Geochronology, geochemical characteristics of the rhyolites of Tumugou Formation in the central part of Yidun arc, western Sichuan: Implications for their petrogenesis
-
摘要:研究目的
义敦岛弧是三江特提斯复合造山带的重要组成部分。区域现有的研究较多集中在弧花岗质侵入岩及其成矿作用上,而对区内流纹岩的研究则相对匮乏。
研究方法本文在详细野外填图的基础上,对图姆沟组流纹岩进行岩石学、地球化学和同位素年代学研究。
研究结果流纹岩锆石U-Pb成岩年龄216.5 Ma,为晚三叠世。岩石SiO2含量为73.24%~74.72%,全碱含量为5.26%~6.27%,为钙碱性系列,富集大离子亲石元素Rb、Th、U、K和轻稀土元素,亏损高场强元素Nb、Ta、Ti、P和重稀土元素,具典型的岛弧火山岩特征。
结论图姆沟组流纹岩是印支期甘孜—理塘洋壳向西俯冲环境下地壳部分熔融的产物。
创新点:运用岩石学、地球化学和同位素年代学方法研究图姆沟组流纹岩,为甘孜—理塘洋盆的演化提供证据。
Abstract:This paper is the result of the geological survey engineering
ObjetiveThe Yidun island arc, as a key part of Sanjiang Tethys orogenic belt, has been hottly debated on granitic intrusions and the related mineralization in recent years. But few studies are concerned with the rhyolites such as the Tumugou Formation.
MethodsBased on detailed field mapping, this paper has conducted research on petrology, geochemistry and chronology of the Tumugou Formation' s rhyolite.
ResultsLA-ICP-MS zircon U-Pb dating on one sample yield an age of 216.5 Ma, and proved that the rhyolites were formed in the Late Triassic. The rhyolites have contents of SiO2 from 73.24% to 74.72%, alkali (K2O+Na2O) of 5.26% to 6.27% as calc-alkaline rock series. All the samples are enriched in large ion lithophile elements such as Rb, Th, U, K and light rare earth elements, but depleted in the high strength filed elements such as Nb, Ta, Ti, P and heavy rare earth elements, indicative of the characteristics of island-arc volcanic rocks.
ConclusionsAccording to the comprehensive study, it is concluded that the rhyolites were formed by partial melting of the lower continental crust during the westward subduction of the Ganzi-Litang oceanic crust in the Indo-Chinese epoch.
-
Keywords:
- Tumugou Formation /
- rhyolites /
- geochemistry /
- geochronology /
- geological survey engineering /
- Yidun arc /
- Sichuan
-
1. 引言
找矿模型,又称勘查模型,是表述目标矿床及其对一定勘查技术产生预期效应的模拟体系,利用已有地质信息及现有找矿手段,并通过找矿模型来实现成矿的预测。找矿模型的建立不仅需要总结地质直接找矿标志,还需要借助地球物理、地球化学等间接找矿标志识别成矿信息,推断矿体空间位置(陈毓川和朱裕生,1993)。陈毓川和朱裕生(1993)指出找矿模型突出的是某类矿床的基本要素和找矿过程中特殊意义的地质、物化探和遥感影像等特征及其在空间的变化情况,总结发展该类矿床的基本标志和找矿使用的方法手段。找矿模型是矿产勘查工作的实际指导,它是缩小勘查区(或靶区)甚至发现矿床的择优技术。当前,地质找矿已由浅部逐步转变为深部矿、隐伏矿,其找矿难度也逐步增大,对隐伏矿预测定位及找矿模型的建立显得尤为关键。
20世纪80年代以来,中国的地质工作者开始探索建立找矿模型的技术,来处理和分析各类地学资料进行综合分析,为普查和评价矿产资源提供依据,根据所利用的地学数据的不同来源,综合研究成果分别表述为矿田或矿床的地球物理模型、地球化学模型、地质-地球物理-地球化学模型或物理-地质模型。20世纪90年代以来,中国许多研究者对找矿模型的建模技术进行了系统的总结和推广。在寻找隐伏矿床的新方法上,多位研究者也建立了特有的找矿模型,如活动金属离子法、金属活动态法(MOMEO、(MMI) (Mann et al., 1998)、地气法(geogas) (Malmqvistet et al., 1984)。姚金炎(1990)提出综合物探、化探的隐伏矿床预测方法生物地球化学法、离子晕法、电吸附(周奇明,1996)、植物地球化学、地电化学等。
箭猪坡矿床作为五圩矿田矿集区代表性矿床之一,该矿床于20世纪80年代被发现,先后进行了普查和详查工作,经过20多年的开采,矿山资源量已不能满足矿山开采需求,急需开展地质找矿工作,增加储量。前人对该矿床的地质特征、矿床成因,流体特征等方面开展了较多的研究,普遍认为其受构造控制的岩浆期后热液脉状矿床。然而,箭猪坡矿床乃至五圩矿田的同类型矿床至今缺少找矿模式的研究。笔者所在项目组2012—2016年先后对箭猪坡矿床开展了构造控矿规律、矿体定位预测及外围探矿权找矿预测研究等工作,首次在五圩矿田箭猪坡矿床发现了石英脉型锡矿体,矿体呈脉状,倾角70°~75°,矿体平均品位:锡0.65%,铅0.56%、锑0.73%、银46 g/t,锡石主要呈棕褐色,多沿裂隙发育,呈条带状。经锡物相分析,锡以锡石为主。并对紧邻采矿权外围的花洞、板才探矿权开展了土壤地球化学测量、地电化学测量、瞬变电磁测量、可控源测量工作,大大丰富了找矿信息。本文在综合分析箭猪坡矿床地质、物探、化探特征基础上,构建了箭猪坡锑多金属矿地质-物探-化探测量综合信息找矿模型(经验证找矿效果良好),以期为箭猪坡锑多金属矿集区热液脉型矿床及外围同类型矿床找矿勘查和评价工作提供重要参考。
2. 矿床地质特征
五圩矿田位于丹池多金属成矿带南端(图 1)。区内出露的地层为下泥盆统塘丁组(D1t)—中三叠统(T2b);其中赋矿层位为下泥盆统塘丁组条带状绢云母泥岩夹砂岩(箭猪坡矿床),中泥盆统罗富组泥灰岩(三排洞—芙蓉厂矿床),上泥盆统榴江组、五指山组硅质岩。区域构造较为复杂,主要由五圩复式背斜及一系列以NNW向为主的张扭性断裂组成。北北西走向断裂带是五圩矿田内最发育的一组构造形迹,呈帚状构造的形态,向北北西向(箭猪坡—芙蓉厂)逐渐撒开,在花洞南东向成逐渐收敛状态,断裂带控制着区域矿化带的形成与发育。区域上未见岩浆岩出露。
