• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

滇东典型煤矿区土壤重金属生态风险及来源解析

姜昕, 马一奇, 涂春霖, 黄安, 胡要君, 叶雷, 和成忠, 李世玉

姜昕,马一奇,涂春霖,黄安,胡要君,叶雷,和成忠,李世玉. 2024. 滇东典型煤矿区土壤重金属生态风险及来源解析[J]. 中国地质, 51(1): 327−340. DOI: 10.12029/gc20230228004
引用本文: 姜昕,马一奇,涂春霖,黄安,胡要君,叶雷,和成忠,李世玉. 2024. 滇东典型煤矿区土壤重金属生态风险及来源解析[J]. 中国地质, 51(1): 327−340. DOI: 10.12029/gc20230228004
Jiang Xin, Ma Yiqi, Tu Chunlin, Huang An, Hu Yaojun, Ye Lei, He Chengzhong, Li Shiyu. 2024. Ecological risk and source analysis of soil heavy metals in typical coal mining areas of Eastern Yunnan Province[J]. Geology in China, 51(1): 327−340. DOI: 10.12029/gc20230228004
Citation: Jiang Xin, Ma Yiqi, Tu Chunlin, Huang An, Hu Yaojun, Ye Lei, He Chengzhong, Li Shiyu. 2024. Ecological risk and source analysis of soil heavy metals in typical coal mining areas of Eastern Yunnan Province[J]. Geology in China, 51(1): 327−340. DOI: 10.12029/gc20230228004

滇东典型煤矿区土壤重金属生态风险及来源解析

基金项目: 中国地质调查局项目(DD20208075)资助。
详细信息
    作者简介:

    姜昕,男,1994年生,工程师,从事环境地球化学调查工作;E-mail:254679049@qq.com

    通讯作者:

    和成忠,男,1988年生,高级工程师,从事水文地质环境地质调查工作;E-mail:443220880@qq.com

  • 中图分类号: X53; X826

Ecological risk and source analysis of soil heavy metals in typical coal mining areas of Eastern Yunnan Province

Funds: Supported by the project of China Geological Survey (No. DD20208075).
More Information
    Author Bio:

    JIANG Xin, male, born in 1994, engineer, engaged in environmental geochemical investigations; E-mail:254679049@qq.com

    Corresponding author:

    HE Chengzhong, male, born in 1988, senior engineer, engaged in environmental geological survey; E-mail: 443220880@qq.com.

  • 摘要:
    研究目的 

    研究区地处滇东重要煤炭和农业产区,弄清煤矿区土壤重金属空间分布特征、潜在生态风险和污染来源,对煤矿区生态环境保护治理和确保农业安全具有重要现实意义。

    研究方法 

    基于网格布点法于2021年6月在典型煤矿区采集土壤样品497件,分析了土壤pH、SOM、As、Cd、Cr、Cu、Hg、Ni、Pb和Zn,运用污染负荷指数法和潜在生态风险指数法对重金属污染状况和潜在生态风险进行评价,通过主成分分析和正定矩阵因子分析(PMF)模型分析了重金属潜在来源。

    研究结果 

    土壤pH平均值为5.39,以酸性为主,SOM含量平均值是云南省土壤背景值的1.20倍,Cr、Cu、Cd、Ni、Zn和Hg含量平均值和中位数均超过云南省土壤背景值,绝大部分采样点Cd、Cu、Cr、Ni含量超过风险筛选值,分别占94.97%、93.96%、91.35%、79.28%,少部分采样点As、Cd含量超过管制值,分别占0.20%、1.41%。污染负荷指数法评价结果显示,研究区整体呈现轻微污染。潜在生态风险指数法评价结果显示,研究区整体呈现中等风险。主成分分析和PMF模型解析结果显示,研究区土壤重金属主要来源于地质背景,其次为农业活动和大气沉降。

    结论 

    煤矿区土壤中Cd、Hg潜在生态风险较高,土壤重金属主要来源于地质背景,其次是农业活动和大气沉降,建议加强相关污染土地的监测和管理,减少农家肥不合理施用,强化煤炭工业污染排放监管。

    创新点:

    (1)深化了对滇东典型煤矿区土壤重金属污染分布特征及潜在生态风险的认识;(2)综合运用相关性分析、主成分分析、PMF模型等方法,定量化识别了土壤重金属来源,为滇东典型煤矿区土壤重金属污染防治提供了充实依据。

    Abstract:

    This paper is the result of environmental geological survey engineering.

