Cause analysis of groundwater pollution in coal development zone of Yellow River Basin and prevention suggestions
-
摘要:研究目的
黄河流域内由于煤炭资源开发导致地下水污染严重,从整体角度对流域内重点煤炭开发区地下水进行归纳总结,为其可持续健康发展和地下水资源改善提供防治建议。
研究方法从黄河流域战略地位出发,对地下水污染成因和污染模式进行归纳总结。采用改进后的综合水质指数法对流域内九大煤炭基地的地下水进行水质评价。选用主成分分析法赋权指标,并引入改进的内梅罗污染指数法,按照WPI分级法进行评价。
研究结果通过对黄河流域各重点断面水质评价,得到目前流域内煤炭基地水质结果中Ⅲ、Ⅳ类占比较多,水质较差。分析成因当前流域内存在高矿化度矿井水、酸性矿井水和含特殊组分矿井水污染,同时阐述污染地下水形成的浅层和深层两种污染模式。
结论对3种矿井水采用相应防治方法,并提出膏体充填技术和微生物修复技术2种防治技术建议,通过应用实际矿山为例,印证污染防治技术能够改善由煤炭开采引发的流域内地下水污染严重的问题,以期研究结果能够对成功推动中国绿色矿山的快速发展具有参考意义。
创新点:(1)整体梳理黄河流域内因煤矿开采而引起的地下水污染现状;(2)改进综合水质指数法对流域内煤炭基地地下水进行评价;(3)结合煤炭基地分析地下水污染成因和污染模式,并提出相应技术建议。
Abstract:This paper is the result of hydrogeological survey engineering.
ObjectiveThe development of coal resources in the Yellow River Basin has led to serious groundwater pollution. This paper summarizes the situation from the overall perspective of the basin, providing prevention and control suggestions for its sustainable and healthy development and reasonable protection of groundwater resources.
MethodsStarting from the strategic position of the Yellow River basin, the causes and patterns of pollution are summarized. The improved comprehensive water quality index method was used to evaluate the groundwater quality of nine major coal bases in the basin. The weighted indicators were selected using principal component analysis, and the improved Nemero pollution index method was introduced. The evaluation was conducted according to the WPI classification method.
ResultsThe research shows that through the water quality evaluation of various key sections of the Yellow River basin, it is found that the water quality results of coal bases in the basin currently account for more Class III and Class IV, with poor water quality. Currently, the pollution of highly mineralized mine water, acidic mine water, and mine water containing special components in the drainage basin is relatively large. The causes of pollution are analyzed, and the shallow and deep pollution modes of polluted groundwater are described.
ConclusionsWe adopt corresponding prevention and control methods for three types of mine water, and propose two prevention and control technologies, paste filling technology and microbial remediation technology. Through the application of actual mines as examples, it is confirmed that pollution prevention and control technology can improve the serious problem of groundwater pollution in river basins caused by coal mining, with the hope that the research results can have reference significance for successfully promoting the rapid development of green mines in China.
Highlights:(1) The current situation of groundwater pollution caused by coal mining in the Yellow River basin was overall sorted out; (2) The comprehensive water quality index method to evaluate groundwater of coal bases in the basin was improved; (3) The causes and patterns of groundwater pollution combined with coal bases, and propose corresponding technical recommendations was analyzed.
-
1. 引言
石泉–旬阳金矿带整装勘查区7个图幅区1∶50 000水系沉积物测量始于2013年(图1),其中饶峰幅、迎丰街幅和安康幅1∶50 000水系沉积物测量由中国地质调查局发展研究中心2016—2018年组织实施;铁佛寺幅、汉阴幅、大河口幅和赵家湾幅1∶50 000水系沉积物测量由中国地质调查局西安地质调查中心2013—2015年组织实施,承担单位均为陕西地矿第一地质队有限公司。
陕西石泉–旬阳金矿带整装勘查区位于秦岭造山带中部的南秦岭构造带,在漫长地质历史演化中,该区地层经历了多期变形,构造样式以褶皱、滑脱和韧性剪切带最为典型。地层区划隶属于华南地层大区中的牛山地层小区(韩芳林等,2013)(图2)。因盖层与基底间拆离滑脱,以出露滨海环境下形成的震旦纪—早古生代黑色浅变质强变形细碎屑岩系建造最为典型(张复新等,2009;唐永忠等,2012)。区内出露地层有古元古代杨坪岩组、耀岭河岩组中基性火山岩,古生代沉积—浅变质岩,中晚志留世—早泥盆世沉积地层发育不全(刘国惠和张寿广,1993)。
石泉–旬阳金矿带整装勘查区1∶50 000水系沉积物测量从2013年7月份编写项目设计书开始,各项工作均按相关技术要求执行。项目总体按三个阶段进行,第一阶段组织地球化学勘查技术人员进行1∶50 000水系沉积物测量采样工作;第二阶段检查、核对、整理和处理数据,圈定地球化学异常;第三阶段编制地球化学系列图件,建立完善石泉–旬阳金矿带整装勘查区的区域地球化学数据库,筛选并进行异常查证工作。
陕西石泉–旬阳金矿带整装勘查区水系沉积物测量原始数据集元数据简表见表1。
表 1 数据库(集)元数据简表条目 描述 数据库(集)名称 陕西石泉–旬阳金矿带整装勘查区饶峰幅等7个图幅区1∶50 000水系沉积物测量原始数据集 数据库(集)作者 谈 乐,陕西地矿第一地质队有限公司
张永强,陕西地矿第一地质队有限公司
刘小朋,陕西地矿第一地质队有限公司
李小明,陕西地矿第一地质队有限公司
王才进,陕西地矿第一地质队有限公司数据时间范围 2013—2018年 地理区域 陕西省石泉县–旬阳县地区 数据格式 *.xlsx 数据量 2.01MB 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 中国地质调查局地质调查项目(121201004000150017-53、121201004000160901-54、121201004000172201-45、12120113048100) 语种 中文 数据库(集)组成 数据集为Excel表格,包括7个独立的工作表(sheet),分别为“饶峰幅采样点位及元素分析结果表”、“铁佛寺幅采样点位及元素分析结果表”、“汉阴幅采样点位及元素分析结果表”、“大河口幅采样点位及元素分析结果表”、“赵家湾幅采样点位及元素分析结果表”、“迎丰街幅采样点位及元素分析结果表”、 “安康幅采样点位及元素分析结果表” 2. 野外工作方法
2.1 方法选择
勘查区属湿润−半湿润中低山丘陵自然景观区(樊会民和李方周,2013),湿润、多雨、强剥蚀、深切割,以物理风化为主,沟系冲、洪积物具粗岩屑性质(刘劲松等,2016),适宜开展水系沉积物测量。根据《地球化学普查规范(1∶50 000)》(DZ/T 0011−2015),结合勘查区地球化学景观特点,确定本次地球化学普查采样介质为水系沉积物,采样密度4~8点/km2,样品粒级选择−20目~+60目。
2.2 样品采集
2.2.1 采样部位
勘查区1∶50 000水系沉积物测量采样部位均选择在河沟底部或河岸与水面接触处(张源等,2018)。在间歇性水流地区或主干河道中,主要在河床底部采样;在水流湍急的河道中选择在水流变缓处、水流停滞处、转石背后、水流由窄变宽处,以及河道转弯内侧有较多细粒物质聚集处采样。
2.2.2 采样物质
采样介质以代表原生地质找矿信息的基岩物质成分为原则,采样物质为水系沉积物中的淤泥、粉砂或细砂。
2.2.3 采样方法
勘查区水系沉积物所采集的样品为粗−细粒级混合的粒级段,有效地避开了腐植层取样,样品采集过程中,加强了对蚀变−矿化强烈或重点找矿地段的加密采样工作。采用的具体技术方法如下:
①采样前,先用采样勺拨去地表浮土或腐植层,再进行取样。
②每次装袋前,首先检查布样袋,看是否有开线或破洞。含水样品装袋时先用塑料袋分装后再装入布样带中,防止袋内水分相互淋滤造成湿样互相污染。
③为了提高样品的代表性,样品采集均在采样点位上下游20~30 m范围内3~5处多点采集,组合成一件样品。
④样品采集避开了矿山开发、村镇、水坝、淤地造田、交通要道和路口造成的污染物及岸边崩塌堆积物地段。