图 1 五圩矿田区域地质简图T—三叠系(粉砂质泥岩、泥质粉砂岩、灰岩);P—二叠系(灰岩、凝灰岩、硅质岩);C—石炭系(条带灰岩、微晶灰岩、泥岩);D—泥盆系(泥岩、灰岩、硅质岩); 1—背斜轴;2—向斜轴;3—断裂;4—铅锌锑银矿床;5—砷汞铅锌锑银矿床;6—锑矿点;7—汞矿床(点);8—矿田Figure 1. Regional geologic map of Wuxu mining areaT-Triassic system (silty mudstone, argillaceous siltstone, limestone); P-Permian System (Limestone, Tuff, Siliceous Rock); C-Carboniferous system (banded limestone, microcrystalline limestone, mudstone); D-Devonian System (Mudstone, Limestone, Siliceous Rock); 1-Anticlinal Axis; 2-Syncline axis; 3-Fracture; 4-Pb-Zn-Sb-Ag deposit; 5-Arsenic-mercury-lead-zinc-antimony-silver deposit; 6-Antimony ore site; 7-Mercury deposit (spot); 8-Ore field箭猪坡矿床范围内出露的地层为下泥盆统塘丁组第一段和第二段,其中以第二段为主,该段为灰黑色条带状及薄层状绢云母泥岩;矿床内发育了两组断裂,一组为北北西向张扭性断裂,第二组为北北东向扭性断裂。在矿区范围内未见到岩浆岩出露。
箭猪坡矿床矿体主要受北北西向构造破碎带和断裂的控制,呈脉状、细网脉状,条带状充填在断裂带中或节理裂隙中,沿矿体走向和倾向分支复合、尖灭再现和尖灭侧现的现象均有出现。矿石中金属矿物主要有硫化物(铁闪锌矿、闪锌矿、辉锑矿)、硫盐矿物(脆硫锑铅矿等),碳酸盐矿物(含锰菱铁矿、含铁菱锰矿),非金属矿物主要有石英、方解石等(刘伟,2013)。箭猪坡矿床成矿阶段划分为3个阶段,即石英-硫化物阶段(Ⅰ)、石英-硫盐矿物-多硫化物阶段(Ⅱ)和锑硫化物-石英-铁锰碳酸盐阶段(Ⅲ),第Ⅱ成矿阶段为主要成矿阶段(刘伟等,2015)。
3. 地球物理特征
本次研究工作选用的物探工作方法有瞬变电磁测量(TEM)、可控源音频大地电磁测深法(CSAMT)。物探测线布置图见图 2。
图 2 箭猪坡矿床物化探工作测线分布图1—三叠系百逢组中段(细砂岩、泥质粉砂岩); 2—三叠系百逢组下段(含粉砂质泥岩夹凝灰质泥岩); 3—中三叠统罗楼祖上段(粉砂质泥岩夹灰岩); 4—中三叠统罗楼组下段(粉砂质泥岩); 5—下二叠统茅口组(燧石条带灰岩); 6—下二叠统栖霞组(灰岩、泥灰岩、硅质岩); 7—上石炭统南丹组(硅质条带灰岩、微晶灰岩)8—中石炭统大埔组(白云岩、含生物硅质条带灰岩); 9—下石炭统巴平组(泥岩、硅质泥岩); 10—上泥盆统五指山组(灰岩); 11—上泥盆统榴江组(硅质岩、硅质灰岩、灰岩); 12—中泥盆统罗富组上段(泥质灰岩、生物碎屑灰岩); 13—中泥盆统罗富组中段(泥灰岩夹泥岩); 14—中泥盆统罗富组下段(钙质泥岩、泥灰岩); 15—下泥盆统塘丁组四段(泥岩); 16—下泥盆统塘丁组三段(泥岩、粉砂质泥岩); 17—下泥盆统塘丁组二段(泥岩夹砂质泥岩); 18—下泥盆统塘丁组一段(泥岩); 19—实测正断层; 20—实测逆断层; 21—岩层产状; 22—地质界线; 23—大型锑多金属; 24—工作区范围; 25—可控源测量测线及编号; 26—瞬变电磁测量、地电化学测量、土壤地球化学测量测线Figure 2. Distribution of geophysical and chemical detection lines in Jianzhupo Deposit1-Middle of Triassic Baifeng Formation (fine sandstone and argillaceous siltstone); 2-Lower of Triassic Baifeng Formation (silty mudstone mixed with tuffaceous mudstone); 3-Upper of Middle Triassic Luolouzu Formation (silty mudstone mixed with limestone); 4-Lower of Middle Triassic Luolou Formation (silty mudstone); 5-Lower Permian Maokou Formation (flint banded limestone); 6-Lower Permian Qixia Formation (limestone, marl, siliceous rock); 7-Upper Carboniferous Nandan Formation (siliceous banded limestone) Microcrystalline limestone); 8-Middle Carboniferous Dapu Formation (dolomite, siliceous banded limestone); 9-Lower Carboniferous Baping Formation (mudstone, siliceous mudstone); 10-Upper Devonian Wuzhishan Formation (limestone); 11-Upper Devonian Liujiang Formation (siliceous rock, siliceous limestone, limestone); 12-Middle Devonian Luofu Formation upper member (argillaceous limestone, Bioclastic limestone); 13-Middle of Middle Devonian Luofu Formation (marl with mudstone); 14-Lower Devonian Luofu Formation (calcareous mudstone and marl); 15-Lower Devonian Tangding Formation 4 (mudstone); 16-Lower Devonian Tangding Formation 3 (mudstone, Silty mudstone); 17-Member 2 of Lower Devonian Tangding Formation (mudstone mixed with sandy mudstone); 18-Member 1 of Lower Devonian Tangding Formation (mudstone); 19-Measured normal fault; 20-Measured reverse fault; 21-Strata occurrence; 22-Geological boundary; 23-Large antimony polymetallic; 24-Scope of work area; 25-Controlled source measuring line and No; 26-Transient electromagnetic measuring line, geoelectrochemical measuring line and soil geochemical measuring line可控源音频大地电磁法(CSAMT)是在大地电磁法(MT)和音频大地电磁法(AMT)基础上发展起来的一种方法。可控源频率测深方法具有勘探深度范围大(通常可达2 km)、分辨能力强、观测效率高,兼有测深和剖面研究双重特点,是研究深部地质构造和寻找隐伏矿的有效手段,越来越多应用于受构造控制的脉状金属矿床的找矿工作。通过可控源音频大地电磁测深法(CSAMT)测量,探索箭猪坡矿床深部隐伏构造的空间形态。