    Objective 

    The study area is located in an important coal and agricultural production area in eastern Yunnan Province. It is of great practical significance to understand the spatial distribution characteristics, potential ecological risks and pollution sources of heavy metals in soil of coal mining area for ecological environment protection and ensure agricultural security.

    Methods 

    Based on the grid distribution point method, 497 soil samples were collected in June 2021 in typical coal mining areas, and soil pH, SOM, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were analyzed. The Pollution Load Iindex method (PLI) and the Potential Ecological Risk Index method (PERI) were used to evaluate the status of heavy metal pollution and potential ecological risks. The potential sources of heavy metals were analyzed by using Principal Component Analysis (PCA) and positive definite matrix factor analysis (PMF) models.

    Results 

    The soil is mainly acidic, the average pH value of the soil is 5.39, and the average of SOM content is 1.20 times that of the background value for soils in Yunnan Province. The average and median values of Cr, Cu, Cd, Ni, Zn and Hg contents exceed the soil background values in Yunnan Province. The vast majority of sampling points have Cd, Cu, Cr, Ni content exceeding the risk screening value, accounting for 94.97%, 93.96%, 91.35%, and 79.28%, respectively. A small number of sampling points have As and Cd content exceeding the control values, accounting for 0.20% and 1.41%, respectively. The evaluation results of the PLI showed that the study area as a whole shows slight pollution. The evalution results of PERI showed that the overall risk of the study area is moderate. The results of the PCA and the PMF model analysis showed that soil heavy metals in the study area are mainly derived from the geological background, followed by agricultural activities and atmospheric deposition.

    Conclusion 

    The potential ecological risks of Cd and Hg in the soil of the coal mining areas area relatively high, and the heavy metals in the soil mainly derived from the geological background, followed by agricultural activities and atmospheric deposition. It is suggested to strengthen the monitoring and management of related polluted land, reduce the unreasonable application of farmyard manure, and strengthen the supervision of pollution from coal industry activities.

    Highlights:

    (1) It deepens the understanding of the distribution characteristics and potential ecological risks of soil heavy metal pollution in typical coal mining areas in eastern Yunnan; (2) By comprehensively utilizing methods such as correlation analysis, PCA and PMF model, the sources of heavy metals in soil were quantitatively identified, providing a solid basis for the prevention and control of heavy metal pollution in typical coal mining areas in eastern Yunnan.

  • 石泉–旬阳金矿带整装勘查区7个图幅区1∶50 000水系沉积物测量始于2013年(图1),其中饶峰幅、迎丰街幅和安康幅1∶50 000水系沉积物测量由中国地质调查局发展研究中心2016—2018年组织实施;铁佛寺幅、汉阴幅、大河口幅和赵家湾幅1∶50 000水系沉积物测量由中国地质调查局西安地质调查中心2013—2015年组织实施,承担单位均为陕西地矿第一地质队有限公司。

    图  1  陕西石泉–旬阳金矿带整装勘查区1∶50 000水系沉积物测量范围

    陕西石泉–旬阳金矿带整装勘查区位于秦岭造山带中部的南秦岭构造带,在漫长地质历史演化中,该区地层经历了多期变形,构造样式以褶皱、滑脱和韧性剪切带最为典型。地层区划隶属于华南地层大区中的牛山地层小区(韩芳林等,2013)(图2)。因盖层与基底间拆离滑脱,以出露滨海环境下形成的震旦纪—早古生代黑色浅变质强变形细碎屑岩系建造最为典型(张复新等,2009唐永忠等,2012)。区内出露地层有古元古代杨坪岩组、耀岭河岩组中基性火山岩,古生代沉积—浅变质岩,中晚志留世—早泥盆世沉积地层发育不全(刘国惠和张寿广,1993)。

    图  2  陕西石泉–旬阳金矿带整装勘查区地层区划略图

    石泉–旬阳金矿带整装勘查区1∶50 000水系沉积物测量从2013年7月份编写项目设计书开始,各项工作均按相关技术要求执行。项目总体按三个阶段进行,第一阶段组织地球化学勘查技术人员进行1∶50 000水系沉积物测量采样工作;第二阶段检查、核对、整理和处理数据,圈定地球化学异常;第三阶段编制地球化学系列图件,建立完善石泉–旬阳金矿带整装勘查区的区域地球化学数据库,筛选并进行异常查证工作。