2.2.4 野外定点
陕西石泉–旬阳金矿带整装勘查区涉及1∶50 000图幅共7幅(表2),图幅坐标系采用1980西安坐标系,中央经线为111°,图幅涉及地理数据均在陕西地理信息测绘局购买。
表 2 陕西石泉−旬阳金矿带整装勘查区涉及的7幅1∶50 000地形图图幅名称 图幅号 饶峰幅 I49E17001 迎丰街幅 I49E18002 铁佛寺幅 I49E18003 汉阴幅 I49E19003 大河口幅 I49E19004 赵家湾幅 I49E19005 安康幅 I49E02005 用1∶50 000标准地形图作为水系沉积物测量野外工作手图,采用手持IGS-100掌上机(李超岭等,2002)结合地形图进行野外定点。定点实际距离误差均小于30 m,即在手图上均小于1 mm。
2.3 采样点密度
本次共采集水系沉积物样品13 169件。根据勘查区地形地貌特点、景观条件、地质特征,本次1∶50 000水系沉积物测量分别采用了不同的采样布局和采样密度:加密区(即指1∶200 000化探异常明显、矿化信息相对较多、基岩面积大、第四系分布面积较少的地区,除正常布点外,成矿有利地段适当加密)采样密度为5.18~5.46点/km2;一般工作区(即指第四系分布面积相对较多,基岩出露面积小或零星,1∶200 000化探异常弱的地区)采样密度为:4.1~4.3点/km2;放稀区(即山间盆地)采样密度为3.13~3.52点/km2。该采样密度组合可有效地控制工作区内绝大多数汇水面积,经济实用,可有效地达到地球化学普查的目的。
2.4 样品加工
样品加工基本流程为:自然干燥→揉碎→过筛→混匀→称量缩分→填写标签→装袋→填写送样单→装箱(陈玉明和陈秀法,2018)。
样品干燥方式采取日晒风干。干燥过程中及时揉搓样品,防止结块,并用木槌适当敲打。
② 样品干燥后过−20目~+60目尼龙筛,对筛下样品用对角线折叠法混匀,缩分后装入纸样袋中,其重量均≥310 g。
③按样品缩分法将加工好的样品缩分成两份各≥150 g,一份装牛皮纸袋送检,另一份装塑料瓶封装当副样留存。
3. 样品分析测试方法
样品分析测试工作先后由具备岩矿测试甲级资质的自然资源部西安矿产资源监督检测中心和陕西地矿局汉中地质大队有限公司实验室承担,严格执行《地球化学普查(比例尺1∶50 000)规范样品分析技术的补充规定》。
3.1 实验室样品加工与制备
实验室配备有专职样品管理人员,负责样品的验收和保管,并严格按照规范要求办理样品交接手续。
以50件样品为一个分析批次进行编码和样品加工,每一个分析批次中随机插入4个国家一级标准物质,然后进入计算机,打印出分析号与送样号的对照表,以供样品管理人员在管理样品、填写汇总表等准备工作中使用,样品随后由样品管理人员下达至碎矿间进行无污染碎样。
化探样品在加工前均在60℃以下充分烘干。在大批量样品加工前,先对岩屑样分别进行玛瑙球数量、球磨时间的最佳条件试验,使其细磨后样品粒度满足1∶50 000区域地球化学调查的要求为原则。要求细磨加工后样品粒度达到−0.074 mm(−200目)占90%以上。
样品管理人员对每批样品的加工粒度是否达到规定要求进行检查;检查合格后,按规定插入指定的监控样及国家一级标样,同时依照密码编号分出内检样,随后交由质量管理人员下达分析任务。
3.2 分析项目及分析方法
根据项目任务书、合同书及总体设计要求,2013—2015年度 1∶50 000水系沉积物测量分析项目为:Au、Ag、Cu、Pb、Zn、As、Sb、Hg、V、Mo、Ti、W共12种元素。2016—2018年度1∶50 000水系沉积物测量分析项目为Au、Ag、Cu、Pb、Zn、As、Sb、Hg、Bi、Sn、W、Mo、Cd、Co、Cr、Ni共计16种元素。
采用光栅光谱仪(OES)、原子荧光仪(AFS)、等离子质谱仪法(ICP-MS)、发射光谱法(GF-AAS)等仪器进行分析测试,所有元素报出率均为100%。勘查区18种元素分析测试方法配套方案见表3。
表 3 勘查区18种元素分析方法、检出限及报出率统计表分析方法 元素含量 1∶50 000地球化学测量规定检出限 所用方法检出限 报出率(%) GF-AAS w(Au)/10−9 0.3~1 0.23 100 F-AAS w(Cu)/10−6 2 1.00 100 w(Zn)/10−6 20 5.00 100 HG-AFS w(As)/10−6 0.5~1 0.20 100 w(Sb)/10−6 0.3 0.05 100 CV-AFS w(Hg)/10−9 10~50 2.00 100 w(Bi)/10−6 0.3 0.1 100 ICP-OES w(Ti)/10−6 100 9.3 100 w(V)/10−6 20 5 100 OES w(Ag)/10−6 0.050 0.019 100 w(Sn)/10−6 2 0.5 100 ICP-MS w(Pb)/10−6 5~10 0.91 100 w(W)/10−6 1 0.048 100 w(Mo)/10−6 1 0.056 100 w(Ni)/10−6 1 0.21 100 w(Co)/10−6 1 0.10 100 w(Cr)/10−6 10 1.00 100 w(Cd)/10−6 0.2 0.02 100 4. 数据样本描述
石泉–旬阳金矿带整装勘查区饶峰幅等7个图幅1∶50 000水系沉积物测量原始数据集为Excel表格型数据,包括7个独立的工作表(sheet),分别为“饶峰幅水系沉积物测量采样点位及元素分析结果表”、“迎丰街幅水系沉积物测量采样点位及元素分析结果表”、“铁佛寺幅水系沉积物测量采样点位及元素分析结果表”、“汉阴幅水系沉积物测量采样点位及元素分析结果表”、“大河口幅水系沉积物测量采样点位及元素分析结果表”、“赵家湾幅水系沉积物测量采样点位及元素分析结果表”、“安康幅水系沉积物测量采样点位及元素分析结果表”(宋相龙等,2017)。每个工作表(sheet)包含如下内容:样品编号、高斯坐标、图幅号、地层、分析结果(铁佛寺幅、大河口幅、汉阴幅、赵家湾幅分析元素为Au、Hg、Ag、Cu、Pb、Zn、Mo、As、Sb、Ti、V、W;迎丰街幅、饶峰幅、安康幅分析元素为Au、Ag、Cu、Pb、Zn、As、Sb、Hg、Bi、Sn、W、Mo、Cd、Co、Cr、Ni)、备注。数据结构见表4。
表 4 陕西石泉−旬阳金矿带整装勘查区水系沉积物测量数据结构表序号 数据项名称 量纲 数据类型 字段长度 实例 1 样品编号 − 字符型 20 57C2 2 图幅号 − 字符型 20 I49E018002 3 地层 − 字符型 20 O3-S1b 4 高斯横坐标 − 字符型 20 255460 5 高斯纵坐标 − 字符型 20 3672075 6 经度 − 字符型 20 108°22′45″ 7 纬度 − 字浮型 20 33°08′48″ 8 Au 10−9 浮点型 20 1.03 9 Ag 10−6 浮点型 20 42 10 Cu 10−6 浮点型 20 35.9 11 Pb 10−6 浮点型 20 35.9 12 Zn 10−6 浮点型 20 83.7 13 As 10−6 浮点型 20 3.88 14 Sb 10−6 浮点型 20 2.13 15 Hg 10−9 浮点型 20 49 16 Bi 10−6 浮点型 20 0.85 17 Sn 10−6 浮点型 20 3 18 W 10−6 浮点型 20 2.14 19 Mo 10−6 浮点型 20 0.93 20 Cd 10−6 浮点型 20 0.1 21 Co 10−6 浮点型 20 22.3 22 Cr 10−6 浮点型 20 94.6 23 Ni 10−6 浮点型 20 41.9 24 Ti 10−6 浮点型 20 − 25 V 10−6 浮点型 20 − 5. 数据质量和评估
5.1 原始数据质量
铁佛寺幅、汉阴幅、大河口幅和赵家湾幅地球化学测量样品测试过程中以50件样品为一个分析批次进行编码和样品加工,每一个分析批次中随机插入4个国家一级标准物质,分别为GBW07302a、GBW07304a、GBW07309、GBW07318,对分析过程的精密度进行监控。另外随机分段加入12件国家一级标准物(每500件样品插入一次),共插入15次,对分析过程的准确度进行监控,并对样品中部分高值和低值进行了抽查分析,抽查样品数量比例为2.6%。
饶峰幅、迎丰街幅和安康幅地球化学测量样品测试过程中以50件样品为一个分析批进行编码和样品加工,共分为243批。每一个分析批次中随机插入购买于中国地质科学院地球物理地球化学勘查研究所的4个国家一级标准物质对分析过程的准确度进行监控。其中Au、Ag、Hg、Pb、Sn、As、Sb和Bi共8种元素插入GSD-10、GSD-14、GSD-18、GSD-20控制分析过程精密度;Cr、Co、Ni、Cu、Zn、Mo、Cd和W共8种元素插入GSD-8a、GSD-9、GSD-10、GSD-14控制分析过程精密度,并对样品中部分高值和低值进行了抽查分析,抽查样品数量比例为4.1%。
本次检测工作中,分析元素内检(重复样)合格率均在95.00%以上;元素报出率均达到100%;元素异常复查合格率均为97.5%以上;所选用分析方法的检出限均满足DZ/T0130.4−2006中1∶50 000化探样品标准要求。方法的精密度:对所选一级标准物质检测的△lgC平均值在(−0.099~0.099)以内。方法准确度:对所选一级标准物质检测的△lgC平均值在(−0.099~0.099)以内。所选分析方法的检出限、精密度和准确度均满足《地球化学普查(比例尺1∶50 000)规范样品分析技术的补充规定》的质量要求。
上述质量参数数据表明,本次检测的分析质量完全符合《地球化学普查(比例尺1∶50 000)规范样品分析技术的补充规定》及DZ0130.4−2006的质量要求。
5.2 成果数据库建设质量
陕西石泉–旬阳金矿带整装勘查区饶峰幅等7个图幅区1∶50 000水系沉积物测量成果数据库建设(万常选等,2009)均按照化探数据模型采用DGSS软件平台实现(庞健峰等,2017),样品中各分析元素属性结构均参照中国地质调查局固体矿产勘查数据库内容与结构(左群超等,2018;李超岭等,2013)填写,数据结构内容完整齐全。所形成的7幅1∶50 000水系沉积物测量数据库已由中国地质调查局西安地质调查中心及中国地质调查局发展研究中心专家评审验收,评分93分,评为“优秀级”,已完成相关数据库汇交。
6. 结论
本次数据集工作区范围是由中国地质调查局西安地质调查中心与中国地质调查局发展研究中心组织实施的陕西石泉–旬阳金矿带整装勘查区内饶峰幅等7幅图3 010 km2 1∶50 000水系沉积物测量工作,是陕西石泉–旬阳金矿带整装勘查区内首次系统性的采用统一采样方法、分析测试方法、统一分析元素,也是本整装勘查区内首次规范化建立地球化学数据库,获得了珍贵的第一手地球化学测量资料。
本数据集成果指导在整装勘查区内圈定金找矿靶区10处,金成矿远景区12处❶,其中在圈定的陕西省汉阴县双河口一带金找矿靶区内新发现坝王沟金矿点,通过后期省地勘基金投入,金(333+334)资源量30吨;在圈定的陕西省安康市汉滨区将军山一带金找矿靶区内新发现早阳金矿点,通过后期省地勘基金投入,金(333+334)资源量20吨。另外运用本数据集成果新发现4处金矿点,分别为陕西省宁陕县堰沟金矿点、陕西省安康市汉滨区柳坑金矿点、陕西省石泉县石桥金矿点、陕西省石泉县栈房金矿点,均有一定的找矿潜力。另外,本数据集成果指导我省找到2~4处新的大型金矿产资源开发基地。
注释:
❶张永强, 孙健, 谈乐. 2018. 陕西石泉−旬阳金矿带整装勘查区矿产调查与找矿预测2016—2018年子项目总成果报告[R]. 安康:陕西地矿第一地质队有限公司, 1−260.
