016/j.jes.2014.10.020

      Cullen William R, Reimer Kenneth J. 1989. Arsenic speciation in the environment[J]. Chemical Reviews, 89(4): 713-764. doi: 10.1021/cr00094a002

      Deng Shubo, Li Zhijian, Huang Jun, Yu Gang. 2010. Preparation, characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water[J]. Journal of Hazardous Materials, 179(1): 1014-1021.

      Dong Haoran, Guan Xiaohong, Lo Irene M C. 2012. Fate of As(V)-treated nano zero-valent iron: Determination of arsenic desorption potential under varying environmental conditions by phosphate extraction[J]. Water Research, 46(13): 4071-4080. doi: 10.1016/j.watres.2012.05.015

      Du Jingjing, Jing Chuanyong, Duan Jinming, Zhang Yongli, Hu Shan. 2014. Removal of arsenate with hydrous ferric oxide coprecipitation: Effect of humic acid[J]. Journal of Environmental Sciences, 26(2): 240-247. doi: 10.1016/S1001-0742(13)60437-4

      Emett Maree T, Khoe Ging H 2001. Photochemical oxidation of arsenic by oxygen and iron in acidic solutions[J]. Water Research, 35(3): 649-656. doi: 10.1016/S0043-1354(00)00294-3

      Eslami Hadi, Ehrampoush Mohammad Hassan, Esmaeili Abbas, Salmani Mohammad Hossein, Ebrahimi Ali Asghar, Ghaneian Mohammad Taghi, Falahzadeh Hossein, Reza Fouladi Fard. 2019. Enhanced coagulation process by Fe-Mn bimetal nano-oxides in combination with inorganic polymer coagulants for improving As(V) removal from contaminated water[J]. Journal of Cleaner Production, 208: 384-392. doi: 10.1016/j.jclepro.2018.10.142

      Fairen-Jimenez D, Moggach S A, Wharmby M T, Wright P A, Parsons S, Düren T. 2011. Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations[J]. Journal of the American Chemical Society, 133(23): 8900-8902. doi: 10.1021/ja202154j

      Fan Maohong, Brown Robert C, Sung Shin Wu, Huang Chin-Pao, Ong Say K, van Leeuwen J. 2003. Comparisons of polymeric and conventional coagulants in Arsenic(V) removal[J]. Water Environment Research, 75(4): 308-313. doi: 10.2175/106143003X141114

      Farid Hesami, Bijan Bina, Afshin Ebrahimi, Mohammad Mehdi Amin. 2013. Arsenic removal by coagulation using ferric chloride and chitosan from water[J]. International Journal of Environmental Health Engineering, 2(1): 17. doi: 10.4103/2277-9183.110170

      Figoli Alberto, Cassano Alfredo, Criscuoli Alessandra, Mozumder M S I, Uddin M Tamez, Islam M Akhtarul, Drioli Enrico. 2010. Influence of operating parameters on the arsenic removal by nanofiltration[J]. Water Research, 44(1): 97-104. doi: 10.1016/j.watres.2009.09.007

      Gao Yichun, Wang Yanxin, Duan Yanhua, Deng Yamin, Guo Xinxin, Ding Xufeng. 2014. Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China[J]. Journal of Geochemical Exploration, 138: 81-93. doi: 10.1016/j.gexplo.2013.12.013

      Ghurye Ganesh, Clifford Dennis, Tripp Anthony. 2004. Iron coagulation and direct microfiltration to remove arsenic from groundwater[J]. American Water Works Association, 96(4): 143-152. doi: 10.1002/j.1551-8833.2004.tb10605.x

      Ghurye Ganesh, Clifford Dennis. 2004. As(III) oxidation using chemical and solid-phase oxidants[J]. American Water Works Association, 96(1): 84-96. doi: 10.1002/j.1551-8833.2004.tb10536.x

      Guan Xiaohong, Du Juanshan, Meng Xiaoguang, Sun Yuankui, Sun Bo, Hu Qinghai. 2012. Application of titanium dioxide in arsenic removal from water: A review[J]. Journal of Hazardous Materials, 215-216: 1-16. doi: 10.1016/j.jhazmat.2012.02.069

      Guo Huaming, Wen Dongguang, Liu Zeyun, Jia Yongfeng, Guo Qi. 2014. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 41(1): 196-217.