    陕西石泉–旬阳金矿带整装勘查区水系沉积物测量原始数据集元数据简表见表1

    表  1  数据库(集)元数据简表
    条目 描述
    数据库(集)名称 陕西石泉–旬阳金矿带整装勘查区饶峰幅等7个图幅区1∶50 000水系沉积物测量原始数据集
    数据库(集)作者 谈 乐,陕西地矿第一地质队有限公司
    张永强,陕西地矿第一地质队有限公司
    刘小朋,陕西地矿第一地质队有限公司
    李小明,陕西地矿第一地质队有限公司
    王才进,陕西地矿第一地质队有限公司
    数据时间范围 2013—2018年
    地理区域 陕西省石泉县–旬阳县地区
    数据格式 *.xlsx
    数据量 2.01MB
    数据服务系统网址 http://dcc.cgs.gov.cn
    基金项目 中国地质调查局地质调查项目(121201004000150017-53、121201004000160901-54、121201004000172201-45、12120113048100)
    语种 中文
    数据库(集)组成 数据集为Excel表格,包括7个独立的工作表(sheet),分别为“饶峰幅采样点位及元素分析结果表”、“铁佛寺幅采样点位及元素分析结果表”、“汉阴幅采样点位及元素分析结果表”、“大河口幅采样点位及元素分析结果表”、“赵家湾幅采样点位及元素分析结果表”、“迎丰街幅采样点位及元素分析结果表”、 “安康幅采样点位及元素分析结果表”
    下载: 导出CSV 
    | 显示表格

    勘查区属湿润−半湿润中低山丘陵自然景观区(樊会民和李方周,2013),湿润、多雨、强剥蚀、深切割,以物理风化为主,沟系冲、洪积物具粗岩屑性质(刘劲松等,2016),适宜开展水系沉积物测量。根据《地球化学普查规范(1∶50 000)》(DZ/T 0011−2015),结合勘查区地球化学景观特点,确定本次地球化学普查采样介质为水系沉积物,采样密度4~8点/km2,样品粒级选择−20目~+60目。

    勘查区1∶50 000水系沉积物测量采样部位均选择在河沟底部或河岸与水面接触处(张源等,2018)。在间歇性水流地区或主干河道中,主要在河床底部采样;在水流湍急的河道中选择在水流变缓处、水流停滞处、转石背后、水流由窄变宽处,以及河道转弯内侧有较多细粒物质聚集处采样。

    采样介质以代表原生地质找矿信息的基岩物质成分为原则,采样物质为水系沉积物中的淤泥、粉砂或细砂。

    勘查区水系沉积物所采集的样品为粗−细粒级混合的粒级段,有效地避开了腐植层取样,样品采集过程中,加强了对蚀变−矿化强烈或重点找矿地段的加密采样工作。采用的具体技术方法如下:

    ①采样前,先用采样勺拨去地表浮土或腐植层,再进行取样。

    ②每次装袋前,首先检查布样袋,看是否有开线或破洞。含水样品装袋时先用塑料袋分装后再装入布样带中,防止袋内水分相互淋滤造成湿样互相污染。

    ③为了提高样品的代表性,样品采集均在采样点位上下游20~30 m范围内3~5处多点采集,组合成一件样品。

    ④样品采集避开了矿山开发、村镇、水坝、淤地造田、交通要道和路口造成的污染物及岸边崩塌堆积物地段。

    陕西石泉–旬阳金矿带整装勘查区涉及1∶50 000图幅共7幅(表2),图幅坐标系采用1980西安坐标系,中央经线为111°,图幅涉及地理数据均在陕西地理信息测绘局购买。

    表  2  陕西石泉−旬阳金矿带整装勘查区涉及的7幅1∶50 000地形图
    图幅名称 图幅号
    饶峰幅 I49E17001
    迎丰街幅 I49E18002
    铁佛寺幅 I49E18003
    汉阴幅 I49E19003
    大河口幅 I49E19004
    赵家湾幅 I49E19005
    安康幅 I49E02005
    下载: 导出CSV 
    | 显示表格

    用1∶50 000标准地形图作为水系沉积物测量野外工作手图,采用手持IGS-100掌上机(李超岭等,2002)结合地形图进行野外定点。定点实际距离误差均小于30 m,即在手图上均小于1 mm。

    本次共采集水系沉积物样品13 169件。根据勘查区地形地貌特点、景观条件、地质特征,本次1∶50 000水系沉积物测量分别采用了不同的采样布局和采样密度:加密区(即指1∶200 000化探异常明显、矿化信息相对较多、基岩面积大、第四系分布面积较少的地区,除正常布点外,成矿有利地段适当加密)采样密度为5.18~5.46点/km2;一般工作区(即指第四系分布面积相对较多,基岩出露面积小或零星,1∶200 000化探异常弱的地区)采样密度为:4.1~4.3点/km2;放稀区(即山间盆地)采样密度为3.13~3.52点/km2。该采样密度组合可有效地控制工作区内绝大多数汇水面积,经济实用,可有效地达到地球化学普查的目的。