1. Introduction
The measurement of 1∶50 000 stream sediments across 7 map sheets of the integrated survey area of the Shiquan-Xunyang gold zone began in 2013 (Fig. 1), of which those in the Raofeng, Yingfengjie and Ankang map sheets were organized by the Development and Research Center of China Geological Survey in 2016—2018; those in the Tiefosi, Hanyin, Dahekou and Zhaojiawan map sheets were organized by the Xi’an Center of China Geological Survey in 2013—2015, and both were conducted by the Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd..
The integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, located at the South Qinling tectonic zone in the midst of the Qinling orogeny, has experienced multi-stage deformations in its long history of geological evolution, where the typical tectonic patterns are folding, detachment and ductile shearing zones. In terms of stratigraphic regionalization, it belongs to the Niushan stratigraphic sub-region of the South China stratigraphic super-region (Han FL et al., 2013) (Fig. 2). Due to decoupling detachment between the overlying strata and basement, the outcrop in the area is characterized by the formation of Sinian−early-Paleozoic, black, low-metamorphic, strongly-deformed fine clastic rock series, which were formed in the coastal sea environment (Zhang FX et al., 2009; Tang YZ et al., 2012). The outcropped strata within the area include the Paleoproterozoic Yangpingyan Formation, the basic volcanic rock of the Yaolinghe Formation and Paleozoic sedimentary−low-metamorphic rocks, where mid- and late-Silurian−early-Devonian sedimentary strata are poorly developed (Liu GH and Zhang SG, 1993).
The measurement of the 1∶50 000 stream sediments in the integrated survey area of the Shiquan-Xunyang gold ore zone began with preparation of the project design in July 2013, all works being done in accordance with the relevant technical specifications. The project was completed in three stages: Stage 1, organization of the geochemical staff to take samples for the measurement of the 1∶50 000 stream sediments; Stage 2, checking, verifying, collating and processing data, and delineation of geochemical anomalies; Stage 3, plotting a series of geochemical maps, establishing and improving the regional geochemical database for the integrated survey area of the Shiquan-Xunyang gold ore zone, and screening and verifying anomalies.
Metadata for the measured original dataset of the stream sediments in the 7 map sheets of the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, are shown in Table 1.
表 1 Metadata Table of Database (Dataset)Items Description Database (dataset) name The 1∶50 000 Original Measurement Dataset on Stream Sediments for 7 Map Sheets including the Raofeng Map in the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, Shaanxi Database (dataset) authors Tan Le, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
Zhang Yongqiang, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
Liu Xiaopeng, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
Li Xiaoming, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
Wang Caijin, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.Data acquision time 2013—2018 Geographic area Shiquan-Xunyang, Shaanxi Data format *.xlsx Data size 2.01MB Data service system URL http://dcc.cgs.gov.cn Fund project China Geological Survey Project (121201004000150017-53, 121201004000160901-54, 121201004000172201-45, 12120113048100). Language Chinese Database(dataset) composition The dataset consists of 7 separate Excel sheets: Raofeng Sampling Points and Element Analytical Result Sheet, Tiefosi Sampling Points and Element Analytical Result Sheet, Hanyin Sampling Points and Element Analytical Result Sheet, Dahekou Sampling Points and Element Analytical Result Sheet, Zhaojiawan Sampling Points and Element Analytical Result Sheet, Yingfengjie Sampling Points and Element Analytical Result Sheet and Ankang Sampling Points and Element Analytical Result Sheet. 2. Field Work Methods
2.1 Selection Method
The survey area is a humid−semihumid mid-and-low hilly natural landscape area (Fan HM and Li FZ, 2013), humid, rainy, strongly denuded, deeply cut, mainly physically-weathered, where channel-system alluvium and diluvium have the properties of coarse debris, suitable for the measurement of the stream sediments (Liu JS et al., 2016). In accordance with the Specifications of the Geochemical Reconnaissance Survey (1∶50 000)(DZ/T 0011−2015), considering the geochemical landscape features of the survey area, it was decided to use stream sediment as the medium to be sampled for this geochemical reconnaissance survey, at a sampling density of 4~8 points/km2, and –20 meshes ~ +60 meshes are selected for the sample’s grain size.
2.2 Sampling
2.2.1 Sample Location
In the survey area, samples for measurement of 1∶50 000 stream sediments are all taken from the river bottom or the contact between the riverbank and the water surface (Zhang Y et al., 2018). In intermittent or trunk river channels, samples are mainly taken from the bottom of the riverbed; in rivers with rapid flow, samples are taken at places where water flows slowly or stops, or behind a boulder, or where water flow widens, or at the inner side of the turn of the river channel, where much more fine-grained materials concentrate.
2.2.2 Sampling Materials
Following the principle that sampled media shall represent material components of bedrocks containing original geological prospecting information, sampling materials are sludge, silt or fine sand in stream sediments.
2.2.3 Sampling Methods
Samples taken from the stream sediments in the survey area are graded sections, mixing coarse−fine-grain sizes, care being taken to avoid sampling from the humus layer. During sampling, an emphasis was placed on taking more samples at places where alteration−mineralization is strong, or which are priorities for prospecting. Samples are taken using the specific technique below:
① Prior to sampling, the topsoil or humus layer is removed with a sampling spoon.
② The cloth bag used for housing samples is checked to ensure that it does not have split seams or broken holes before placing samples within it. Before putting moist samples in the bag, they were placed in a plastic bag and then in the cloth bag, to prevent samples from becoming wet and contaminated, due to mutual leaching.
③ To make samples more representative, samples were taken at multiple points of 3~5 places 20~30 m within upstream and downstream of the sampling points and then combined into one sample.
④ Sampling avoids locations where there are pollutants and accumulated collapses at the bank due to mine development, villages and towns, dams, field-making from silty land, traffic route or road junctions.
2.2.4 Point Fixation in the Field
The integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, involves seven 1∶50 000 map sheets (Table 2) in which the 1980 Xi’an coordinate system is used and the central meridian is 111°, and geological data involved in the map sheets were purchased from the Shaanxi Geographic Information Survey Bureau.
表 2 Topographic map of seven 1∶50 000 Map Sheets involved in the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, ShaanxiMap sheet name Map sheet number Raofeng I49E17001 Yingfengjie I49E18002 Tiefosi I49E18003 Hanyin I49E19003 Dahekou I49E19004 Zhaojiawan I49E19005 Ankang I49E02005 The 1∶50 000 standard topographic map is used as a base map for field measurement of the stream sediments to determine the sampling points in the field with a hand-held IGS-100 device (Li CL et al., 2002). Errors in point localization were less than 30 m from their actual locations, i.e. less than 1 mm on the base map.