磁瞬变电磁法(TEM)是基于电性差异,利用不接地回线或接地线源向地下发送一次脉冲电场,利用线圈或接地电极观测二次涡流场或电场的方法。该方法具有穿透低阻覆盖的能力,故探测深度大。在低阻围岩地区地形的起伏仅对早期道有影响,这种影响又是易于分辨的。瞬变电磁法异常响应强,多测道曲线形态简单,分层能力较强。工作效率高,同时完成剖面测量与测深工作。通过瞬变电磁测量(TEM),查明构造和矿(化)体空间展布特征。
3.1 矿区岩(矿)石物性特征
在物探方法工作前,先对矿区内的主要岩矿石进行物性参数取样分析。矿区内出露的主要矿石划分为5类,围岩划分为7类。每类岩(矿)石进行系统的物性参数取样。所采集标本均来自新鲜露头及坑道,大小约10 cm×10 cm×10 cm,使用测试方式为强迫电流法,获得岩矿石标本的电阻率参数,使用GDD型标本测试仪,测定结果如表 1所示。根据表 1,矿区内与低阻因素有关的是断裂破碎带、矿化蚀变及炭质岩层,因此,圈定低阻异常区是本次电法工作的重点。
表 1 五圩铅锌锑矿岩石的物性特征Table 1. Physical properties of Wuxu Pb-Zn-Sb ore and rocks(1)密度特征
区域出露的地层从下泥盆统塘丁组至中三叠统均有,是高密度层,以泥岩、碳酸盐岩为主,其岩性主要有泥岩、白云质泥灰岩、泥质粉砂岩、炭质泥岩、硅质泥岩、泥灰岩、白云岩、硅质岩、硅质灰岩、生物碎屑灰岩等,以上岩性密度值相对较高且较为稳定,一般为2.71 g/cm3左右。
根据实测及前人的资料,五圩矿区的各类岩石中,以松散的砂岩、砾岩等密度最低,一般为2.48 g/cm3,这些岩层的厚度不大;泥岩、碳酸盐岩建造为主的岩层,其厚度可达数千米,密度平均值为2.71 g/cm3,构成高密度背景;花岗岩类岩石密度平均值为2.61 g/cm3,与泥岩、碳酸盐岩为围岩的密度存在0.1 g/cm3左右的差异,当花岗岩体具有一定规模时,可以引起重力低异常。
(2)电性特征
矿床中岩石在宏观上电阻率ρ与电极化率η呈负相关,即η增大,ρ有减小的趋势。矿床中的炭质泥岩、钙质泥岩具有“低电阻率”特征,电阻率常见为5.2×101~5.1×102 Ω·m,最大为3.9×103 Ω·m,而矿床中方解石、白云岩、硅质泥岩、灰岩具有“高电阻率”特征,电阻率常见为4.1×103~7.3×105 Ω·m,最大为9.8×105 Ω·m。含矿岩石具有低电阻、高极化率、高密度特征。矿床围岩普遍具有中高电阻率、低极化率、中等密度特征。矿区内炭质泥岩普遍发育,其具有低电阻率、高极化率特征,且具有成层出现的特点,其矿石与围岩存在较明显的电性差异,为电磁法测量工作提供了有利条件。
(3)磁性特征
工作区内绝大部分岩石为无磁性或弱磁性,花岗岩呈弱磁性,一些矿石含有少量磁性矿物磁性相对较强,但仍呈弱磁性。
3.2 可控源(CSAMT)特征
结合矿床地质特征,笔者在五圩箭猪坡矿床开展了可控源剖面测量工作(位置见图 2),试验剖面有3条,测量方位线与勘探线方位一致为80°,点距40 m。投入本次工作的仪器为GDP-32II多功能电磁仪。工作选择的是GGT-30大功率(30 kAV)发射机,工作频率:DC~8 kHz;最大输出功率:30 kW;最大输出电流:30 A;最高输出电压:1000 V;关断时间:≤125 μs;稳流精度:0.1%;同时配合工作的是一个ZMG-10(10 kW)发电机。CSAMT资料反演软件是GDP-32II机器所带的带地形平面波反演软件SCS2D。
本次CSAMT工作各技术参数如下:工作频率:1~8192 Hz。发射系统:供电偶极子长度AB=1000 m;方位角117°,偶极子中心与测线中心偏差<15°。收发距R最小为7 km,最大为12.7 km;基本电流大于6 A,1024 Hz以下频率电流大于8 A。供电线使用耐高压、大电流的电缆线,供电极则将大张铝箔置于挖好的坑中埋好,并将盐水浇于其中。接收系统:采用一个磁道带两个电道测量方式。测量电偶极子长度MN=40 m。接收电极使用不极化电极,稳固地置于土中20~30 cm,并浇入盐水。观测数据叠加次数为32~16384次,数据离差SEM < 20时,方可认定为可靠数据,并将其记录。
由图 3(317线CSAMT测深)可以看出,物探CSAMT测深曲线圆滑,其卡尼亚电阻率均方相对误差为5.783%;大于200 mrad的阻抗相位均方相对误差为8.698%,小于200 mrad的阻抗相位均方误差为40.997 mrad,测量结果为Ⅰ级精度。根据测区岩石电性特征,矿区内与低阻因素有关的是断裂破碎带、矿化蚀变及炭质岩层,由此圈定低阻异常区是本次电法工作的重点。根据电阻率剖面结果,反演的低阻异常,对应的阻抗相位高值异常,因此低阻异常可信度高。
以317号勘探线剖面图为例(图 4)。选取该线的3160~4520点号,作为反演剖面,长度1.36 km,317线低阻异常及推断解释见图 4,其特征如下:3840~4080号点范围存在⑤号低阻异常,电阻率低于100 Ω·m,呈带状分布,异常上窄下宽,向东倾斜,延深约1200 m,⑤号低阻异常位于下泥盆统塘丁组第二岩性段(D1t2),主要为灰—深灰色中薄层泥岩夹深灰色中薄层条带状泥岩,局部夹有薄层砂岩透镜体和砂质泥岩,岩石中普遍见有浸染状黄铁矿,该岩性段为矿区主要含矿层位。已知含矿破碎带F3及F7位于⑤号低阻异常边部或异常内,且有钻孔ZK317-1揭露,其破碎带产状与⑤号低阻异常形态一致,推测⑤号低阻异常是由含矿破碎带F3和F7引起。目前钻孔只揭露了含矿破碎带F3及F7浅部垂深200 m范围的情况,从电阻率剖面图看出,⑤号低阻异常往深部延深至标高-700 m,说明含矿破碎带F3及F7往深部仍有延伸,该异常深部仍具有较大的找矿空间。
图 4 箭猪坡矿床317号勘探线电阻率剖面与推断解释剖面图1—泥盆系下统塘丁组第三段;2—泥盆系下统塘丁组第二段;3—断裂;4—钻孔;5—电阻率异常带Figure 4. Resistivity profile and inferred interpretation profile of 317 geological profile in Jianzhupo Deposit1-Third Member of Tangding Formation of Lower Devonian system; 2-Second Member of Tangding Formation of Lower Devonian system; 3-Fault; 4-Drill holel; 5-Resisttivity anomaly band从以上结果看出,CSAMT法探测深度大,对断裂构造反应较灵敏,在五圩矿田可以取得较好的找矿效果。
3.3 瞬变电磁特征