      Guo Huaming, Yang Suzhen, Tang Xiaohui, Li Yuan, Shen Zhaoli. 2008. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia[J]. Science of the Total Environment, 393(1): 131-144. doi: 10.1016/j.scitotenv.2007.12.025

      Habuda-Stanić Mirna, Nujić Marija, Romić Željka, Lončarić Ante, Ergović Ravančić Maja, Kralj Edgar. 2015. Arsenic preoxidation and its removal from groundwater using iron coagulants[J]. Desalination and Water Treatment, 56(8): 2105-2113. doi: 10.1080/19443994.2014.959064

      Hai Ao, Li Lulu, Bu Yanpeng, Ma Shiyuan, Zhang Chenglin, Zeng Rui, Yuan Jinqiu, Zhang Yungeng, Chen Danyun. 2020. Progress in the synthesis of nano-alumina and its adsorption of As[J]. Journal of Functional Materials, 51(8): 30-38(in Chinese with English abstract). doi: 10.3969/j.issn.1001-9731.2020.08.006

      Han Binbing, Runnells Timothy, Zimbron Julio, Wickramasinghe Ranil. 2002. Arsenic removal from drinking water by flocculation and microfiltration[J]. Desalination, 145(1): 293-298.

      Han Shuangbao, Li Fucheng, Wang Sai, Li Haixue, Lei Yuan, Liu Jingtao, Shen Haoyong, Zhang Xueqing, Li Changqing, Wu Xi, Ma Tao, Wei Shibo, Zhao Minmin. 2021. Groundwater resource and eco-environmental problem of the Yellow River Basin[J]. Geology in China, 48(4): 1001-1019(in Chinese with English abstract).

      He Yingran, Liu Jiangtao, Han Gang, Chung Tai-Shung. 2018. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal[J]. Journal of Membrane Science, 555: 299-306. doi: 10.1016/j.memsci.2018.03.055

      He Zongliang, Tian Senlin, Ning Ping. 2012. Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin[J]. Journal of Rare Earths, 30(6): 563-572. doi: 10.1016/S1002-0721(12)60092-1

      Hu Tianjue, Zeng Guangming, Chen weiping, Li Xiaohong. 1998. Study on selective adsorption removal and recovery of As(Ⅲ) in waste solution containing As(Ⅲ) with chelating resin containing M ercapto Groups[J]. Journal of Hunan University(Natural Sciences), 25(6): 75-81(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2472.1998.06.004

      Hu Yue, Treavor H Boyer. 2018. Removal of multiple drinking water contaminants by combined ion exchange resin in a completely mixed flow reactor[J]. Journal of Water Supply: Research and Technology-Aqua, 67(7): 659-672. doi: 10.2166/aqua.2018.101

      Hug Stephan J, Canonica Laura, Wegelin Martin, Gechter Daniel, Gunten von Urs. 2001. Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters[J]. Environmental Science & Technology, 35(10): 2114-2121.

      Jakariya M D, Bhattacharya Prosun. 2007. Use of GIS in local level participatory planning for arsenic mitigation: A case study from Matlab Upazila, Bangladesh[J]. Journal of environmental science and health, 42(12): 1933-1944. doi: 10.1080/10934520701567221

      Jegadeesan Gautham, Al-Abed Souhail R, Sundaram Vijayakumar, Choi Hyeok, Scheckel Kirk G, Dionysiou Dionysios D. 2010. Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects[J]. Water Research, 44(3): 965-973. doi: 10.1016/j.watres.2009.10.047

      Jézéquel H, Chu K H. 2006. Removal of arsenate from aqueous solution by adsorption onto titanium dioxide nanoparticles[J]. Journal of Environmental Science and Health, Part A, 41(8): 1519-1528. doi: 10.1080/10934520600754201

      Jiang Jiaqian. 2015. Removing arsenic from groundwater for the developing world-a review[J]. Water Science & Technology, 44(6): 89-98.

      Jiang Zhou. 2016. Environmental Biogeochemistry of Arsenic in Tengchong Geothermal Area, China[D]. China University of Geosciences(Wuhan).

      Joseph D Chwirka, Colvin Christian, Gomez Juan D, Mueller Paul A. 2004. Arsenic removal from drinking water using the coagulation/microfiltratin process[J]. American Water Works Association, 96(3): 106-114. doi: 10.1002/j.1551-8833.2004.tb10578.x

      Katsoyiannis Ioannis A, Hug Stephan J, Ammann Adrian, Zikoudi Antonia, Hatziliontos Christodoulos. 2007. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: Correlations with redox indicative parameters and implications for groundwater treatment[J]. Science of the Total Environment, 383(1/3): 128-140.

      Katsoyiannis Ioannis A, Zouboulis Anastasios I. 2004. Application of biological processes for the removal of arsenic from groundwaters[J]. Water Research, 38(1): 17-26. doi: 10.1016/j.watres.2003.09.011

      Kim Myoung-Jin, Nriagu Jerome, Haack Sheridan. 2000. Carbonate ions and arsenic dissolution by groundwater[J]. Environmental Science & Technology, 34(15): 3094-3100.