2.3 Density of Sampling Points
During the project there were 13 169 samples in total taken from stream sediments. Based on topographic and landform characteristics, landscape conditions and geological features, for the measurement of these 1∶50 000 stream sediments, different sampling layouts and densities were used: at the densest area (i.e. referring to areas where at 1∶200 000 a geochemical anomaly is obvious, there was more information on mineralization, larger in the bedrock area and distributed with less Quaternary strata, and in addition to normal point arrangements, sampling in sections favoring metallogenesis are undertaken to the standard density), the sampling density was 5.18~5.46 points/km2; at the ordinal work area (i.e. referring to areas where there are more Quaternary strata, smaller or sporadic outcropped bedrocks, and the 1∶200 000 geochemical anomaly is weak), the sampling density was 4.1~4.3 points/km2; at the scattered area (i.e. intermountain basin), the sampling density was 3.13~3.52 points/km2. The combination of these sampling densities allows the effective control of the vast majority of water catchment within the area, which is cost-effective and enables the effective meeting of the goal of the geochemical reconnaissance survey.
2.4 Sample Processing
The basic procedure to process samples: natural drying → trituration →sieving →mixing evenly → weighing and splitting samples →fillling in the label → placing samples into bags → completing the sample delivery order → placing sampled bags into boxes (Chen YM and Chen XF, 2018).
Sample drying method: dried under sunlight and air. During drying, rub and knead samples regularly to prevent caking, and use a mallet to strike them properly,
② Dried samples were sieved with a −20~+60 mesh nylon sieve, samples under the sieve are mixed evenly through diagonal folding, split and then put into paper bags, their weight being ≥ 310 g.
③ Samples processed by sample splitting were divided into two parts, each part ≥ 150 g, one put into a kraft paper bag and sent for testing, and the other placed into plastic bottles, which were then sealed and kept as duplicate samples.
3. Sample Analysis and Testing
Samples were analyzed and tested by the Xi’an Center for Mineral Resource Supervision and Testing under the Ministry of Natural Resources and a laboratory of the Hanzhong Geological-Battalion Co., Ltd. under the Shaanxi Bureau of Geology and Mineral Resource, both of which possess Qualification A for rock and mineral testing, in strict accordance with the Additional Rules for Regulating Sample Analysis Technologies of Geochemical Reconnaissance Surveys (Scale: 1∶50 000).
3.1 Processing and Preparation of Lab Samples
Labs are provided with full-time staff to manage samples, receive, inspect and care for samples, as well as handle sample handover procedures strictly in accordance with requirements in the specifications.
The samples were coded and processed as an analytical batch of 50, each analytical batch also containing 4 randomly inserted level-1 national standard substances, the data sent to a computer to print out a comparison table showing the respective numbers of samples analyzed and those delivered, which was then used by sample management staff in tasks such as managing samples and filling in the summary tables, and samples were subsequently sent by the sample management staff to the ore-crushing room where they were crushed without contamination.
Geochemical samples must be fully dried at a temperature below 60℃ prior to processing. Before massive sample processing, debris samples should be tested for the best conditions for agate ball numbers and ball-milling time so that the particle size of the finely-ground samples meets the requirement for the 1∶50 000 regional geochemical survey, that finely-ground samples with particle size reaching –0.074 mm (–200 mesh) accounted for at least 90% of the sample.
The sample management staff checked whether each processed batch of samples met the requirement for particle size; inserted designated control samples and Level-1 national standard samples into acceptable batches as required, whilst separating inner inspection samples based on their codes and numbers, and then delivering them to quality management staff to assign analysis tasks.
3.2 Items Analyzed and Analytical Methods
According to the Project Task, Contract and General Design Specification, in 2013—2015, the items to be analyzed during the measurement of the 1∶50 000 stream sediments were the 12 elements: Au, Ag, Cu, Pb, Zn, As, Sb, Hg, V, Mo, Ti and W. In 2016—2018, the items to be analyzed for measurement of the 1∶50 000 stream sediments totalled 16 elements: Au, Ag, Cu, Pb, Zn, As, Sb, Hg, Bi, Sn, W, Mo, Cd, Co, Cr and Ni.
Instruments such as Optical Emission Spectrometer (OES), Atomic Fluorescence Spectrometer (AFS), Inductive Coupling Plasma-Mass Spectrometer (ICP-MS) and Graphite Furnace-Atomic Absorption Spectrometer (GF-AAS) were used in analysis and testing, and all elements reported percentages were 100%. Schemes for testing and analysis of the 18 elements in the survey area are shown in Table 3.
表 3 Analytical methods, detection limits and report percentages of the 18 elements in the survey areaAnalytical method Element content Specified detection limit for the 1∶50 000 geochemical measurement Detection limit of the method used Report percentage (%) GF-AAS w(Au)/10−9 0.3~1 0.23 100 F-AAS w(Cu)/10−6 2 1.00 100 w(Zn)/10−6 20 5.00 100 HG-AFS w(As)/10−6 0.5~1 0.20 100 w(Sb)/10−6 0.3 0.05 100 CV-AFS w(Hg)/10−9 10~50 2.00 100 w(Bi)/10−6 0.3 0.1 100 ICP-OES w(Ti)/10−6 100 9.3 100 w(V)/10−6 20 5 100 OES w(Ag)/10−6 0.050 0.019 100 w(Sn)/10−6 2 0.5 100 ICP-MS w(Pb)/10−6 5~10 0.91 100 w(W)/10−6 1 0.048 100 w(Mo)/10−6 1 0.056 100 w(Ni)/10−6 1 0.21 100 w(Co)/10−6 1 0.10 100 w(Cr)/10−6 10 1.00 100 w(Cd)/10−6 0.2 0.02 100 4. Description of Data Samples
The measured original dataset on the 1∶50 000 stream sediments in the 7 map sheets of the integrated survey area of the Shiquan-Xunyang gold ore zone contains data in Excel form, including 7 separate sheets: Raofeng Sampling Points and Element Analytical Result Sheet, Tiefosi Sampling Points and Element Analytical Result Sheet, Hanyin Sampling Points and Element Analytical Result Sheet, Dahekou Sampling Points and Element Analytical Result Sheet, Zhaojiawan Sampling Points and Element Analytical Result Sheet, Yingfengjie Sampling Points and Element Analytical Result Sheet, and Ankang Sampling Points and Element Analytical Result Sheet (Song XL et al., 2017). Each sheet contains the following: sample No., Gaussian coordinates, map sheet No., stratigraphy, analyzed result (elements analyzed in Tiefosi, Dahekou, Hanyin and Zhaojiawan map sheets are Au, Hg, Ag, Cu, Pb, Zn, Mo, As, Sb, Ti, V and W; elements analyzed in Yingfengjie, Raofeng and Ankang map sheets are Au, Ag, Cu, Pb, Zn, As, Sb, Hg, Bi, Sn, W, Mo, Cd, Co, Cr and Ni) and remarks. Dataset structure could be seen in Table 4.
表 4 Dataset structure of the measured original data of the stream sediments in the integrated survey area of the Shiquan-Xunyang gold ore zone, ShaanxiNo. Name of data item Dimension Data category Field length Real example 1 Sample No. Character type 20 57C2 2 Map sheet No. Character type 20 I49E018002 3 Stratigraphy Character type 20 O3−S1b 4 Gauss horizontal coordinate Character type 20 255460 5 Gauss vertical coordinate Character type 20 3672075 6 Longitude Character type 20 108°22′45″ 7 Latitude Character type 20 33°08′48″ 8 Au 10−9 Floating-point type 20 1.03 9 Ag 10−6 Floating-point type 20 42 10 Cu 10−6 Floating-point type 20 35.9 11 Pb 10−6 Floating-point type 20 35.9 12 Zn 10−6 Floating-point type 20 83.7 13 As 10−6 Floating-point type 20 3.88 14 Sb 10−6 Floating-point type 20 2.13 15 Hg 10−9 Floating-point type 20 49 16 Bi 10−6 Floating-point type 20 0.85 17 Sn 10−6 Floating-point type 20 3 18 W 10−6 Floating-point type 20 2.14 19 Mo 10−6 Floating-point type 20 0.93 20 Cd 10−6 Floating-point type 20 0.1 21 Co 10−6 Floating-point type 20 22.3 22 Cr 10−6 Floating-point type 20 94.6 23 Ni 10−6 Floating-point type 20 41.9 24 Ti 10−6 Floating-point type 20 25 V 10−6 Floating-point type 20 5. Data Quality and Assessment
5.1 Quality of the Original Data
In the process of analyzing and testing geochemical samples in the Tiefosi, Hanyin, Dahekou and Zhaojiawan map sheets, every 50 samples were grouped to be coded and processed as one analytical batch, each analytical batch being randomly inserted with 4 Level-1 national standard substances which were GBW07302a, GBW07304a, GBW07309 and GBW07318, in order to monitor and control the precision of the analytical process. In addition, 12 Level-1 national standard substances are added randomly in sections (once for every 500 samples) for 15 times in total, to monitor the accuracy of the analytical process, and some high and low values of samples were randomly inspected and analyzed, with 2.6% of samples receiving random inspection.