    样品加工基本流程为:自然干燥→揉碎→过筛→混匀→称量缩分→填写标签→装袋→填写送样单→装箱(陈玉明和陈秀法,2018)。

    样品干燥方式采取日晒风干。干燥过程中及时揉搓样品,防止结块,并用木槌适当敲打。

    ② 样品干燥后过−20目~+60目尼龙筛,对筛下样品用对角线折叠法混匀,缩分后装入纸样袋中,其重量均≥310 g。

    ③按样品缩分法将加工好的样品缩分成两份各≥150 g,一份装牛皮纸袋送检,另一份装塑料瓶封装当副样留存。

    样品分析测试工作先后由具备岩矿测试甲级资质的自然资源部西安矿产资源监督检测中心和陕西地矿局汉中地质大队有限公司实验室承担,严格执行《地球化学普查(比例尺1∶50 000)规范样品分析技术的补充规定》。

    实验室配备有专职样品管理人员,负责样品的验收和保管,并严格按照规范要求办理样品交接手续。

    以50件样品为一个分析批次进行编码和样品加工,每一个分析批次中随机插入4个国家一级标准物质,然后进入计算机,打印出分析号与送样号的对照表,以供样品管理人员在管理样品、填写汇总表等准备工作中使用,样品随后由样品管理人员下达至碎矿间进行无污染碎样。

    化探样品在加工前均在60℃以下充分烘干。在大批量样品加工前,先对岩屑样分别进行玛瑙球数量、球磨时间的最佳条件试验,使其细磨后样品粒度满足1∶50 000区域地球化学调查的要求为原则。要求细磨加工后样品粒度达到−0.074 mm(−200目)占90%以上。

    样品管理人员对每批样品的加工粒度是否达到规定要求进行检查;检查合格后,按规定插入指定的监控样及国家一级标样,同时依照密码编号分出内检样,随后交由质量管理人员下达分析任务。

    根据项目任务书、合同书及总体设计要求,2013—2015年度 1∶50 000水系沉积物测量分析项目为:Au、Ag、Cu、Pb、Zn、As、Sb、Hg、V、Mo、Ti、W共12种元素。2016—2018年度1∶50 000水系沉积物测量分析项目为Au、Ag、Cu、Pb、Zn、As、Sb、Hg、Bi、Sn、W、Mo、Cd、Co、Cr、Ni共计16种元素。

    采用光栅光谱仪(OES)、原子荧光仪(AFS)、等离子质谱仪法(ICP-MS)、发射光谱法(GF-AAS)等仪器进行分析测试,所有元素报出率均为100%。勘查区18种元素分析测试方法配套方案见表3

    表  3  勘查区18种元素分析方法、检出限及报出率统计表
    分析方法 元素含量 1∶50 000地球化学测量规定检出限 所用方法检出限 报出率(%)
    GF-AAS w(Au)/10−9 0.3~1 0.23 100
    F-AAS w(Cu)/10−6 2 1.00 100
    w(Zn)/10−6 20 5.00 100
    HG-AFS w(As)/10−6 0.5~1 0.20 100
    w(Sb)/10−6 0.3 0.05 100
    CV-AFS w(Hg)/10−9 10~50 2.00 100
    w(Bi)/10−6 0.3 0.1 100
    ICP-OES w(Ti)/10−6 100 9.3 100
    w(V)/10−6 20 5 100
    OES w(Ag)/10−6 0.050 0.019 100
    w(Sn)/10−6 2 0.5 100
    ICP-MS w(Pb)/10−6 5~10 0.91 100
    w(W)/10−6 1 0.048 100
    w(Mo)/10−6 1 0.056 100
    w(Ni)/10−6 1 0.21 100
    w(Co)/10−6 1 0.10 100
    w(Cr)/10−6 10 1.00 100
    w(Cd)/10−6 0.2 0.02 100
    下载: 导出CSV 
    | 显示表格