      Kim Myoung-Jin, Nriagu Jerome, Haack Sheridan. 2002. Arsenic species and chemistry in groundwater of southeast Michigan[J]. Environmental Pollution, 120(2): 379-390. doi: 10.1016/S0269-7491(02)00114-8

      Kim Seok-Hwi, Kim Kangjoo, Ko Kyung-Seok, Kim Yeongkyoo, Lee Kwang-Sik. 2012. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments[J]. Chemosphere, 87(8): 851-856. doi: 10.1016/j.chemosphere.2012.01.025

      Kobya Mehmet, Gebologlu Ugur, Ulu Feride, Oncel Salim, Demirbas Erhan. 2011. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes[J]. Electrochimica Acta, 56(14): 5060-5070. doi: 10.1016/j.electacta.2011.03.086

      Kowalski Krzysztof P. 2014. Advanced arsenic removal technologies review[J]. Chemistry of Advanced Environmental Purification Processes of Water, 285-337.

      Kruger Martin C, Bertin Philippe N, Heipieper Hermann J, Florence Arsène-Ploetze. 2013. Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications[J]. Applied Microbiology and Biotechnology, 97(9): 3827-3841. doi: 10.1007/s00253-013-4838-5

      Lara Frederick, Cornejo Lorena, Yáñez Jorge, Freer Juanita, Mansilla Héctor D. 2007. Solar-light assisted removal of arsenic from natural waters: Effect of iron and citrate concentrations[J]. Journal of Chemical Technology and Biotechnology, 81(7): 1282-1287.

      Lata Sneh, Samadder S R. 2016. Removal of arsenic from water using nano adsorbents and challenges: A review[J]. Journal of Environmental Management, 166: 387-406. doi: 10.1016/j.jenvman.2015.10.039

      Leng Yingxiang, Liu Fei, Wang Wenjuan, Luo Ximing. 2017. Effects of small molecule organic acids on nanometer iron for stabilization of arsenic[J]. Chinese Journal of Environmental Engineering, 11(5): 3195-3203(in Chinese with English abstract).

      Li Junxia, Wang Yanxin, Xie Xianjun, Su Chunli. 2012. Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong basin, Northern China[J]. Journal of Geochemical Exploration, 118: 77-89. doi: 10.1016/j.gexplo.2012.05.002

      Li Shaolin, Wang Wei, Liang Feipeng, Zhang Weixian. 2017. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application[J]. Journal of Hazardous Materials, 322: 163-171. doi: 10.1016/j.jhazmat.2016.01.032

      Li Xiujuan, Liu Chengshuai, Li Fangbai, Li Yongtao, Zhang Lijia, Liu Chuanping, Zhou Yongzhang. 2010. The oxidative transformation of sodium arsenite at the interface of α-MnO2 and water[J]. Journal of Hazardous Materials, 173(1/3): 675-681.

      Li Yanli, 2012. Bioremediation of Arsenic Contaminated Water Using Green Microalgae[D]. Guangzhou: South China University of Technology(in Chinese with English abstract).

      Li Zongqun, Yang Jichao, Sui Kewen, Yin Na. 2015. Facile synthesis of metal-organic framework MOF-808 for arsenic removal[J]. Materials Letters, 160: 412-414. doi: 10.1016/j.matlet.2015.08.004

      Liang Jianjun, Zhe Ding, Qin Haoming, Li Jing, Wang Wei, Luo Dongxia, Geng Rongyue, Li Ping, Fan Qiaohui. 2019. Ultra-fast enrichment and reduction of As(V)/Se(VI) on three dimensional graphene oxide sheets-oxidized carbon nanotubes hydrogels[J]. Environmental Pollution, 251: 945-951. doi: 10.1016/j.envpol.2019.05.051

      Limmer Matt, Burken Joel. 2016. Phytovolatilization of organic contaminants[J]. Environmental Science & Technology, 50(13): 6632-6643.

      Lin Tsair-Fuh, Wu Junkun. 2001. Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics[J]. Water Research, 35(8): 2049-2057. doi: 10.1016/S0043-1354(00)00467-X

      Litter Marta I, Morgada Maria E, Bundschuh Jochen. 2010. Possible treatments for arsenic removal in Latin American waters for human consumption[J]. Environmental Pollution, 158(5): 1105-1118. doi: 10.1016/j.envpol.2010.01.028

      Liu Bao, Jian Meipeng, Liu Ruiping, Yao Jianfeng, Zhang Xiwang. 2015. Highly efficient removal of arsenic(III) from aqueous solution by zeolitic imidazolate frameworks with different morphology[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481: 358-366. doi: 10.1016/j.colsurfa.2015.06.009

      Ma Wenjing, Li Yan, Zhang Jianfeng. 2018. Groundwater arsenic and Silicate adsorption on TiO2 and the regeneration of TiO2[J]. Environmental Science, 39(3): 1241-1247(in Chinese with English abstract).