In the process of analyzing and testing geochemical samples in the Raofeng, Yingfengjie and Ankang map sheets, every 50 samples were grouped to be coded and processed as one analytical batch, 243 batches in total. Each analytical batch is randomly inserted with 4 Level-1 national standard substances purchased from the CAGS Geophysical & Geochemical Exploration Institute, in order to monitor and control the accuracy of the analytical process. Of these, to analyze the 8 elements Au, Ag, Hg, Pb, Sn, As, Sb and Bi, GSD-10, GSD-14, GSD-18 and GSD-20 were inserted to control the precision of the analytical process; to analyze the other 8 elements Cr, Co, Ni, Cu, Zn, Mo, Cd and W, GSD-8a, GSD-9, GSD-10 and GSD-14 were inserted to control the precision of the analytical process, and some high and low values of samples were randomly inspected and analyzed, with 1.4 % of samples receiving random inspection.
During this detection, the qualifying rate of element inner examination (duplicate sample) was more than 95.00%; all elements’ report percentages were 100%; the qualifying rate of element anomaly re-examination was at least 97.5%; the detection limits of analytical methods used all met the standard requirement on 1∶50 000 geochemical samples in DZ/T0130.4−2006. Precision of methods: the mean ΔlgC detected with Level-1 national standard substance was within –0.099~+0.099. Accuracy of methods: the mean ΔlgC detected with Level-1 national standard substance was within –0.099~+0.099. The detection limit, precision and accuracy of the analytical methods selected met the quality-related requirements in the Additional Rules for Regulating Sample Analysis Technologies of Geochemical Reconnaissance Surveys (Scale 1∶50 000).
Above-mentioned figures concerning quality-related parameters indicate that this examination fully complied with the quality-related requirements in the Additional Rules for Regulating Sample Analysis Technologies of Geochemical Reconnaissance Surveys (Scale 1∶50 000) and DZ0130.4−2006.
5.2 Quality in Establishing the Resulting Database
The measured results database of the 1∶50 000 stream sediments in the 7 map sheets including Raofeng on the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi (Wan CX et al., 2009), was set up in accordance with the geochemical data model by using the software platform DGSS (Pang JF et al., 2017), properties and structures of all the elements analysed were completed by referring to the content and structure of the CGS’s solid mineral survey database (Zuo QC et al., 2018; Li CL et al., 2013), to ensure that the data structure and content were complete and sound. The generated measurement databases of 1∶50 000 stream sediments in the 7 map sheets have been reviewed and accepted by the experts from the Xi'an Center of China Geological Survey and the Development and Research Center of China Geological Survey, scoring 93, awarded “Excellence”, and have thus been handed over.
6. Conclusions
The scope of the work area involved in this database was the measurement of the 1∶50 000 stream sediments in the 7 map sheets including Raofeng in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, organized and implemented by the Xi'an Center and the Development and Research Center of China Geological Survey, covering 3 010 km2. It is the first time that unified sampling, analytical and testing methods have been used to analyze elements in a systematic way in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi. It is also the first time that a geochemical databases have been established in a standardized way in the integrated survey area, so as to obtain valuable first-hand geochemical measurement information.
With the results from the database, 10 Au prospecting target areas and 12 Au prospective areas were delineated in the integrated survey area❶, and at the newly-discovered Bawanggou Au deposit from the Au-delineated prospecting target area at and around Shuanghekou, Hanyin County, Shaanxi, with a subsequent provincial fund for geological exploration, it was found that the Au resource (333+334) was 30 tons; in the Au-prospecting target area at and around Jiangjunshan, Ankang city, Shaanxi, the Zaoyang Au deposit was recently found, and a subsequent provincial fund created for geological exploration, the Au (333+334) resource is 20 tons. In addition, 4 new gold ore occurrences were discovered in Shaanxi by using the results from this database, and they are located in Yangou, Ningshan County; Liukeng, Hanbin District, Ankang City; Shiqiao and Zhanfang, Shiquan County, all of which have a certain prospecting potential. Furthermore, the results from the database have guided Shaanxi to find 2–4 new large-scale Au resource development bases.
Notes:
❶ Zhang Yongqiang, Sun Jian, Tan Le. 2018. Comprehensive result report of sub-projects from 2016 to 2018 on mineral investigation and prospecting prediction in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi[R]. Ankang: Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co.Ltd., Ankang, Shaanxi, 1−260 (in Chinese).
-
表 1 黄河流域主要地下水类型及基本信息
Table 1 Main groundwater types and basic information in the Yellow River Basin
地下水分区名称 主要地下水类型 地下水分布
面积/km2地下水资
源量/亿m3地下水中心
水位埋深/m地下
水位变化上游 青藏高原 孔隙水、多年冻结层水、裂隙水 219572.5 58.00 12.59 上升 兰州—石嘴山 第四系孔隙水、碎屑岩孔隙裂隙水 72915.1 12.72 118.2 上升 鄂尔多斯高原(中上游) 砂岩裂隙水、孔隙水 161315.7 27.30 67.05 基本稳定 河套平原(中上游) 第四系孔隙水 58277.9 25.84 14.30 上升 中游 吕梁山西麓 裂隙岩溶水 38759.6 8.90 9.80 基本稳定 汾河流域 岩溶水、基岩裂隙水 45606.3 33.59 16.45 下降 沁河流域 冲洪积扇孔隙水、风化裂隙水、构造裂隙水 46868.6 13.14 4.40 下降 黄土高原 松散层孔隙水、碎屑岩裂隙水、岩溶裂隙水 136976.3 47.82 139.50 下降 下游 花园口以下 冲积平原孔隙水、岩溶裂隙水 39666.6 24.32 4.25 下降 表 2 神东矿区活鸡兔矿矿井水质分析结果(mg/L)
Table 2 Water quality analysis results of Huojitu Mine in Shendong Mining Area (mg/L)
煤炭基地名称 CO32− HCO3− Cl− SO42− Ca2+ Mg2+ K++Na+ 矿化度 神东矿区活鸡兔矿 57 162 287 651 164 37 295 1653 表 3 山西阳泉市娘子关矿井水质分析结果(mg/L)
Table 3 Water quality analysis results of Niangziguan Mine in Yangquan City, Shanxi Province (mg/L)
煤炭基地名称 pH Fe HCO3− Cl− SO42− Ca2+ Mg2+ K++Na+ 山西阳泉市娘子关 2.99 0.815 362.9 187.6 931.8 164 77.2 410.8 表 4 含特殊组分矿井水质分析结果(mg/L)
Table 4 Water quality analysis results of mine water quality with special components (mg/L)
煤炭基地名称 pH F− HCO3− Cl− SO42− Ca2+ Mg2+ K++Na+ 神东基地萨拉乌苏 7.97 5.01 798.21 199.06 284.52 16.64 7.13 535.25 神东基地大柳塔煤矿区 8.22 0.13 1.68 310 310 85 78 301 表 5 黄河流域九大煤炭基地地下水数据统计(mg/L,pH值除外)
Table 5 Statistics of groundwater data of nine coal bases in the Yellow River Basin (mg/L, except for pH)
煤炭基地 含量分布 pH TDS SO42− F Fe Mn 宁东(靳德武等,2022) 平均值 6.90 5401.35 1503.66 0.80 15.21 10.00 神东(李果等,2022) 平均值 8.00 1392.10 233.50 4.13 3.35 0.16 晋北、晋中、晋东
(李向全等,2021)平均值 6.12 1142.60 501.03 1.38 7.92 2.54 陕北(陶虹等,2016) 平均值 8.69 700.28 101.50 1.08 1.06 0.40 黄陇(靳德武等,2023) 平均值 7.69 607.88 192.06 1.60 0.10 0.89 河南(张记飞等,2023) 平均值 7.98 783.08 202.62 1.06 5.33 0.57 鲁西(王怀文等,2013) 平均值 5.86 1997.29 1245.89 1.03 93.49 10.72 表 6 黄河流域九大煤炭基地水质评价结果
Table 6 Water quality evaluation results of nine coal bases in the Yellow River Basin
煤炭基地 pH值 TDS SO42− F Fe Mn 评价结果 宁东 0 0.28 0.33 0.19 0.03 0.17 Ⅲ 神东 0 0.39 0.25 0.11 0.08 0.17 Ⅱ 晋 晋北 0.10 0.40 0.50 0 0 0 Ⅲ 晋中 0 0.13 0.17 0.34 0.3 0.06 Ⅳ 晋东 0 0.47 0.16 0.16 0 0.21 Ⅱ 陕北 0 0.27 0.49 0.10 0.02 0.12 Ⅲ 黄陇 0.02 0.44 0.35 0.13 0.02 0.04 Ⅱ 河南 0.06 0.31 0.18 0.15 0.08 0.22 Ⅱ 鲁西 0.02 0.20 0.26 0.28 0.11 0.13 Ⅳ -
[1] Bian Wei, Li Jingfeng, Liu Shuqin, Li Ting, Guo Qiang. 2021. Study on the technical route of highly mineralized mine water treatment in Ningdong Energy Base[J]. Technology of Water Treatment, 47(8): 120−123,127 (in Chinese with English abstract).
[2] Bian Zhengfu, Yu Haochen, Lei Shaogang, Yin Dengyu, Zhu Guoqing, Mu Shouguo, Yang Dejun. 2021. Strategic consideration of exploitation on coal resources and its ecological restoration in the Yellow River Basin, China[J]. Journal of China Coal Society, 46(5): 1378−1391 (in Chinese with English abstract).