本次TEM法采用重叠回线装置(接收线圈Rx和发送线圈Tx相重合敷设的装置),发射和接收线圈均为100 m×100 m,网度为100 m×50 m;通过试验应采用1 Hz和4 Hz作为发射基频,观测参数为归一化的感应电动势,单位为μV/A。本次使用仪器为重庆奔腾数控技术研究所研制的WTEM-1瞬变电磁仪。以箭猪坡矿床320号勘探线剖面为例(测线分布见图 2),运用一维电阻率反演(图 5),结合地质特征分析得出:通过320线多测道剖面图可见,在23~34点之间存在凸起异常,与相对低阻异常吻合较好,从形态上看,呈脉状,表明在中深部存在导电性较好的脉状地质体,反映了中深部硫化物矿(化)体的存在。从电阻率反演图中可以得出,标高200~300 m,异常带晕为一个呈现倾向东的低阻带,电阻率值一般小于100 Ω·m,多为0~50 Ω·m,倾角为50~60°,与高阻区域区别明显,且该异常带由近地表往深部有变宽的趋势。该地段构造发育,结合矿区岩矿石物性特征及矿区的地质特征推测为含金属硫化物的岩(矿)石引起的异常。通过在地表实施探槽及钻孔(ZK320-2、ZK320-3、ZK320-4、ZK320-5)验证,均揭露到含黄铁矿化的硅化破碎带或矿(化)体,已知硅化破碎带或矿(化)体,均分布在电阻率低阻区。
4. 地球化学特征
4.1 土壤地球化学特征
在箭猪坡矿区开展了土壤剖面地球化学测量工作,以箭猪坡矿床320号勘探线剖面为例,结果显示矿区土壤地球化学化学主成矿元素Pb、Zn、Sb异常与隐伏矿体(含矿破碎带)的分布范围相一致,各异常同步性较好,并且有很好的重叠性。Pb最高值为97.4×10-6,异常带Pb均值大于65×10-6;Zn最高值为255.9×10-6,异常带均值大于220×10-6;Sb最高值为154.8×10-6,异常带均值大于90×10-6;推测异常由破碎带(含矿)引起,并经钻探工作验证,在钻孔中见到真厚0.71m,Zn品位5.05%的锌矿体(钻孔ZK320-2、J144)。
4.2 地电化学特征
地电化学提取方法是将地球物理、地球化学及电化学综合交叉为一体的综合找矿方法,该方法利用电场作用,选择性提取近地表介质中的电活动态物质,通过研究电提取元素组合、含量分布及异常特征,进而提供找矿信息的一种勘查方法。而大量的找矿勘探实践证明,地电化学勘探新技术、新方法能够发现500 m以下,其中包括150~200 m浮土以下的有色金属矿床、贵金属矿床、稀有金属矿床。在箭猪坡矿床南端开展了6条地电化学剖面测量工作(测线分布见图 2),方位线与勘探线方位一致为80°,点距一般20 m,以320号勘探线剖面地电化学特征为例(图 5):地电化学异常与隐伏矿体或含矿破碎带的分布吻合度高,即矿体的分布范围与地电化学综合异常范围一致,异常分布的规模、强度与含矿破碎带规模呈正比关系。矿体产出均较陡,倾角75°~80°,异常为多个异常点组成的“驼峰”或者“倒钟”形态,在地表矿头对应部位附近有异常峰。Pb、Zn、Sb元素异常规模大、强度高,异常同步清晰,因此Pb、Zn、Sb可以作为本区地电化学方法寻找隐伏锌矿的指示元素。当出现Pb、Zn、Sb为主异常时,则显示深部具有隐伏矿体(矿化)存在的可能性。经钻探验证,ZK320-2、ZK320-4、ZK320-5钻孔均揭露到了含锌锑的矿体及富含黄铁矿的硅化破碎带,亦说明地电化学能很好的圈定金属硫化物异常。
图 5 箭猪坡矿床320号勘探线地质-物探(TEM)-化探(地电化学)综合剖面图1—构造破碎带;2—铅锌锑矿体;3—下泥盆统塘丁组第二段;4—钻孔Figure 5. Electrogeochemical comprehensive profile of 320 exploration line in Jianzhupo Deposit1-Tectonic fracture zone; 2-Lead-zinc-antimony ore body; 3-Second member of Tangding Formation of Lower Devonian system; 4-Drill hole5. 综合找矿模型特征
根据箭猪坡矿床地质特征、地球物理特征、地球化学特征,总结了该矿床地质、地球物理,地球化学的找矿标志(表 2),并建立了矿床的地质-化探-物探找矿模型(图 6),实质是反映化探特征、物理特征与地质构造、矿体的空间关系。
表 2 箭猪坡矿床地质-地球物理-地球化学找矿标志Table 2. Geological-geophysical -geochemical prospecting criteria of JianZhuPo Deposit从矿床成矿条件分析,箭猪坡矿床矿体赋存在断裂构造中,矿体形态呈脉状、透镜体状,空间分布具有斜列状,叠瓦状排列等。区内矿体具有明显的低阻异常,表现为低电阻率特征,且瞬变电磁反演断面图与硅化破碎带及地质内容吻合较好。
模型的地质特征:矿体受层位控制,控矿层位为下泥盆统塘丁组沉积建造,因构造变形,控矿层位位于褶皱翼部,产状一般较陡;近矿围岩蚀变发育范围有限,蚀变类型有硅化、黄铁矿化、绢云母化、绿泥石化等。矿体形态以陡产状脉状、细脉状、透镜状为主,倾角60°~80°,厚度0.1~4.5 m不等,最大10.72 m,矿石类型分致密块状和条带状;矿石以金属硫化物为主,并含硫盐矿物;矿床类型属低温热液充填型。
模型的地球物理特征:以工业矿体为中心的矿化系统,具有低电阻率,稍高密度,高极化率特征。
模型的地球化学特征:常规土壤异常较小或无异常,而地电化学异常能较清晰地反映盲矿体成矿元素的异常,且各元素间连续性较好,异常的分布范围与深部盲矿体的垂直投影基本一致,通过钻孔揭露,能较准确的反映深部埋藏盲矿体(矿化体)的分布范围。
6. 讨论
(1)通过近几年的找矿勘查,在箭猪坡矿床,矿带走向延伸控制总长度为1400 m,并根据物探可控源测量结果,经钻探工程控制,在标高为-300~-400 m)仍能见到矿体, 从而扩大了该区的找矿空间,在该矿带南、北两个延伸方向及东部矿体倾向延深方向都是寻找隐伏矿体的有利部位,勘查平面图、剖面图等资料表明矿体的倾向延深和南北走向延伸还未完全控制,尚有较大找矿空间。而且随着深部石英脉型锡矿体的发现,为该矿区增加了新的找矿方向。
(2)矿区中局部构造陡倾或直立,且构造中有炭质、硅质等围岩,具有极低或极高的电阻率,故引起了CSAMT测量反演结果出现电阻率非常大和非常小的值。
(3)受整个区围岩炭质泥岩背景影响,该区矿化不均匀,极化率值波动较大,矿区未采样激发极化法, 其还难以识别矿异常和非矿异常。
因此,对于箭猪坡矿床成因需要加强研究,勘查模型需要逐步完善,找矿方法手段的选择也需要不断探索。
7. 结论
物化探工作是目前找矿工作中的重要手段。在充分分析、深入研究物化探成果特征,选出与成矿有关的异常范围,尤其是物化探重叠异常范围,再以地质条件为基础,化探信息为先导,选取地质、化探、物探等成矿有关的综合信息标志重叠的地区或地段,是寻找成矿有利地段的保障。
(1)物探研究表明:CSAMT出现的所有低阻异常,均具有找矿意义。这类低阻异常范围、形态大致反映矿(化)脉组在空间的展布特征,为深部勘查工程布置提供了重要依据;CSAMT异常显示该区往南北两端仍具有较大的找矿空间,中深部层状低阻异常出现在较低标高,均具有较大规模,且没有完全控制,这类异常推测与炭质层或新类型矿化有关。瞬变电磁表明:矿(化)体多分布在归一化电位高值区或低电阻率区,已知构造主要分布在归一化电位较高值区域或较低电阻率区和电位值梯度带,已知矿化体与物探异常特征吻合较好。
(2)常规的化探次生晕及地电化学研究表明:地电化学异常在已知矿体上方有比较清晰的Pb、Zn、Sb元素异常,为典型的共生组合元素,它们之间也存在良好的正相关关系,说明这些元素组合可以作为找矿指示元素,在该地区利用地电化学在该地区寻找隐伏矿,方法是可行的。化探次生晕Sb、Pb、Zn等元素套和较好,异常特征相近,可以作为寻找本区矿区的主要指示元素,进而推断矿体存在的大致位置和特征。
综上所述,可控源音频大地电磁法、瞬变电磁法、土壤地球化学、地电化学在异常区和非异常区有效性明显,利用这四种集成方法对深部勘查预测具有良好的找矿效果,达到技术集成示范,值得在类似的矿床中应用。
致谢: 感谢四川省冶金地质勘查局六〇五大队分析测试中心、国家地质实验测试中心相关老师在研究过程中给予的帮助;感谢李华伟师兄在成文过程中的建议与启发;感谢审稿专家及编辑在审稿过程中所提出的宝贵修改意见。 -
图 1 义敦岛弧大地构造位置图(a, 据Hou et al., 2007修改)和研究区地质简图(b)❶