      Maity Jyoti Prakash, Chen Chien-Yen, Bhattacharya Prosun, Sharma Raju Kumar, Ahmad Arslan, Patnaik Sneha, Bundschuh Jochen. 2021. Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal[J]. Journal of Hazardous Materials, 405: 123885. doi: 10.1016/j.jhazmat.2020.123885

      Meng Xiaoguang, Bang Sunbaek, Korfiatis George P. 2000. Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride[J]. Water Research, 34(4): 1255-1261. doi: 10.1016/S0043-1354(99)00272-9

      Meyer Sebastian, Glaser Bruno, Quicker Peter. 2011. Technical, economical, and climate-related apects of biochar production technologies: A literature review[J]. Environmental Science & Technology, 45(22): 9473-9483.

      Michael C Dodd, Ngoc Duy Vu, Adrian Ammann, Van Chieu Le, Reinhard Kissner, Hung Viet Pham, The Ha Cao, Michael Berg, Urs Von Gunten. 2006. Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: Relevance to drinking water treatment[J]. Environmental Science & Technology, 40(10): 3285-3292.

      Mólgora Cesar Calderon, Domínguez Alejandra Martín, Avila Mundo Eloy, Drogui Patrick, Buelna Gerardo. 2013. Removal of arsenic from drinking water: A comparative study between electrocoagulation-microfiltration and chemical coagulation-microfiltration processes[J]. Separation and Purification Technology, 118: 645-651. doi: 10.1016/j.seppur.2013.08.011

      Mondal Prasenjit, Majumder Chandrajeetbalo, Mohanty Bikash. 2006. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments[J]. Journal of Hazardous Materials, 137(1): 464-479. doi: 10.1016/j.jhazmat.2006.02.023

      Muhammad Ali Inam, Rizwan Khan, Ick Tae Yeom, Abdul Salam Buller, Muhammad Akram, Muhammad Waleed Inam. 2021. Optimization of antimony removal by coagulation-flocculation-sedimentation process using response surface methodology[J]. Processes, 9(117): 117.

      Nabi Deedar, Aslam Irfan, Qazi Ishtiaq A. 2009. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal[J]. Journal of Environmental Sciences, 21(3): 402-408. doi: 10.1016/S1001-0742(08)62283-4

      Namgay Tshewang, Balwant Singh, Pal Singh Bhupinder. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L. ) [J]. Australian Journal of Soil Research, 48(6-7): 638-647.

      Nazari Amir Mohammad, Radzinski Rebecca, Ghahreman Ahmad. 2017. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic[J]. Hydrometallurgy, 174: 258-281. doi: 10.1016/j.hydromet.2016.10.011

      Neppolian Bernaurdshaw, Doronila Augustine, Ashokkumar Muthupandian. 2010. Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent[J]. Water Research, 44(12): 3687-3695. doi: 10.1016/j.watres.2010.04.003

      Nguyen Cuong Manh, Bang Sunbaek, Cho Jaeweon, Kim Kyoung-Woong. 2009. Performance and mechanism of arsenic removal from water by a nanofiltration membrane[J]. Desalination, 245(1): 82-94.

      Nidheesh P V, Singh T S Anantha. 2017. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism[J]. Chemosphere, 181: 418-432. doi: 10.1016/j.chemosphere.2017.04.082

      Nordstrom D K. 2002. Public health——Worldwide occurrences of arsenic in ground water[J]. Science, 296(5576): 2143-2145.

      Nordstrom D Kirk. 2002. Worldwide occurrences of arsenic in ground water [J]. Science, 296(5576): 2143, 2145. doi: 10.1126/science.1072375

      Patra Astam K, Dutta Arghya, Bhaumik Asim. 2012. Self-assembled mesoporous γ-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water[J]. Journal of Hazardous Materials, 201/202: 170-177.

      Pettine Maurizio, Campanella Luigi, Millero Frank J. 1999. Arsenite oxidation by H2O2 in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 63(18): 2727-2735.

      Pierce Matthew L, Moore Carleton B. 1982. Adsorption of arsenite and arsenate on amorphous iron hydroxide[J]. Water Research, 16(7): 1247-1253.