[3] Cao Wengeng, Wang Yanyan, Ren Yu, Fei Yuhong, Li Jincheng, Li Zeyan, Zhang Dong, Shuai Guanyin. 2022. Status and progress of treatment technologies for arsenic–bearing groundwater[J]. Geology in China, 49(5): 1408−1426 (in Chinese with English abstract).
[4] Chen Miao, Wu Yonggui. 2012. Monitoring on heavy metals pollution and fuzzy synthetic evaluation of water samples in Dajing abandoned lead−zinc mining areas of Shuicheng, Guizhou[J]. Journal of Guilin University of Technology, 32(2): 208−211 (in Chinese with English abstract).
[5] Dong Zhenyu, Wang Shuangming. 2017. Influence of coal exploitation on groundwater resources in Yuxi river valley of northern Shaanxi[J]. Journal of Arid Land Resources and Environment, 31(3): 185−190 (in Chinese with English abstract).
[6] Du Mingze, Li Hongjie, Li Wen, Qiu Hao, Jiang Peng, Wang Donghao. 2020. Study progress and development directions of the prevention and control technology of ground water pollution in coal mine sites[J]. Metal Mine, (9): 1−14 (in Chinese with English abstract).
[7] Fan Limin, Ma Wanchao, Chang Bofeng, Sun Kui, Miao Yanping, Lu Bo, Tian Shuibao, Yang Lei. 2023. Hydrochemical characteristics and formation mechanism of groundwater in Yushenfu mining area[J]. Coal Science and Technology, 51(1): 383−394 (in Chinese with English abstract).
[8] Feng Li, Zhang Pengfei, Zhang Maosheng, Liu Hao, Wang Yao. 2023. Strategies and practical paths for ecological restoration and comprehensive management in Yulin coal mining area in the new era[J]. Northwestern Geology, 56(3): 19–29 (in Chinese with English abstract).
[9] Gu Dazhao. 2015. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 40(2): 239−246 (in Chinese with English abstract).
[10] Gu Dazhao, Li Jingfeng, Cao Zhiguo, Wu Baoyang, Jiang Binbin, Yang Yi, Yang Jian, Chen Yaoping. 2021. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society, 46(10): 3079−3089 (in Chinese with English abstract).
[11] Gu Jinyi, Tian Shimin, Liang Shuai. 2022. The resource elements and legal guarantee of ecological protection and high−quality development in the Yellow River Basin[J]. Yellow River, 44(S1): 1−4 (in Chinese).
[12] Han Shuangbao, Li Fucheng, Wang Sai, Li Haixue, Yuan Lei, Liu Jingtao, Shen Haoyong, Zhang Xueqing, Li Changqing, Wu Xi, Ma Tao, Wei Shibo, Zhao Minmin. 2021. Groundwater resource and eco–environmental problem of the Yellow River Basin[J]. Geology in China, 48(4): 1001−1019 (in Chinese with English abstract).
[13] Han Xuemeng, Cai Wenqian, Wang Junqiang, Li Huiying, Xu Xiangqin, Tian Shengyan. 2023. Groundwater quality characteristics and pollution causes in typical hilly areas of North China: the case of Longan District, Anyang City, Henan Province[J]. Journal of Environmental Engineering Technology, 13(3): 992−1000 (in Chinese with English abstract).
[14] Hao Chunming, Zhang Wei, He Ruimin, Li Ting, Bao Yixiang, Li Jingfeng. 2021. Formation mechanisms for elevated fluoride in the mine water in Shendong coal–mining district[J]. Journal of China Coal Society, 46(6): 1966−1977 (in Chinese with English abstract).
[15] Jiang Binbin, Liu Shuyu, Ren Jie, Zheng Ranfeng, Chen Mengyuan, Yu Yan, Zhang Kai. 2020. Purification effect of coal mine groundwater reservoir on mine water containing organic compounds and heavy metals in different occurrence forms[J]. Coal Engineering, 52(1): 122−127 (in Chinese with English abstract).
[16] Jin Dewu, Wang Tiantian, Zhao Baofeng, Li Debin, Zhou Zhenfang, Shang Hongbo. 2022. Distribution characteristics and formation mechanism of high salinity groundwater in northeast Ningdong Coalfield[J]. Coal Geology & Exploration, 50(7): 118−127 (in Chinese with English abstract).
[17] Jin Dewu, Li Chaofeng, Liu Yingfeng, Cao Haitao, Ren Dengjun, Wang Hongliang, Zhang Jinkui, Huang Yang, Yang Guodong, Guo Kang, Fan Min, Liu Chenkai. 2023. Characteristics of roof water hazard of coal seam in Huanglong Coalfield and key technologies for prevention and control[J]. Coal Geology & Exploration, 51(1): 205−213 (in Chinese with English abstract).
[18] Jin Fengjun, Lin Yinghua, Ma Li, Chen Zhuo. 2022. Evolution of the strategic position and high–quality development direction of the Yellow River Basin[J]. Journal of Lanzhou University (Social Sciences), 50(1): 1−12 (in Chinese with English abstract).
[19] Kou Yafang, Zhu Zhongyuan, Xiu Haifeng, Bai Lifang. 2011. Research on ecological use technology of highly mineralized mine water in Shendong Mining Area[J]. China Water & Wastewater, 27(22): 86−89 (in Chinese with English abstract).
[20] Li Guo, Lü Qingxu, Xu Feng. 2022. Hydrochemistry characteristics and its influencing factors of surface water and groundwater in the Shendong mining area[J]. Coal engineering, 54(4): 145−150 (in Chinese with English abstract).
[21] Li Haihua, Xing Jing, Sun Yangshuai, Zhou Dawei, Ma Tao, Zhang Jingwen. 2015. Water quality assessment of drinking water sources of the Yellow River main stem based on combination weighting fuzzy comprehensive evaluation method[J]. Journal of Hydroecology, 36(5): 44−50 (in Chinese with English abstract).
[22] Li Xiangquan, Zhang Chunchao, Hou Xinwei. 2021. Characteristics of groundwater circulation and evolution in Jindong large coal base driven by coal mining: An example of Xin'an spring area[J]. Journal of China Coal Society, 46(9): 3015−3026 (in Chinese with English abstract).
[23] Liu Ning, Zhao Xiaoguang, Xie Haijun, Li Yu. 2019. Influence of coal mining on groundwater resources in Yushenfu area[J]. Journal of Xi’an University of Science and Technology, 39(1): 71−78 (in Chinese with English abstract).
[24] Liu Xiuli, Wang Xin, Guo Pibin, Xiong Rui, Nie Lei, Shen Jun, Zhang Jing. 2022. Evolution and driving effect of coal–water footprint in coal rich areas of the Yellow River Basin[J]. Scientia Geographica Sinica, 42(2): 293−302 (in Chinese with English abstract).
[25] Ma Tao, Li Wenli, Han Shuangbao, Zhang Hongqiang, Wang Wenke, Li Fucheng, Li Haixue, He Xubo, Zhao Meimei. 2023. Distribution characteristics, influencing factors and development potential of groundwater resources in Shaanxi Province of the Yellow River Basin[J]. Geology in China, 50(5): 1432−1445 (in Chinese with English abstract).
[26] Peng Suping, Bi Yinli. 2020. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China[J]. Journal of China Coal Society, 45(4): 1211−1221 (in Chinese with English abstract).
[27] Shen Haoyong, Li Jia, Wang Zhiheng, Xie Hao, Liang Yongping, Yongxin Xu, Han Shuangbao, Ren Jianhui, Pan Yaoyun, Zhao Chunhong, Zhao Yi. 2022. Water resources utilization and eco–environment problem of Fenhe River, branch of Yellow River[J]. Geology in China, 49(4): 1127−1138 (in Chinese with English abstract).
[28] Sun Hongfu, Zhao Fenghua, Li Wensheng, Li Rongjie, Ge Xiangkun. 2007. Geochemical characteristics of acid mine drainage and sediments from coal mines[J]. Journal of China University of Mining & Technology, 36(2): 221−226 (in Chinese with English abstract).
[29] Sun Yajun, Chen Ge, Xu Zhimin, Yuan Huiqing, Zhang Yuzhuo, Zhou Lijie, Wang Xin, Zhang Chenghang, Zheng Jieming. 2020. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 45(1): 304−316 (in Chinese with English abstract).
[30] Sun Yike, Wang Lin, Qi Feng. 2018. Analysis of water quality evolution of the main stream of the Yellow River based on improved integrated water quality index[J]. Yellow River, 40(7): 78−81, 87 (in Chinese with English abstract).
[31] Tang Chunlei, Liang Yongping, Jin Hua, Zhao Chunhong, Shen Haoyong, Wang Zhiheng, Zhao Yi, Xie Hao, Liang Chen. 2022. Overview of field monitoring for acid mine water system of the coal mine in Shandi river basin[J]. Carsologica Sinica, 41(4): 522−531 (in Chinese with English abstract).