1—三叠纪地层; 2—古生代地层; 3—三叠纪酸性火山岩; 4—三叠纪双峰式火山岩; 5—中生代花岗岩; 6—蛇绿岩杂岩带; 7—研究区范围; 8—火山岩年龄; 9—侵入岩年龄; 10—图姆沟组一段; 11—图姆沟组二段; 12—喇嘛垭组一段; 13—喇嘛垭组二段; 14—流纹岩; 15—黑云母二长花岗岩; 16—辉绿岩; 17—角岩化带; 18—断层; 19—采样点
Figure 1. Tectonic position of the Yidun island arc (a, modified from Hou et al., 2007) and geological sketch map of research area (b)❶
1-Triassic strata; 2-Paleozoic strata; 3-Triassic acidvolcanic rocks; 4-Triassic bimodal volcanics rocks; 5-Mesozoic granite; 6-Ophiolitic complex; 7-Researcharea; 8-Volcanic rock age; 9-Intrusive rock age; 10-Member 1 of Tumugou Formation; 11-Member 2 of Tumugou Formation; 12-Member 1 of Lamaya Formation; 13-Member 2 of Lamaya Formation; 14-Rhyolite; 15-Biotite monzonitic granite; 16-Diabase; 17-Hornfel belt; 18-Fault; 19-Sample location
图 3 义敦岛弧图姆沟组流纹岩岩石分类及岩石系列图解
(a, 底图据Middlemost, 1994; b, 底图据Winchester and Floyd, 1997; c, 底图据Rickwood, 1989; d, 底图据Maniar and Piccoli, 1989)
Figure 3. Classification and series of rhyolites of Tumugou Formation in the Yidun island arc
(a, after Middlemost, 1994; b, after Winchester and Floyd, 1997; c, after Rickwood, 1989; d, after Maniar and Piccoli, 1989)
图 4 义敦岛弧图姆沟组流纹岩微量元素原始地幔标准化蛛网图(a)及稀土元素球粒陨石标准化分布型式图(b)
(原始地幔及球粒陨石标准化值据Sun and McDonough, 1989)
Figure 4. Primitive mantle-normalized trace element spider diagrams and chondrite-normalized REE patterns of rhyolites of Tumugou Formation in the Yidun island arc
(primitive mantle-normalized and chondrite-normalized data from Sun and McDonough, 1989)
图 6 义敦岛弧图姆沟组流纹岩SiO2-(Na2O+K2O-CaO)图解(a)、Zr-Ba-Sr图解(b)及部分熔融与分离结晶判别图解(c、d)
(a底图据Frost et al., 2001; b底图据Zhang et al., 2010, 前人数据据严松涛,2016; 贺亲志等,2018; c、d前人数据据严松涛, 2016, 贺亲志等,2018)
Figure 6. SiO2-(Na2O+K2O-CaO) diagram (a), Zr-Ba-Sr diagram (b) and diagram for discriminating partial melting and fractional crystallization(c, d) of rhyolites of Tumugou Formation in the Yidun island arc
(a, after Frost et al., 2001; b, after Zhang et al., 2010, other composition of rhyolites from Yan, 2016; He et al., 2018; c, d, other composition of rhyolites from Yan, 2016; He et al., 2018)
图 7 义敦岛弧图姆沟组流纹岩Rb-Hf-Ta图解(底图据Harris et al., 1986)
Figure 7. Rb-Hf-Ta diagram of rhyolites of Tumugou Formation in the Yidun island arc (after Harris et al., 1986)
图 8 义敦岛弧图姆沟组流纹岩构造环境判别图解
(底图据Pearce et al., 1984;前人资料据严松涛,2016;贺亲志等,2018)
VAG—火山弧花岗岩; Syn-COLG—同碰撞花岗岩; WPG—板内花岗岩; ORG—洋中脊花岗岩Figure 8. Tectonic setting discrimination diagrams of rhyolites of Tumugou Formation in the Yidun island arc
(after Pearce et al., 1984; the data from Yan, 2016; He et al., 2018)
VAG-Volcanic arc granites; Syn-COLG-Syn-collision granites; WPG-Within plate granites; ORG-Ocean ridge granites表 1 义敦岛弧图姆沟组流纹岩主量元素(%)和微量元素(10-6)含量
Table 1 Major (%) and trace element (10-6) compositions of rhyolites of Tumugou Formation in the Yidun island arc
表 2 义敦岛弧图姆沟组流纹岩LA-ICP-MS锆石U-Pb同位素测试结果
Table 2 Zircon U-Pb isotopic data analyzed by LA-ICP-MS of rhyolites of Tumugou Formation in the Yidun island arc
表 3 三江地区义敦岛弧带锆石U-Pb年龄
Table 3 Zircon U-Pb age data of the Yidun island arc in Sanjiang region
-
Aldanmaz E, Pearce J A, Thirlwall M F, Mitchell J G. 2000. Petrogenetic evolution late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 102: 67-95. doi: 10.1016/S0377-0273(00)00182-7
Belousova E A, Griffin W, O'Reilly S Y. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy & Petrology, 143(5): 606-622.