      Placek Agnieszka, Grobela Anna, Kacprzak Malgorzata. 2016. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge[J]. International Journal of Phytoremediation, 18(6): 605-618.

      Prosun Bhattacharya, Welch Alan H, Ahmed Kazi Matin, Jacks Gunnar, Naidu Ravi. 2004. Arsenic in groundwater of sedimentary aquifers[J]. Applied Geochemistry, 19(2): 163-167.

      Puttamraju Pavan, SenGupta Arup K. 2006. Evidence of tunable on-off sorption behaviors of metal oxide nanoparticles: Role of ion exchanger support[J]. Industrial & Engineering Chemistry Research, 45(22): 7737-7742.

      Rahman Shahedur, Kim Ki-Hyun, Saha Subbroto Kumar, Swaraz A M, Paul Dipak Kumar. 2014. Review of remediation techniques for arsenic (As) contamination: A novel approach utilizing bio-organisms[J]. Journal of Environmental Management, 134: 175-185. doi: 10.1016/j.jenvman.2013.12.027

      Rajni Gupta, Jeevan Jyoti Mohindru, Umesh Kumar Garg. 2017. Coagulation-flocculation technologies for arsenic removal——A review[J]. Asian Journal of Research in Chemistry, 10(3): 405-413. doi: 10.5958/0974-4150.2017.00069.4

      Rathi B Senthil, Senthil Kumar P. 2021. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system[J]. Journal of Hazardous Materials, 418: 126299. doi: 10.1016/j.jhazmat.2021.126299

      Rezende Moreira Victor, Lebron Yuri Abner Rocha, Santos Lucilaine Valéria De Souza, Coutinho de Paula Eduardo, Amaral Míriam Cristina Santos. 2021. Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes[J]. Process Safety and Environmental Protection, 148: 604-623. doi: 10.1016/j.psep.2020.11.033

      Robins R G, Singh Pritam, Das R P. 2005. Coprecipitation of arsenic with Fe(III), Al(III) and mixtures of both in a chloride system[C]//2005 TMS Annual Meeting.

      Rowsell Jesse L C, Yaghi Omar M. 2004. Metal-organic frameworks: A new class of porous materials[J]. Microporous and Mesoporous Materials, 73(1): 3-14.

      Sarkar Arpan, Paul Biswajit. 2016. The global menace of arsenic and its conventional remediation——A critical review[J]. Chemosphere, 158: 37-49. doi: 10.1016/j.chemosphere.2016.05.043

      Shakoor Muhammad Bilal, Nawaz Rab, Hussain Fida, Raza Maimoona, Ali Shafaqat, Rizwan Muhammad, Oh Sang-Eun, Ahmad Sajjad. 2017. Human health implications, risk assessment and remediation of As-contaminated water: A critical review[J]. Science of the Total Environment, 601/602: 756-769. doi: 10.1016/j.scitotenv.2017.05.223

      Shakoor Muhammad Bilal, Niazi Nabeel Khan, Bibi Irshad, Murtaza Ghulam, Kunhikrishnan Anitha, Seshadri Balaji, Shahid Muhammad, Shafaqat Ali, Nanthi S Bolan, Yong Sik Ok, Abid Muhammad, Ali Fawad. 2016. Remediation of arsenic-contaminated water using agricultural wastes as biosorbents[J]. Critical Reviews in Environmental Science & Technology, 46(5): 467-499.

      Sharma Virender K, Dutta Paritam K, Ray Ajay K. 2007. Review of kinetics of chemical and photocatalytical oxidation of Arsenic(III) as influenced by pH[J]. Journal of Environmental Science and Health, 42(7): 997-1004. doi: 10.1080/10934520701373034

      Sharma Virender K, McDonald Thomas J, Kim Hyunook, Garg Vijayendra K. 2015. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification[J]. Advances in Colloid and Interface Science, 225: 229-240.

      Shih Mingcheng. 2005. An overview of arsenic removal by pressure-drivenmembrane processes[J]. Desalination, 172(1): 85-97.