[32] Tao Hong, Ning Kuibin, Tao Fuping, Yang Zeyuan, Chai Xiaobing, Zhang Chaofeng, Li Wenli. 2016. Shalow groundwater dynamic characteristics and response to coal mining in the typical blownsand region of the Northern Shaanxi Province[J]. Journal of China Coal Society, 41(9): 2319−2325 (in Chinese with English abstract).
[33] Teng Yanguo, Hu Jingdan, Zheng Fuxin, Dou Junfeng. 2022. Advances in groundwater pollution treatment and remediation technologies in uranium mining areas[J]. South–to–North Water Transfers and Water Science & Technology, 20(5): 886−901 (in Chinese with English abstract).
[34] Tian Hua, Yang Jiayi, Han Qiangqiang, Li Jinfang, Xin Tuo. 2021. Prediction of Impact of Coal Mining on Groundwater[J]. Coal Technology, 40(12): 110−114 (in Chinese with English abstract).
[35] Tian Huiwen, Zhang Xinxin, Bi Rutian, Zhu Hongfen, Xi Xi. 2020. An assessment of the carbon sequestration loss of farmland ecosystems caused by coal mining[J]. Journal of China Coal Society, 45(4): 1499−1509 (in Chinese with English abstract).
[36] Wang Huaiwen, Bi Haimin, Jia Bo. 2013. Study prediction of dewatering quantity from aquifer in Ordovician limestone during No. 17 Seam Mining in Luxi Mine[J]. Coal Engineering, 45(S2): 146−148 (in Chinese with English abstract).
[37] Wang Tiantian, Jin Dewu, Yang Jian. 2021. Heavy metal pollution characteristics and source analysis of water drainage from a mine in Inner Mongolia[J]. Coal Geology & Exploration, 49(5): 45−51 (in Chinese with English abstract).
[38] Wang Tiantian, Xue Jiankun, Shang Hongbo, Zhou Zhenfang, Yang Jian, Liu Ji, Cao Yu. 2022. Fluorine pollution characteristics and formation mechanism of mine water in Shaanxi and Inner Mongolia contiguous area[J]. Journal of China Coal Society, 47(11): 4127−4138 (in Chinese with English abstract).
[39] Wang Yao, Chen Ruishan, Guo Chihui, Xia Zilong. 2021. Study on the pattern change and regional differentiation of resources and environment in the Yellow River Basin and suggestions on eco–geological survey[J]. Geology in China, 48(1): 1−20 (in Chinese with English abstract).
[40] Xi Jinping. 2019. Speech at the symposium on ecological protection and high quality development in the Yellow River Basin[J]. China Water Resources, (20): 1−3 (in Chinese).
[41] Yang Huifeng, Cao Wengeng, Zhi Chuanshun, Li Zeyan, Bao Xilin, Ren Yu, Liu Futian, Fan Cunliang, Wang Shufang, Wang Yabin. 2021. Evolution of groundwater level in the North China Plain in the past 40 years and suggestions on its overexploitation treatment[J]. Geology in China, 48(4): 1142−1155 (in Chinese with English abstract
[42] Yang Jian, Wang Hao, Wang Qiangmin, Zhang Xiyu, Wang Tiantian. 2023. Characteristics and sources of typical pollution components in mine water in the border area of Inner Mongolia and Shaanxi[J]. Journal of China Coal Society, 48(4): 1687−1696 (in Chinese with English abstract).
[43] Yang Ke, Wei Zhen, Zhao Xinyuan, He Xiang, Zhang Jiqiang, Ji Jianshuai. 2021. Theory and technology of green filling of solid waste in underground mine at coal power base of Yellow River Basin[J]. Journal of China Coal Society, 46(S2): 925−935 (in Chinese with English abstract).
[44] Yang Simin, Li Jingfeng, Bai Lu. 2023. Spatial and temporal distribution characteristics and formation mechanism of fluoride in mine water of Typical Shendong mining area[J]. Coal science and Technology, 51(6): 246−256 (in Chinese with English abstract).
[45] Zhang Fan, Wang Guangcai, Zhang Maosheng, Sun Pingping, Han Xu, Guo Jiangbo. 2023. Identification of produced water and characteristics of hydrochemistry and stable hydrogen−oxygen isotopes of contaminated groundwater[J]. Northwestern Geology, 56(3): 98–108 (in Chinese with English abstract).
[46] Zhang Haiqin, Bao Yixiang, Tang Jiawei, Cao Zhiguo, Jiang Binbin, Li Jie, Li Jingfeng, Liu Zhaofeng. 2023. Study on fluoride leaching regularity of natural minerals in Shendong Mining Area[J]. Coal Science and Technology, 51(2): 436−448 (in Chinese with English abstract).
[47] Zhang Huijun. 2021. Preliminary study on ecological mining mode in the coal−rich area of the Yellow River Basin[J]. Coal Science and Technology, 49(12): 233−242 (in Chinese with English abstract).
[48] Zhang Jifei, Wang Hailiang, Lei Huayou, Fu Tiantian, Xi Tong, Wang Chenyu. 2023. Characteristics and utilization analysis of groundwater quality in goaf areas of typical mining areas in Henan Province[J]. China Energy and Environmental Protection, 45(3): 199−203,269 (in Chinese with English abstract).
[49] Zhang Xingzhou, Yin Leyi, Chen Jian, Zhou Xiaoxiao, Yang Lihu, Wu Jichun, Xie Yueqing. 2023. A study of the multi–tiered risk assessment method of site groundwater contamination considering transport–induced risk[J]. Hydrogeology & Engineering Geology, 50(2): 160−170 (in Chinese with English abstract).
[50] Zhang Yaning, Wu Xiju, Dong Ying, Zhao Jian, Liu Jing. 2023. Quantitative analysis of ecological risk sources of heavy metals in river sediments of northern Shaanxi Mining area, China[J]. Acta Scientiae Circumstantiae, 43(6): 238−246 (in Chinese with English abstract).
[51] Zhao Xiaoguang, Wen Na, Yao Jing, Wang Zhuoran. 2021. Research on zonal characteristics of mine water quality and quantity in Yushenfu Mining Area[J]. Coal Technology, 40(11): 101−105 (in Chinese with English abstract).