Chalot-Prat F P. 1995. Genesis of rhyolitic ignimbrites and lavas from distinct sources at a deep crustal level: Field, petrographic, chemical and isotopic (Sr, Nd) constraints in the Tazekka volcanic complex (eastern Morocco)[J]. Lithos, 36(1): 29-49. doi: 10.1016/0024-4937(95)00004-Y
Frost B R, Barnes C G, Collins W J, Arculus R J, David J E, Frost C D. 2001. A geochemical classification for graniticrocks[J]. Journal of Petrology, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033
Gao S, Liu X M, Yuan H L. 2002. Determination of forty-two major and trace elements in USCS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 26(2): 181-196. doi: 10.1111/j.1751-908X.2002.tb00886.x
Green. 1994. Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Sedona 16 years later[J]. Chemical Geology, 117: 1-36. doi: 10.1016/0009-2541(94)90119-8
Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristic of collision-zone magmatism[J]. Geological Society of London, Special Publication, 19: 67-81. doi: 10.1144/GSL.SP.1986.019.01.04
Hastie A R, Kerr A C, Pearce J A, Mitchell S F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram[J]. Journal of Petrology, 48(12): 2341-2357. doi: 10.1093/petrology/egm062
He Qinzhi, Jia Zhiquan, Luo Zhihong. 2018. Petrogeochemistry and genesis of Late Triassic volcanic rock in the Baisong-Bendu Region, Yidun Island Arc[J]. Acta Geologica Sichuan, 38(2): 194-201 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-0995.2018.02.004
Hou Zengqian, Hou Liwei, Ye Qingtong, Liu Fulu, Tang Guoguang. 1995. Tectono-magmatic Evolution of the Yidun Island-Arc and Volcanogenic Massive Sulfide Deposits in the Sanjiang Region, S.W. China[M]. Beijing: Seismological Press, 1-220 (in Chinese with English abstract).
Hou Zengqian, Lu Jiren, Li Hongyang, Wang Denghong, Lü Qingtian. 1996. Tectonic evolution of the Tethys in southwestern China: Is controlled by plume tectonics[J]. Acta Geoscientia Sinica, (4): 439-453 (in Chinese with English abstract).
Hou Zengqian, Qu Xiaoming, Zhou Jirong, Huang Dianhao, Lü Qingtian, Tang Shaohua, Yu Jinjie, Wang Haiping, Zhao Jinhua. 2001. Collision-orogenic processes of the Yidun arc in the Sanjiang region: Record of granites[J]. Acta Geologica Sinica, 75(4): 484-1497 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2001.04.008
Hou Zengqian, Yang Yueqing, Qu Xiaoming, Lü Qingtian, Wang Haiping, Yu Jinjie, Tang Shaohua. 2004. Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang region, China[J]. Acta Geologica Sinica, 78(1): 109-120 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2004.01.013
Hou Z Q, Zaw K, Pan G T, Mo X X, Hu Y Z, Li X Z. 2007. Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenic epochs and deposit types[J]. Ore Geology Reviews, 31(1/4): 48-87.
Huppert H E, Sparks R S J. 1988. The generation of the Earth: The generation of granitic magmas by intrusion of basalt into continental crust[J]. Journal of Petrology, 29: 599-624. doi: 10.1093/petrology/29.3.599
Ilbeyli N, Pearce J A, Thirlwall M F, Mitchell J G. 2004. Petrogenesis of collision elated plutonic in Central Anatolia, Turkey[J]. Lithos, 72: 163-182. doi: 10.1016/j.lithos.2003.10.001
Jian Ping, Cheng Yuqi, Liu Dunyi. 2001. Petrographical study of metamorphic zircon: Basic roles in interpretation of U-Pb age of high-grade metamorphic rocks[J]. Earth Science Frontiers, 8(3): 183-191 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2001.03.022
Kimura J I, Yoshida T. 2006. Contributions of slab fluid, mantle wedge and crust to the origin of quaternary lavas in the NE Japan arc[J]. Journal of Petrology, 47(11): 2185-2232. doi: 10.1093/petrology/egl041
Li Hu. 2018. Petrogenesis and Geological Significance of Lizexi Pluton in Litang, Western Sichuan[D]. Beijing: China University of Geosciences, 1-79 (in Chinese with English abstract).
Li Ningbo, Shan Qiang, Zhang Yongping, Luo Yong, Yang Wubin, Jiang Yuhang, Yu Xueyuan. 2012. Study on the A-Type rhyolite porphyries from the Awulale Area, western Tianshan[J]. Geotectonica et Metallogenia, 36(4): 624-633 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2012.04.016
Li Yan, Wang Jian, Han Zhibin, Hou Xiaoguang, Wang Shiyan. 2017. Zircon U-Pb dating and petrogenesis of the Early Jurassic rhyolite in Badaguan area, northern Da Hinggan Mountains[J]. Geology in China, 44(2): 346-357 (in Chinese with English abstract).
Li Yanjun, Wei Junhao, Li Huan, Chen Chong, Shan Liang, Hou Benjun. 2014. Geological, geophysical and geochemical characteristics and comprehensive prospecting model of the Xiasai Ag-Pb-Zn deposit in the Yindun Island Arc[J]. Geology in China, 41(5): 1636-1649 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2014.05.018
Liu Baotian, Jiang Yaoming, Qu Jingchuan. 1983. The discovery of a palaeoceanic crust strip along the line from Litang to Ganzi in Sichuan and its significance on plate tectonics[C]//Ministry of Geology and Mineral Resources of China. Geological Collected Works of Qinghai-Tibet Plateau. Beijing: Geological Publishing House, 21: 153-165 (in Chinese with English abstract).
Liu Ge, She Jianzhong, Yang Wenlong, Wang Qinjun, Jia Jian, Di Xiaochen. 2018. Zircon U-Pb chronology and geochemistry of the Kalagang Formation volcanic rocks in Bayindala area, West Junggar, and their geological significance[J]. Geology in China, 45(6): 1241-1250 (in Chinese with English abstract).
Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J, Chen H H. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
Liu Zhen. 2017. Petrological Characteristics and Ore Potentiality of the Tumugou Formation Volcanic Rocks of the Litang Area in Sichuan Province[D]. Chengdu: Chengdu University of Science and Technology, 1-61 (in Chinese with English abstract).