      Singh Rachana, Singh Samiksha, Parihar Parul, Singh Vijay Pratap, Prasad Sheo Mohan. 2015. Arsenic contamination, consequences and remediation techniques: A review[J]. Ecotoxicology and Environmental Safety, 112: 247-270. doi: 10.1016/j.ecoenv.2014.10.009

      Smedley P L, Kinniburgh D G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5

      Song Peipei, Yang Zhaohui, Zeng Guangming, Yang Xia, Xu Haiyin, Wang Like, Xu Rui, Xiong Weiping, Ahmad Kito. 2017. Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review[J]. Chemical Engineering Journal, 317: 707-725. doi: 10.1016/j.cej.2017.02.086

      Song Shaoxian, López-Valdivieso Alejandro, Hernandez-Campos D J, Peng Changsheng, Monroy-Fernández Marcos Gustavo, Razo-Soto Israel. 2006. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite[J]. Water Research, 40(2): 364-372. doi: 10.1016/j.watres.2005.09.046

      Srivastava Pankaj Kumar, Vaish Aradhana, Dwivedi Sanjay, Chakrabarty Debasis, Singh Nandita, Tripathi Rudra Deo. 2011. Biological removal of arsenic pollution by soil fungi[J]. Science of the Total Environment, 409(12): 2430-2442.

      Sumio Iijima. 1991. Helical microtubules of graphitic carbon[J]. Nature, 354(6348): 56-58. doi: 10.1038/354056a0

      Swaminathan Jaichander, Tow Emily W, Stover Richard L, Lienhard John H. 2019. Practical aspects of batch RO design for energy-efficient seawater desalination[J]. Desalination, 470: 114097. doi: 10.1016/j.desal.2019.114097

      Sylvain Bart, Mikael Motelica-Heino, Florie Miard, Emmanuel Joussein, Marilyne Soubrand, Sylvain Bourgerie, Domenico Morabito. 2016. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols[J]. Catena, 136: 44-52.

      Vadahanambi Sridhar, Lee Sang-Heon, Kim Won-Jong, Oh Il-Kwon. 2013. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures[J]. Environmental Science & Technology, 47(18): 10510-10517.

      Van Vinh N, Zafar M, Behera S K, Park H S. 2015. Arsenic(III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: Equilibrium, kinetics, and thermodynamics studies[J]. International Journal of Environmental Science & Technology, 12(4): 1283-1294.

      Velizarov Svetlozar, Crespo João G, Reis Maria A. 2004. Removal of inorganic anions from drinking water supplies by membrane bio/processes[J]. Reviews in Environmental Science and Bio/Technology, 3(4): 361-380.

      Vetterlein Doris, Wesenberg Dirk, Nathan Petra, Bräutigam Anja, Schierhorn Angelika, Mattusch Jürgen, Jahn Reinhold. 2009. Pteris vittata-Revisited: Uptake of As and its speciation, impact of P, role of phytochelatins and S[J]. Environmental Pollution, 157(11): 3016-3024.

      Vithanage Meththika, Herath Indika, Joseph Stephen, Bundschuh Jochen, Bolan Nanthi, Yong Sik Ok, Kirkham M B, Rinklebe Jörg. 2017. Interaction of arsenic with biochar in soil and water: A critical review[J]. Carbon, 113: 219-230.

      Wang Dengke, Huang Renkun, Liu Wenjun, Sun Dengrong, Li Zhaohui. 2014. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways[J]. ACS Catalysis, 4(12): 4254-4260.

      Wang Guoquan, Huang Yuezhen, Gang Jingmin, Wang Shizhen, Xiao Biyu, Yao Hua, Hu Yu, Gu Yulan, Zhang Chen, Liu Kaitai. 2000. Endemic arsenism, fluorosis and arsenic-fluoride poisoning caused by drinking water in Kuitun, Xinjiang[J]. Chinese Medical Journal, 113(6): 524.

      Wang Jianping, Wang Shengling, Lin Qin, Zhang Ling, Huang Daphne, Ng Jack C. 2009. Association of arsenic and kidney dysfunction in people with diabetes and validation of its effects in rats[J]. Environment International, 35(3): 507-511.

      Wang Ning, Wang Nannan, Zhang Ru, Zhao Qian, Wang Hongbo. 2020. Removal of aqueous As(III) Sb(III) by potassium ferrate (K2FeO4): The function of oxidation and flocculation[J]. Science of the Total Environment, 726: 138541.

      Wang Suiling, Mulligan Catherine N. 2006. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution[J]. Science of the Total Environment, 366(2/3): 701-721.

      Wang Yuru, Tsang Daniel C W. 2013. Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents[J]. Journal of Environmental Sciences, 25(11): 2291-2298.

      Wang Zhengfang, Shi Mo, Li Jihua, Zheng Zheng. 2014. Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon[J]. Journal of Environmental Sciences, 26(3): 519-528.

      Waypa John J, Elimelech Menachem, Hering Janet G. 1997. Arsenic removal by RO and NF membranes[J]. American Water Works Association, 89(10): 102-114.

      Wen Dongguang, Zhang Fucun, An Yonghui. 2020. Support service of geological technology in lifting residents of endemic disease area out of poverty[J]. China Geology, 3, 656-660.