    石泉–旬阳金矿带整装勘查区饶峰幅等7个图幅1∶50 000水系沉积物测量原始数据集为Excel表格型数据,包括7个独立的工作表(sheet),分别为“饶峰幅水系沉积物测量采样点位及元素分析结果表”、“迎丰街幅水系沉积物测量采样点位及元素分析结果表”、“铁佛寺幅水系沉积物测量采样点位及元素分析结果表”、“汉阴幅水系沉积物测量采样点位及元素分析结果表”、“大河口幅水系沉积物测量采样点位及元素分析结果表”、“赵家湾幅水系沉积物测量采样点位及元素分析结果表”、“安康幅水系沉积物测量采样点位及元素分析结果表”(宋相龙等,2017)。每个工作表(sheet)包含如下内容:样品编号、高斯坐标、图幅号、地层、分析结果(铁佛寺幅、大河口幅、汉阴幅、赵家湾幅分析元素为Au、Hg、Ag、Cu、Pb、Zn、Mo、As、Sb、Ti、V、W;迎丰街幅、饶峰幅、安康幅分析元素为Au、Ag、Cu、Pb、Zn、As、Sb、Hg、Bi、Sn、W、Mo、Cd、Co、Cr、Ni)、备注。数据结构见表4

    表  4  陕西石泉−旬阳金矿带整装勘查区水系沉积物测量数据结构表
    序号 数据项名称 量纲 数据类型 字段长度 实例
    1 样品编号 字符型 20 57C2
    2 图幅号 字符型 20 I49E018002
    3 地层 字符型 20 O3-S1b
    4 高斯横坐标 字符型 20 255460
    5 高斯纵坐标 字符型 20 3672075
    6 经度 字符型 20 108°22′45″
    7 纬度 字浮型 20 33°08′48″
    8 Au 10−9 浮点型 20 1.03
    9 Ag 10−6 浮点型 20 42
    10 Cu 10−6 浮点型 20 35.9
    11 Pb 10−6 浮点型 20 35.9
    12 Zn 10−6 浮点型 20 83.7
    13 As 10−6 浮点型 20 3.88
    14 Sb 10−6 浮点型 20 2.13
    15 Hg 10−9 浮点型 20 49
    16 Bi 10−6 浮点型 20 0.85
    17 Sn 10−6 浮点型 20 3
    18 W 10−6 浮点型 20 2.14
    19 Mo 10−6 浮点型 20 0.93
    20 Cd 10−6 浮点型 20 0.1
    21 Co 10−6 浮点型 20 22.3
    22 Cr 10−6 浮点型 20 94.6
    23 Ni 10−6 浮点型 20 41.9
    24 Ti 10−6 浮点型 20
    25 V 10−6 浮点型 20
    下载: 导出CSV 
    | 显示表格

    铁佛寺幅、汉阴幅、大河口幅和赵家湾幅地球化学测量样品测试过程中以50件样品为一个分析批次进行编码和样品加工,每一个分析批次中随机插入4个国家一级标准物质,分别为GBW07302a、GBW07304a、GBW07309、GBW07318,对分析过程的精密度进行监控。另外随机分段加入12件国家一级标准物(每500件样品插入一次),共插入15次,对分析过程的准确度进行监控,并对样品中部分高值和低值进行了抽查分析,抽查样品数量比例为2.6%。

    饶峰幅、迎丰街幅和安康幅地球化学测量样品测试过程中以50件样品为一个分析批进行编码和样品加工,共分为243批。每一个分析批次中随机插入购买于中国地质科学院地球物理地球化学勘查研究所的4个国家一级标准物质对分析过程的准确度进行监控。其中Au、Ag、Hg、Pb、Sn、As、Sb和Bi共8种元素插入GSD-10、GSD-14、GSD-18、GSD-20控制分析过程精密度;Cr、Co、Ni、Cu、Zn、Mo、Cd和W共8种元素插入GSD-8a、GSD-9、GSD-10、GSD-14控制分析过程精密度,并对样品中部分高值和低值进行了抽查分析,抽查样品数量比例为4.1%。

    本次检测工作中,分析元素内检(重复样)合格率均在95.00%以上;元素报出率均达到100%;元素异常复查合格率均为97.5%以上;所选用分析方法的检出限均满足DZ/T0130.4−2006中1∶50 000化探样品标准要求。方法的精密度:对所选一级标准物质检测的△lgC平均值在(−0.099~0.099)以内。方法准确度:对所选一级标准物质检测的△lgC平均值在(−0.099~0.099)以内。所选分析方法的检出限、精密度和准确度均满足《地球化学普查(比例尺1∶50 000)规范样品分析技术的补充规定》的质量要求。