Ludwig K R. 2003. User's Manual for Isoplot v. 3.00: A gechronological Toolkit for Microsoft Excel[J]. Berkeley: Berkeley Geochronology Center, 60-61.
Luhr J F, Haldar D. 2006. Barren Island Volcano (NE Indian Ocean): Island-arc high-alumina basalts produced by troctolite contamination[J]. Journal of Volcanology and Geothermal Research, 149(3/4): 177-212.
Maniar P D, Piccoli P M. 1989. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 101: 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Meng Fanchao, Lu Yulin, Liu Jiaqi, Cui Yan. 2013. Geochemical characteristics and petrogenesis of two types of acid volcanic rocks from Yingcheng Formation in Songliao Basin[J]. Acta Petrologica Sinica, 29(8): 2731-2745 (in Chinese with English abstract).
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews. 37(3/4): 215-224.
Mo Xuanxue, Lu Fengxiang, Shen Shangyue, Zhu Qinwen, Hou Zengqian, Yang Kaihui. 1995. Sanjiang Tethyan Volcanism and Related Mineralization[M]. Beijing: Geological Publishing House, 1-269 (in Chinese with English abstract).
Mo Xuanxue, Zhao Zhidan, Deng Jinfu, Dong Guochen, Zhou Su, Guo Tieying, Zhang Shuangquan, Wang Liangliang. 2003. Response of volcanism to the India-Asia collision[J]. Earth Science Frontiers, 10(9): 135-147 (in Chinese with English abstract).
Mǘller D, Rock N M S, Groves D I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study[J]. Mineralogy and Petrology, 46(4): 259-289. doi: 10.1007/BF01173568
Pan Guitang, Chen Zhiliang, Li Xingzhen. 1997. Geological-Tectonic Evolution in the Eastern Tethys[M]. Beijing: Geological Publishing House, 1-218 (in Chinese with English abstract).
Pan Guitang, Ding Jun, Wang Liquan. 2005. Geological Map of the Qinghai-Tibet Plateau and adjacent areas 1∶1500000 (with instructions)[M]. Chengdu: Chengdu Map Publishing House, 75-76 (in Chinese with English abstract).
Peng T P, Zhao G C, Fan W M, Peng B X, Mao Y S. 2014. Zircon geochronology and Hf isotopes of Mesozoic intrusive rocks from the Yidun terrane, Eastern Tibetan Plateau: Petrogenesis and their bearings with Cu mineralization[J]. Journal of Asian Earth Sciences, 80: 18-33. doi: 10.1016/j.jseaes.2013.10.028
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination disarray for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
Pearce J A, Bender J F, DeLong S E, Kidd W S F, Low P J, Güner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell J G. 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 44: 189-229. doi: 10.1016/0377-0273(90)90018-B
Reid A J, Wilson C J L, Shun L, Pearson N, Belousova E. 2007. Mesozoic plutons of the Yidun Arc, SW China: U/Pb geochronology and Hf isotopic signature[J]. Ore Geology Review, 31: 88-106.
Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22: 247-263. doi: 10.1016/0024-4937(89)90028-5
Rock N M S. 1990. Lamprophyres: The global occurrence petrology, origin and economic significance of some rocks of deep origin[J]. Glasgow: Blackie & Sonslid, 1-285.
Rollison H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. London: Longman Group U K, 1-381.
Rudnick R L, Gao S. 2014. Composition of the continental crust[J]. Treatise on Geochemistry, 4: 1-51.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42: 313-345.
Sun Zhuanrong, Dong Guochen, Zhao Zuoxin, Wang Weiqing, Liu Shengqiang. 2017. Petrological, geochemical and geochronological features of Lailishan ganitoids in western Yunnan and their genesis of partial melting of crustal source[J]. Geology in China, 44(6): 1140-1158 (in Chinese with English abstract).
Wang B Q, Zhou M F, Chen W T, Gao J F, Yan D P. 2013. Petrogenesis and tectonic implications of the Triassic volcanic rocks in the northern Yidun Terrane, Eastern Tibet[J]. Lithos, 175/176: 285-301.
Wang Nan, Wu Cailai, Qin Haipeng. 2017. Mineralogical, geochemical features of typical mesozoic granites in the Yidun Arc, Western Sichuan and a discussion on the magma origin[J]. Geological Review, 63(4): 981-1000 (in Chinese with English abstract).
Wang Tao. 2000. Origin of hybrid granitoids and the implications for continental dynamics[J]. Acta Petrologica Sinica, 16(2): 161-168 (in Chinese with English abstract).
Weislogel A L. 2008. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi Complex, central China[J]. Tectonophysics, 451: 331-345.
Wilson G, Glasser F P. 1989. Solid solution in the ZrO2-TiO2-SnO2 system[J]. Research Gate, 69-74.
Winchester J A, Floyd P A. 1997. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325-343.
Xiao L, Zhang H F, Clemens J D, Wang Q W, Kan Z Z, Wang K M, Ni P Z, Liu X M. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications fortectonic evolution[J]. Lithos 96, 436-452.
Yan Songtao. 2016. The Research of Geochemical Characteristics, Geochronology and Geology Significance of the Tumugou Formation Volcanic Rocks of the Litang Area in Sichuan Province[D]. Beijing: China University of Geosciences, 1-61 (in Chinese with English abstract).
Yang T N, Hou Z Q, Wang Y, Zhang H R, Wang Z L. 2012. Late Paleozoic to Early Mesozoic tectonic evolution of northeast Tibet: Evidence form the Triassic composite western Jinsha-Garze-Litang suture[J]. Tectonics, 31(4): 1-20.
Yang Wenqiang, Feng Qinglai, Liu Guichun. 2010. Radiolarian fauna and geochemical characters of the cherts from Garz-Litang tectonic belt and its tectono-paleogeographic significance[J]. Acta Geoscientia Sinica, (1): 78-89 (in Chinese with English abstract).
Yao Huazhou. 1999. An overview of the multicyclic evolution of the Yidun Island Arc Belt (Southwest China)[J]. Geological Review, 45(7): 851-857 (in Chinese with English abstract).
Yu Shizhi. 2017. The research of geochemistry and geochronology of the Samalongwa granodiorite porphyry of the Litang area in Sichuan Province[D]. Beijing: China University of Geosciences, 1-57 (in Chinese with English abstract).
Zhang J H, Gao S, Ge W C, Wu F Y, Yang J H, Wilde S A, Li M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, Northeastern China: Implications for subduction-induced delamination[J]. Chemical Geology, 276: 114-165.
Zhang Xiaofei, Chen Guochao, Zhou Yi, Li Yuanbai, Teng Chao, Wang Biren, Pang Zhenshan, Cao Kan, Wei Junqi. 2019. Characteristics and tectonic setting of volcanic rocks of Baiyingaolao Formation in Hanwula of Xi Ujimqin Banner, Inner Mongolia[J]. Geology in China, 46(6): 1410-1432 (in Chinese with English abstract).