      Wenten I G, Khoiruddin K. 2016. Reverse osmosis applications: Prospect and challenges[J]. Desalination, 391: 112-125.

      WHO/UNIEF. 2014. Progress on Drinking-water and Sanitation-2014 Update[R]. World Health Organization, 1, 1.

      Wu Guiping, Lin Xiaoyu, Jiang Shi, Chui Longze. 2019. Adsorption performance of As(Ⅲ) by metal-organic frameworks of MIL-101 (Fe) [J]. Journal of South-Central University for Nationalities (Natural Science Edition), 38(1): 27-33(in Chinese with English abstract).

      Xia Xuefen, Hua Yilong, Hang Xiaoyue, Ling Lan, Zhang Weixian. 2017. Removal of arsenic and selenium with nanoscale zero-valent iron (nZVI) [J]. Acta Chimica Sinica, 75(6): 594-601(in Chinese with English abstract).

      Xia Xuefen. 2020. Effect of coexisting anions on the removal of arsenic and selenium with nanoscale zero-valent iron (nZVI) [J]. Contemporary Chemical Industry, 49(8): 1613-1617(in Chinese with English abstract).

      Xiao Xin, Chen Baoliang. 2017. A direct observation of the fine aromatic clusters and molecular structures of biochars[J]. Environmental Science & Technology, 51(10): 5473-5482.

      Xiao Yabing, Qian Shahua, Huang Ganquan, Zhong Jiasheng, Wang Haoyun. 2003. Adsorption properties of nanometer-size TiO2 for As(Ⅲ) and As(Ⅴ) [J]. Journal of Analytical Science, 19(2): 172-174(in Chinese with English abstract).

      Xiong Yangyang, Li Jianqiang, Gong Lele, Feng Xuefeng, Meng Lina, Zhang Le, Meng Panpan, Luo Mingbiao, Luo Feng. 2017. Using MOF-74 for Hg2+ removal from ultra-low concentration aqueous solution[J]. Journal of Solid State Chemistry, 246: 16-22.

      Xu Naizheng, Gong Jianshi, Tan Mengjiao, Ye Yonghong, Zhou Kaie, Zhu Chunfang, Shu Longcang, Meng Dan. 2021. Hydrogeochemical processes and potential exposure risk of high-arsenic groundwater in Huaihe River Basin, China [J]. Geology in China, 48(5): 1418-1428(in Chinese with English abstract).

      Yan Zichun, Wu Dabing, Wang Zhengrong. 2021. Progress of preparation and application of nanoscale zero-valent iron[J]. Applied Chemical Industry, 50(3): 789-792(in Chinese with English abstract).

      Yin Jina, Josué Medellín-Azuara, Alvar Escriva-Bou, Zhu Liu. 2021. Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change[J]. Science of the Total Environment, 769: 144715.

      Yoon Jaekyung, Amy Gary, Chung Jinwook, Sohn Jinsik, Yoon Yeomin. 2009. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes[J]. Chemosphere, 77(2): 228-235.

      Yoshizuka Kazuharu, Nishihama Syouhei, Sato Hideki. 2010. Analytical survey of arsenic in geothermal waters from sites in Kyushu, Japan, and a method for removing arsenic using magnetite[J]. Environmental Geochemistry and Health, 32(4): 297-302.

      Yunho Lee, Ik-hwan Um, Jeyong Yoon. 2003. Arsenic(III) oxidation by iron(VI) (Ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation[J]. Environmental Science & Technology, 37(24): 5750-5756.

      Zama Eric F, Reid Brian J, Sun Guoxin, Yuan Haiyan, Li Xiaoxing, Zhu Yongguan. 2018. Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in Spinach (Spinacia oleracean) and improvement in the plant growth[J]. Journal of Cleaner Production, 189: 386-395.

      Zhang Ping, Chen Wei, Li Xiaochen, Gao Chen, Gao Yan. 2017. Application of modified ion-exchange resin in arsenic removal [J]. China Science & Technology Panorama Magazine, (10): 10-11(in Chinese).

      Zhao Shuaifei, Zou Linda, Tang Chuyang Y, Mulcahy Dennis. 2012. Recent developments in forward osmosis: Opportunities and challenges[J]. Journal of Membrane Science, 396: 1-21.

      Zheng Yan, Stute Martin, Geen Alexander van, Gavrieli Ittai, Dhar Ratan Kumar, Simpson H James, Schlosser Peter, Ahmed Kazi Matin Uddin. 2004. Redox control of arsenic mobilization in Bangladesh groundwater[J]. Applied Geochemistry, 19(2): 201-214.