    上述质量参数数据表明,本次检测的分析质量完全符合《地球化学普查(比例尺1∶50 000)规范样品分析技术的补充规定》及DZ0130.4−2006的质量要求。

    陕西石泉–旬阳金矿带整装勘查区饶峰幅等7个图幅区1∶50 000水系沉积物测量成果数据库建设(万常选等,2009)均按照化探数据模型采用DGSS软件平台实现(庞健峰等,2017),样品中各分析元素属性结构均参照中国地质调查局固体矿产勘查数据库内容与结构(左群超等,2018李超岭等,2013)填写,数据结构内容完整齐全。所形成的7幅1∶50 000水系沉积物测量数据库已由中国地质调查局西安地质调查中心及中国地质调查局发展研究中心专家评审验收,评分93分,评为“优秀级”,已完成相关数据库汇交。

    本次数据集工作区范围是由中国地质调查局西安地质调查中心与中国地质调查局发展研究中心组织实施的陕西石泉–旬阳金矿带整装勘查区内饶峰幅等7幅图3 010 km2 1∶50 000水系沉积物测量工作,是陕西石泉–旬阳金矿带整装勘查区内首次系统性的采用统一采样方法、分析测试方法、统一分析元素,也是本整装勘查区内首次规范化建立地球化学数据库,获得了珍贵的第一手地球化学测量资料。

    本数据集成果指导在整装勘查区内圈定金找矿靶区10处,金成矿远景区12处,其中在圈定的陕西省汉阴县双河口一带金找矿靶区内新发现坝王沟金矿点,通过后期省地勘基金投入,金(333+334)资源量30吨;在圈定的陕西省安康市汉滨区将军山一带金找矿靶区内新发现早阳金矿点,通过后期省地勘基金投入,金(333+334)资源量20吨。另外运用本数据集成果新发现4处金矿点,分别为陕西省宁陕县堰沟金矿点、陕西省安康市汉滨区柳坑金矿点、陕西省石泉县石桥金矿点、陕西省石泉县栈房金矿点,均有一定的找矿潜力。另外,本数据集成果指导我省找到2~4处新的大型金矿产资源开发基地。

    注释:

    ❶张永强, 孙健, 谈乐. 2018. 陕西石泉−旬阳金矿带整装勘查区矿产调查与找矿预测2016—2018年子项目总成果报告[R]. 安康:陕西地矿第一地质队有限公司, 1−260.

    The measurement of 1∶50 000 stream sediments across 7 map sheets of the integrated survey area of the Shiquan-Xunyang gold zone began in 2013 (Fig. 1), of which those in the Raofeng, Yingfengjie and Ankang map sheets were organized by the Development and Research Center of China Geological Survey in 2016—2018; those in the Tiefosi, Hanyin, Dahekou and Zhaojiawan map sheets were organized by the Xi’an Center of China Geological Survey in 2013—2015, and both were conducted by the Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd..

    图  1  Range for measurement of the 1∶50 000 stream sediments of the 7 Map Sheets in the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, Shaanxi.

    The integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, located at the South Qinling tectonic zone in the midst of the Qinling orogeny, has experienced multi-stage deformations in its long history of geological evolution, where the typical tectonic patterns are folding, detachment and ductile shearing zones. In terms of stratigraphic regionalization, it belongs to the Niushan stratigraphic sub-region of the South China stratigraphic super-region (Han FL et al., 2013) (Fig. 2). Due to decoupling detachment between the overlying strata and basement, the outcrop in the area is characterized by the formation of Sinian−early-Paleozoic, black, low-metamorphic, strongly-deformed fine clastic rock series, which were formed in the coastal sea environment (Zhang FX et al., 2009; Tang YZ et al., 2012). The outcropped strata within the area include the Paleoproterozoic Yangpingyan Formation, the basic volcanic rock of the Yaolinghe Formation and Paleozoic sedimentary−low-metamorphic rocks, where mid- and late-Silurian−early-Devonian sedimentary strata are poorly developed (Liu GH and Zhang SG, 1993).

    图  2  Schematic diagram of the stratigraphic regionalization of the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, Shaanxi

    The measurement of the 1∶50 000 stream sediments in the integrated survey area of the Shiquan-Xunyang gold ore zone began with preparation of the project design in July 2013, all works being done in accordance with the relevant technical specifications. The project was completed in three stages: Stage 1, organization of the geochemical staff to take samples for the measurement of the 1∶50 000 stream sediments; Stage 2, checking, verifying, collating and processing data, and delineation of geochemical anomalies; Stage 3, plotting a series of geochemical maps, establishing and improving the regional geochemical database for the integrated survey area of the Shiquan-Xunyang gold ore zone, and screening and verifying anomalies.