[52] 卞伟, 李井峰, 刘淑琴, 李庭, 郭强. 2021. 宁东基地高矿化度矿井水处理工程实践与发展方向[J]. 水处理技术, 47(8): 120−123,127. [53] 卞正富, 于昊辰, 雷少刚, 尹登玉, 朱国庆, 牟守国, 杨德军. 2021. 黄河流域煤炭资源开发战略研判与生态修复策略思考[J]. 煤炭学报, 46(5): 1378−1391. [54] 曹文庚, 王妍妍, 任宇, 费宇红, 李谨丞, 李泽岩, 张栋, 帅官印. 2022. 含砷地下水的治理技术现状与进展[J]. 中国地质, 49(5): 1408−1426. [55] 陈淼, 吴永贵. 2012. 贵州水城大井铅锌矿废矿区矿井水重金属污染监测及模糊综合评价[J]. 桂林理工大学学报, 32(2): 208−211. [56] 董震雨, 王双明. 2017. 采煤对陕北榆溪河流域地下水资源的影响分析—以杭来湾煤矿开采区为例[J]. 干旱区资源与环境, 31(3): 185−190. [57] 杜明泽, 李宏杰, 李文, 邱浩, 姜鹏, 王东昊. 2020. 煤矿区场地地下水污染防控技术研究进展及发展方向[J]. 金属矿山, (9): 1−14. [58] 范立民, 马万超, 常波峰, 孙魁, 苗彦平, 路波, 田水豹, 杨磊. 2023. 榆神府矿区地下水水化学特征及形成机理[J]. 煤炭科学技术, 51(1): 383−394. [59] 冯立, 张鹏飞, 张茂省, 刘颢, 王耀. 2023. 新时期榆林煤矿区生态保护修复与综合治理策略及路径探索[J]. 西北地质, 56(3): 19–29. [60] 顾大钊. 2015. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 40(2): 239−246. [61] 顾大钊, 李井峰, 曹志国, 吴宝杨, 蒋斌斌, 杨毅, 杨建, 陈要平. 2021. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报, 46(10): 3079−3089. [62] 顾晋饴, 田世民, 梁帅. 2022. 黄河流域生态保护和高质量发展的资源要素及其法制保障[J]. 人民黄河, 44(S1): 1−4. [63] 韩双宝, 李甫成, 王赛, 李海学, 袁磊, 刘景涛, 申豪勇, 张学庆, 李长青, 吴玺, 马涛, 魏世博, 赵敏敏. 2021. 黄河流域地下水资源状况及其生态环境问题[J]. 中国地质, 48(4): 1001−1019. [64] 韩雪萌, 蔡文倩, 王军强, 李慧颖, 徐香勤, 田胜艳. 2023. 华北典型丘陵地区地下水水质特征及污染成因分析—以河南省安阳市龙安区为例[J]. 环境工程技术学报, 13(3): 992−1000. [65] 郝春明, 张伟, 何瑞敏, 李庭, 包一翔, 李井峰. 2021. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报, 46(6): 1966−1977. [66] 蒋斌斌, 刘舒予, 任洁, 郑然峰, 陈梦圆, 于妍, 张凯. 2020. 煤矿地下水库对含不同赋存形态有机物及重金属矿井水净化效果研究[J]. 煤炭工程, 52(1): 122−127. [67] 靳德武, 王甜甜, 赵宝峰, 李德彬, 周振方, 尚宏波. 2022. 宁东煤田东北部高矿化度地下水分布特征及形成机制[J]. 煤田地质与勘探, 50(7): 118−127. [68] 靳德武, 李超峰, 刘英锋, 曹海涛, 任邓君, 王红亮, 张金魁, 黄阳, 杨国栋, 郭康, 樊敏, 刘宸铠. 2023. 黄陇煤田煤层顶板水害特征及其防控技术[J]. 煤田地质与勘探, 51(1): 205−213. [69] 金凤君, 林英华, 马丽, 陈卓. 2022. 黄河流域战略地位演变与高质量发展方向[J]. 兰州大学学报(社会科学版), 50(1): 1−12. [70] 寇雅芳, 朱仲元, 修海峰, 白利芳. 2011. 神东矿区高矿化度矿井水生态利用处理技术[J]. 中国给水排水, 27(22): 86−89. [71] 李果, 吕情绪, 许峰. 2022. 神东矿区地表水和地下水水化学特征及其影响因素研究[J]. 煤炭工程, 54(4): 145−150. [72] 李海华, 邢静, 孙杨帅, 周大伟, 马涛, 张静雯. 2015. 基于组合赋权模糊综合评价的黄河干流水源地水质评价[J]. 水生态学杂志, 36(5): 44−50. [73] 李向全, 张春潮, 侯新伟. 2021. 采煤驱动下晋东大型煤炭基地地下水循环演变特征—以辛安泉域为例[J]. 煤炭学报, 46(9): 3015−3026. [74] 柳宁, 赵晓光, 解海军, 李瑜. 2019. 榆神府地区煤炭开采对地下水资源的影响[J]. 西安科技大学学报, 39(1): 71−78. [75] 刘秀丽, 王昕, 郭丕斌, 熊睿, 聂雷, 申俊, 张静. 2022. 黄河流域煤炭富集区煤炭水足迹演变及驱动效应研究[J]. 地理科学, 42(2): 293−302. [76] 马涛, 李文莉, 韩双宝, 张红强, 王文科, 李甫成, 李海学, 贺旭波, 赵梅梅. 2023. 黄河流域陕西省地下水资源分布特征、影响因素及开发潜力[J]. 中国地质, 50(5): 1432−1445. [77] 彭苏萍, 毕银丽. 2020. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报, 45(4): 1211−1221. [78] 申豪勇, 李佳, 王志恒, 谢浩, 梁永平, Xu Yongxin, 韩双宝, 任建会, 潘尧云, 赵春红, 赵一. 2022. 黄河支流汾河流域水资源开发利用现状及生态环境问题[J]. 中国地质, 49(4): 1127−1138. [79] 孙红福, 赵峰华, 李文生, 李荣杰, 葛祥坤. 2007. 煤矿酸性矿井水及其沉积物的地球化学性质[J]. 中国矿业大学学报, 36(2): 221−226. [80] 孙亚军, 陈歌, 徐智敏, 袁慧卿, 张玉卓, 周丽洁, 王鑫, 张成行, 郑洁铭. 2020. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 45(1): 304−316. [81] 孙艺珂, 王琳, 祁峰. 2018. 改进综合水质指数法分析黄河水质演变特征[J]. 人民黄河, 40(7): 78−81,87. [82] 唐春雷, 梁永平, 晋华, 赵春红, 申豪勇, 王志恒, 赵一, 谢浩, 梁琛. 2022. 山底河流域煤矿酸性矿井水野外监测[J]. 中国岩溶, 41(4): 522−531. [83] 陶虹, 宁奎斌, 陶福平, 杨泽元, 柴小兵, 张朝逢, 李文莉. 2016. 陕北典型风沙滩地区浅层地下水动态特征及对煤炭开采响应分析[J]. 煤炭学报, 41(9): 2319−2325. [84] 滕彦国, 胡竞丹, 郑富新, 豆俊峰. 2022. 铀矿区地下水污染治理与修复技术研究进展[J]. 南水北调与水利科技(中英文), 20(5): 886−901. [85] 田华, 杨嘉懿, 韩强强, 李金芳, 辛拓. 2021. 煤炭开采对地下水的影响预测[J]. 煤炭技术, 40(12): 110−114. [86] 田惠文, 张欣欣, 毕如田, 朱洪芬, 席茜. 2020. 煤炭开采导致的农田生态系统固碳损失评估[J]. 煤炭学报, 45(4): 1499−1509. [87] 王怀文, 毕海民, 贾波. 2013. 鲁西煤矿开采17~#煤奥灰含水层疏降水量预测研究[J]. 煤炭工程, 45(S2): 146−148. [88] 王甜甜, 靳德武, 杨建. 2021. 内蒙古某矿矿井水重金属污染特征及来源分析[J]. 煤田地质与勘探, 49(5): 45−51. [89] 王甜甜, 薛建坤, 尚宏波, 周振方, 杨建, 刘基, 曹煜. 2022. 蒙陕接壤区矿井水中氟的污染特征及形成机制[J]. 煤炭学报, 47(11): 4127−4138. [90] 王尧, 陈睿山, 郭迟辉, 夏子龙. 2021. 近40年黄河流域资源环境格局变化分析与地质工作建议[J]. 中国地质, 48(1): 1−20. [91] 习近平. 2019. 在黄河流域生态保护和高质量发展座谈会上的讲话[J]. 中国水利, (20): 1−3. [92] 杨会峰, 曹文庚, 支传顺, 李泽岩, 包锡麟, 任宇, 柳富田, 范存良, 王树芳, 王亚斌. 2021. 近40年来华北平原地下水位演变研究及其超采治理建议[J]. 中国地质, 48(4): 1142−1155. [93] 杨建, 王皓, 王强民, 张溪彧, 王甜甜. 2023. 蒙陕接壤区矿井水中典型污染组分特征及来源[J]. 煤炭学报, 48(4): 1687−1696. [94] 杨科, 魏祯, 赵新元, 何祥, 张继强, 姬健帅. 2021. 黄河流域煤电基地固废井下绿色充填开采理论与技术[J]. 煤炭学报, 46(S2): 925−935. [95] 杨思敏, 李井峰, 白璐. 2023. 神东矿区典型矿井水中氟的分布特征及形成机制[J]. 煤炭科学技术, 51(6): 246−256. [96] 张帆, 王广才, 张茂省, 孙萍萍, 韩绪, 郭江波. 2023. 受污染地下水水化学和氢氧稳定同位素特征[J]. 西北地质, 56(3): 98–108. [97] 张海琴, 包一翔, 唐佳伟, 曹志国, 蒋斌斌, 李杰, 李井峰, 刘兆峰. 2023. 神东矿区天然矿物中的氟化物浸出规律研究[J]. 煤炭科学技术, 51(2): 436−448. [98] 张会军. 2021. 河流域煤炭富集区生态开采模式初探[J]. 煤炭科学技术, 49(12): 233−242. [99] 张记飞, 王海亮, 雷华友, 傅甜甜, 习通, 王晨昱. 2023. 河南省典型矿区采空区地下水水质特征及利用分析[J]. 能源与环保, 45(3): 199−203,269. [100] 张行洲, 殷乐宜, 陈坚, 周笑笑, 杨丽虎, 吴吉春, 谢月清. 2023. 考虑污染物扩散风险的场地地下水污染多层次风险评估方法[J]. 水文地质工程地质, 50(2): 160−170. [101] 张亚宁, 吴喜军, 董颖, 赵健, 刘静. 2023. 陕北矿区河流沉积物重金属的生态风险源定量解析[J]. 环境科学学报, 43(6): 238−246. [102] 赵晓光, 温娜, 姚静, 王卓然. 2021. 榆神府煤矿区矿井水水质水量地带性特征研究[J]. 煤炭技术, 40(11): 101−105. -
期刊类型引用(6)
1. 韩双宝,周殷竹,郑焰,周金龙,李长青,韩强强,李甫成. 银川平原地下水化学成因机制与组分来源解析. 环境科学. 2024(08): 4577-4588 . 百度学术
2. 张卓,郭华明,韩双宝,牛笑童. 沉积物中砷的赋存特征及对地下水砷富集的控制:以内蒙古河套盆地为例. 中国地质. 2024(04): 1331-1341 . 本站查看
3. 吴光伟,李浩林,王庆兵,顾莎,郭梓烽,刘中业. 鲁西北平原地下水高氟与高碘成因分析. 岩矿测试. 2023(04): 793-808 . 百度学术
4. 张卓,柳富田,陈社明. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用. 华北地质. 2023(03): 49-56 . 百度学术
5. 李红超,单强,马丙太,赵德刚. 基于逻辑回归分析的焦化行业地下水有机污染物分布特征及影响因素研究. 华北地质. 2023(04): 47-54 . 百度学术
6. 邢世平,郭华明,吴萍,胡学达,赵振,袁有靖. 化隆—循化盆地不同类型含水层组高氟地下水的分布及形成过程. 地学前缘. 2022(03): 115-128 . 百度学术
其他类型引用(2)