      Zhou Xun. 2017. Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China[J]. Journal of Groundwater Science and Engineering, 4: 343-353.

      Zhu Meng, Chen Nannan, Yang Ruyi, Zhou Shoubiao, Zhang Juqin, Zhang Mengyun. 2020. Progress in researches on remediation of phenyl arsonic acid compounds in soil-water environment[J]. Ecology and Environmental Sciences, 29(7): 1475-1486(in Chinese with English abstract).

      海傲, 李露露, 步延鹏, 马诗院, 张成琳, 曾瑞, 袁近秋, 张云庚, 陈丹云. 2020. 纳米氧化铝的合成方法及其对As的吸附研究进展[J]. 功能材料, 51(8): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL202008007.htm
      韩双宝, 李甫成, 王赛, 李海学, 袁磊, 刘景涛, 申豪勇, 张学庆, 李长青, 吴玺, 马涛, 魏世博, 赵敏敏. 2021. 黄河流域地下水资源状况及其生态环境问题[J]. 中国地质, 48(4): 1001-1019. http://geochina.cgs.gov.cn/geochina/article/abstract/20210402?st=search
      胡天觉, 曾光明, 陈维平, 李小红. 1998. 选择性高分子离子交换树脂处理含砷废水[J]. 湖南大学学报(自然科学版), 25(6): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX806.016.htm
      姜舟. 2016. 腾冲地热区砷的环境生物地球化学研究[D]. 中国地质大学(武汉).
      冷迎祥, 刘菲, 王文娟, 罗锡明. 2017. 小分子有机酸对纳米铁稳定砷的影响[J]. 环境工程学报, 11(5): 3195-3203. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201705084.htm
      李妍丽. 2012. 微型绿藻对砷污染水体的生物修复研究[D]. 广州: 华南理工大学.
      马文静, 阎莉, 张建锋. 2018. 二氧化钛对地下水中砷硅的吸附及再生回用[J]. 环境科学, 39(3): 1241-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201803033.htm
      吴桂萍, 林晓宇, 蒋实, 崔龙哲. 2019. 金属有机骨架MIL-101(Fe)吸附As(Ⅲ)的性能[J]. 中南民族大学学报(自然科学版), 38(1): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNZK201901005.htm
      夏雪芬, 滑熠龙, 黄潇月, 凌岚, 张伟贤. 2017. 纳米零价铁对水中砷和硒去除的比较研究[J]. 化学学报, 75(6): 594-601. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB201706008.htm
      夏雪芬. 2020. 共存阴离子对纳米零价铁去除水中砷和硒的影响[J]. 当代化工, 49(8): 1613-1617. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202008028.htm
      肖亚兵, 钱沙华, 黄淦泉, 钟家柽, 王昊云. 2003. 纳米二氧化钛对砷(Ⅲ)和砷(Ⅴ)吸附性能的研究[J]. 分析科学学报, 19(2): 172-174. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX200302022.htm
      许乃政, 龚建师, 檀梦皎, 叶永红, 周锴锷, 朱春芳, 束龙仓. 2021. 淮河流域高砷地下水的形成演化过程及其环境健康风险[J]. 中国地质, 48(5): 1418-1428. http://geochina.cgs.gov.cn/geochina/article/abstract/20210508?st=search
      严子春, 吴大冰, 王峥嵘. 2021. 纳米零价铁的制备及应用研究进展[J]. 应用化工, 50(3): 789-792. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG202103048.htm
      张萍, 陈卫, 李晓晨, 高雁. 2017. 改性离子交换树脂除砷方面的应用[J]. 中国科技纵横, (10): 10-11.
      朱濛, 程楠楠, 杨如意, 周守标, 张菊琴, 张梦云. 2020. 土壤-水环境中苯砷酸类化合物修复研究进展[J]. 生态环境学报, 29(7): 1475-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202007023.htm
    • 期刊类型引用(1)

      1. 高翻翻,向洋,王诗媛,赵龙飞,侯曼,边思源,骆鑫. 基于地理探测器和PLS-SEM的藏东南植被变化及驱动因子分析. 环境科学与技术. 2024(12): 225-236 . 百度学术

      其他类型引用(0)

    图(5)  /  表(2)
    计量
    • 文章访问数:  3753
    • HTML全文浏览量:  1156
    • PDF下载量:  2288
    • 被引次数: 1
    出版历程
    • 收稿日期:  2021-12-27
    • 修回日期:  2022-01-22
    • 网络出版日期:  2023-09-25
    • 刊出日期:  2022-10-24

    目录

    /

    返回文章
    返回
    x 关闭 永久关闭