    Metadata for the measured original dataset of the stream sediments in the 7 map sheets of the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, are shown in Table 1.

    表  1  Metadata Table of Database (Dataset)
    Items Description
    Database (dataset) name The 1∶50 000 Original Measurement Dataset on Stream Sediments for 7 Map Sheets including the Raofeng Map in the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, Shaanxi
    Database (dataset) authors Tan Le, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
    Zhang Yongqiang, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
    Liu Xiaopeng, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
    Li Xiaoming, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
    Wang Caijin, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
    Data acquision time 2013—2018
    Geographic area Shiquan-Xunyang, Shaanxi
    Data format *.xlsx
    Data size 2.01MB
    Data service system URL http://dcc.cgs.gov.cn
    Fund project China Geological Survey Project (121201004000150017-53, 121201004000160901-54, 121201004000172201-45, 12120113048100).
    Language Chinese
    Database(dataset) composition The dataset consists of 7 separate Excel sheets: Raofeng Sampling Points and Element Analytical Result Sheet, Tiefosi Sampling Points and Element Analytical Result Sheet, Hanyin Sampling Points and Element Analytical Result Sheet, Dahekou Sampling Points and Element Analytical Result Sheet, Zhaojiawan Sampling Points and Element Analytical Result Sheet, Yingfengjie Sampling Points and Element Analytical Result Sheet and Ankang Sampling Points and Element Analytical Result Sheet.
    下载: 导出CSV 
    | 显示表格

    The survey area is a humid−semihumid mid-and-low hilly natural landscape area (Fan HM and Li FZ, 2013), humid, rainy, strongly denuded, deeply cut, mainly physically-weathered, where channel-system alluvium and diluvium have the properties of coarse debris, suitable for the measurement of the stream sediments (Liu JS et al., 2016). In accordance with the Specifications of the Geochemical Reconnaissance Survey (150 000)(DZ/T 0011−2015), considering the geochemical landscape features of the survey area, it was decided to use stream sediment as the medium to be sampled for this geochemical reconnaissance survey, at a sampling density of 4~8 points/km2, and –20 meshes ~ +60 meshes are selected for the sample’s grain size.

    In the survey area, samples for measurement of 1∶50 000 stream sediments are all taken from the river bottom or the contact between the riverbank and the water surface (Zhang Y et al., 2018). In intermittent or trunk river channels, samples are mainly taken from the bottom of the riverbed; in rivers with rapid flow, samples are taken at places where water flows slowly or stops, or behind a boulder, or where water flow widens, or at the inner side of the turn of the river channel, where much more fine-grained materials concentrate.

    Following the principle that sampled media shall represent material components of bedrocks containing original geological prospecting information, sampling materials are sludge, silt or fine sand in stream sediments.

    Samples taken from the stream sediments in the survey area are graded sections, mixing coarse−fine-grain sizes, care being taken to avoid sampling from the humus layer. During sampling, an emphasis was placed on taking more samples at places where alteration−mineralization is strong, or which are priorities for prospecting. Samples are taken using the specific technique below:

    ① Prior to sampling, the topsoil or humus layer is removed with a sampling spoon.

    ② The cloth bag used for housing samples is checked to ensure that it does not have split seams or broken holes before placing samples within it. Before putting moist samples in the bag, they were placed in a plastic bag and then in the cloth bag, to prevent samples from becoming wet and contaminated, due to mutual leaching.

    ③ To make samples more representative, samples were taken at multiple points of 3~5 places 20~30 m within upstream and downstream of the sampling points and then combined into one sample.

    ④ Sampling avoids locations where there are pollutants and accumulated collapses at the bank due to mine development, villages and towns, dams, field-making from silty land, traffic route or road junctions.

    The integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, involves seven 1∶50 000 map sheets (Table 2) in which the 1980 Xi’an coordinate system is used and the central meridian is 111°, and geological data involved in the map sheets were purchased from the Shaanxi Geographic Information Survey Bureau.

    表  2  Topographic map of seven 1∶50 000 Map Sheets involved in the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, Shaanxi
    Map sheet name Map sheet number
    Raofeng I49E17001
    Yingfengjie I49E18002
    Tiefosi I49E18003
    Hanyin I49E19003
    Dahekou I49E19004
    Zhaojiawan I49E19005
    Ankang I49E02005
    下载: 导出CSV 
    | 显示表格

    The 1∶50 000 standard topographic map is used as a base map for field measurement of the stream sediments to determine the sampling points in the field with a hand-held IGS-100 device (Li CL et al., 2002). Errors in point localization were less than 30 m from their actual locations, i.e. less than 1 mm on the base map.