Zhu Yongfeng, Zeng Yishan, Ai Yongfu. 1995. The experimental study about the liquid immiscibility and ore-forming process in felsic magma[J]. Acta Petrologica Sinica, 11(1): 1-8 (in Chinese with English abstract).
Zhu Y F, Zeng Y S, Ai Y F. 1996. Experimental evidence for a relationship between liquid immiscibility and ore-formation in felsic magmas[J]. Applied Geochemistry, 11: 481-487.
贺亲志, 贾志泉, 骆志红. 2018. 白松—奔都地区晚三叠世义敦岛弧带火山岩岩石地球化学特征及成因[J]. 四川地质学报, 38(2): 194-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201802004.htm 侯增谦, 侯立伟, 叶庆同, 刘福禄, 唐国光. 1995. 三江地区义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床[M]. 北京: 地震出版社, 1-220. 侯增谦, 卢记仁, 李红阳, 王登红, 吕庆田. 1996. 中国西南特提斯构造演化——幔柱构造控制[J]. 地球学报, (4): 439-453. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB604.008.htm 侯增谦, 曲晓明, 周继荣, 杨岳清, 黄典豪, 吕庆田, 唐绍华, 余金杰, 王海平, 赵金花. 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录[J]. 地质学报, 75(4): 484-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200104012.htm 侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统[J]. 地质学报, 78(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200401013.htm 简平, 程裕淇, 刘敦一. 2001. 变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据[J]. 地学前缘, 8(3): 183-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103031.htm 李虎. 2018. 川西理塘地区力泽西岩体岩石成因及地质意义[D]. 北京: 中国地质大学(北京), 1-79. 李宁波, 单强, 张永平, 罗勇, 杨武斌, 姜玉航, 于学元. 2012. 西天山阿吾拉勒地区A型流纹斑岩的初步研究[J]. 大地构造与成矿学, 36(4): 624-633. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201204018.htm 李研, 王建, 韩志滨, 侯晓光, 王石岩. 2017. 大兴安岭北段八大关地区早侏罗世流纹岩锆石U-Pb定年与岩石成因[J]. 中国地质, 44(2): 346-357. http://geochina.cgs.gov.cn/geochina/article/abstract/20170210?st=search 李艳军, 魏俊浩, 李欢, 陈冲, 陕亮, 侯本俊. 2014. 义敦岛弧带夏塞银铅锌矿床地质、物化探特征及综合找矿模型[J]. 中国地质, 41(5): 1636-1649. http://geochina.cgs.gov.cn/geochina/article/abstract/20140518?st=search 刘宝田, 江耀明, 曲景川. 1983. 四川理塘—甘孜一带古洋壳的发现及其对板块构造的意义[C]//地质矿产部. 青藏高原地质文集. 北京: 地质出版社, 12: 119-127. 刘阁, 舍建忠, 杨文龙, 王庆军, 贾健, 邸晓辰. 2018. 西准噶尔巴音达拉地区卡拉岗组火山岩锆石U-Pb年代学、地球化学及其地质意义[J]. 中国地质, 45(6): 1241-1250. http://geochina.cgs.gov.cn/geochina/article/abstract/20180613?st=search 刘振. 2017. 四川省理塘地区图姆沟组火山岩岩石学特征及含矿性[D]. 成都: 成都理工大学, 1-61. 孟凡超, 路玉林, 刘嘉麒, 崔岩. 2013. 松辽盆地营城组两类酸性火山岩地球化学特征与成因[J]. 岩石学报, 29(8): 2731-2745. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308010.htm 莫宣学, 路凤香, 沈上越, 朱勤文, 侯增谦, 杨开辉. 1995. 三江特提斯火山作用与成矿[M]. 北京: 地质出版社, 1-269. 莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度—亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 10(9): 135-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm 潘桂棠, 陈智梁, 李兴振. 1997. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1-218. 潘桂棠, 丁俊, 王立全. 2005. 青藏高原及邻区地质图 1∶1500000(附说明书)[M]. 成都: 成都地图出版社, 75-76. 孙转荣, 董国臣, 赵作新, 王伟清, 刘圣强. 2017. 滇西来利山花岗岩年代学、地球化学特征及其壳源部分熔融成因[J]. 中国地质, 44(6): 1140-1158. http://geochina.cgs.gov.cn/geochina/article/abstract/20170609?st=search 王楠, 吴才来, 秦海鹏. 2017. 川西义敦岛弧中生代典型花岗岩体矿物学、地球化学特征及岩浆来源探讨[J]. 地质论评, 63(4): 981-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201704013.htm 王涛. 2000. 花岗岩混合成因研究及大陆动力学意义[J]. 岩石学报, 16(2): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002002.htm 严松涛. 2016. 四川理塘地区图姆沟组火山岩地球化学特征、年代学及地质意义研究[D]. 北京: 中国地质大学(北京), 1-61. 杨文强, 冯庆来, 刘桂春. 2010. 滇西北甘孜—理塘构造带放射虫地层、硅质岩地球化学及其构造古地理意义[J]. 地质学报, 1 : 78-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201001004.htm 姚华舟. 1999. 义敦岛弧带多旋回演化的基本轮廓[J]. 地质论评, 45(7): 851-857. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1124.htm 余式志. 2017. 四川理塘萨玛隆洼花岗闪长斑岩地球化学及年代学研究[D]. 北京: 中国地质大学(北京), 1-57. 张晓飞, 陈国超, 周毅, 李沅柏, 滕超, 王必任, 庞振山, 曹侃, 魏均启. 2019. 内蒙古西乌旗罕乌拉地区白音高老组火山岩特征及其形成构造背景[J]. 中国地质, 46(6): 1410-1432. http://geochina.cgs.gov.cn/geochina/article/abstract/20190612?st=search 朱永峰, 曾贻善, 艾永富. 1995. 长英质岩浆中液态不混溶与成矿作用关系的实验研究[J]. 岩石学报, 11(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199501000.htm -
期刊类型引用(4)
1. 王学阳,杨言辰,刘志宏,张继武,戴台鹏. 长江中下游成矿带大金山地区综合信息找矿效果及深部找矿潜力分析. 吉林大学学报(地球科学版). 2025(01): 125-138 . 百度学术
2. 谭杰,徐文杰,赵毅,罗达,赵俊宏,钟玉龙,陶明荣. 广西五圩矿田多金属矿成矿模式及找矿预测. 中国矿业. 2024(S1): 508-514 . 百度学术
3. 李双飞,黄鹂,陈建,朱伟,孙丽莎,王欣,彭永和,商祥鸿,邹占春,唐名鹰,高远,赵家强. 山东省五莲七宝山金铜矿床成矿模式与找矿勘查模型——来自综合物化探的证据. 地质与勘探. 2023(05): 961-973 . 百度学术
4. 李玉坤,王兴龙,廖阿托,李科. 东天山梧桐沟钨矿区综合信息找矿模型. 新疆地质. 2023(04): 530-537 . 百度学术
其他类型引用(2)