    During the project there were 13 169 samples in total taken from stream sediments. Based on topographic and landform characteristics, landscape conditions and geological features, for the measurement of these 1∶50 000 stream sediments, different sampling layouts and densities were used: at the densest area (i.e. referring to areas where at 1∶200 000 a geochemical anomaly is obvious, there was more information on mineralization, larger in the bedrock area and distributed with less Quaternary strata, and in addition to normal point arrangements, sampling in sections favoring metallogenesis are undertaken to the standard density), the sampling density was 5.18~5.46 points/km2; at the ordinal work area (i.e. referring to areas where there are more Quaternary strata, smaller or sporadic outcropped bedrocks, and the 1∶200 000 geochemical anomaly is weak), the sampling density was 4.1~4.3 points/km2; at the scattered area (i.e. intermountain basin), the sampling density was 3.13~3.52 points/km2. The combination of these sampling densities allows the effective control of the vast majority of water catchment within the area, which is cost-effective and enables the effective meeting of the goal of the geochemical reconnaissance survey.

    The basic procedure to process samples: natural drying → trituration →sieving →mixing evenly → weighing and splitting samples →fillling in the label → placing samples into bags → completing the sample delivery order → placing sampled bags into boxes (Chen YM and Chen XF, 2018).

    Sample drying method: dried under sunlight and air. During drying, rub and knead samples regularly to prevent caking, and use a mallet to strike them properly,

    ② Dried samples were sieved with a −20~+60 mesh nylon sieve, samples under the sieve are mixed evenly through diagonal folding, split and then put into paper bags, their weight being ≥ 310 g.

    ③ Samples processed by sample splitting were divided into two parts, each part ≥ 150 g, one put into a kraft paper bag and sent for testing, and the other placed into plastic bottles, which were then sealed and kept as duplicate samples.

    Samples were analyzed and tested by the Xi’an Center for Mineral Resource Supervision and Testing under the Ministry of Natural Resources and a laboratory of the Hanzhong Geological-Battalion Co., Ltd. under the Shaanxi Bureau of Geology and Mineral Resource, both of which possess Qualification A for rock and mineral testing, in strict accordance with the Additional Rules for Regulating Sample Analysis Technologies of Geochemical Reconnaissance Surveys (Scale: 150 000).

    Labs are provided with full-time staff to manage samples, receive, inspect and care for samples, as well as handle sample handover procedures strictly in accordance with requirements in the specifications.

    The samples were coded and processed as an analytical batch of 50, each analytical batch also containing 4 randomly inserted level-1 national standard substances, the data sent to a computer to print out a comparison table showing the respective numbers of samples analyzed and those delivered, which was then used by sample management staff in tasks such as managing samples and filling in the summary tables, and samples were subsequently sent by the sample management staff to the ore-crushing room where they were crushed without contamination.

    Geochemical samples must be fully dried at a temperature below 60℃ prior to processing. Before massive sample processing, debris samples should be tested for the best conditions for agate ball numbers and ball-milling time so that the particle size of the finely-ground samples meets the requirement for the 1∶50 000 regional geochemical survey, that finely-ground samples with particle size reaching –0.074 mm (–200 mesh) accounted for at least 90% of the sample.

    The sample management staff checked whether each processed batch of samples met the requirement for particle size; inserted designated control samples and Level-1 national standard samples into acceptable batches as required, whilst separating inner inspection samples based on their codes and numbers, and then delivering them to quality management staff to assign analysis tasks.

    According to the Project Task, Contract and General Design Specification, in 2013—2015, the items to be analyzed during the measurement of the 1∶50 000 stream sediments were the 12 elements: Au, Ag, Cu, Pb, Zn, As, Sb, Hg, V, Mo, Ti and W. In 2016—2018, the items to be analyzed for measurement of the 1∶50 000 stream sediments totalled 16 elements: Au, Ag, Cu, Pb, Zn, As, Sb, Hg, Bi, Sn, W, Mo, Cd, Co, Cr and Ni.

    Instruments such as Optical Emission Spectrometer (OES), Atomic Fluorescence Spectrometer (AFS), Inductive Coupling Plasma-Mass Spectrometer (ICP-MS) and Graphite Furnace-Atomic Absorption Spectrometer (GF-AAS) were used in analysis and testing, and all elements reported percentages were 100%. Schemes for testing and analysis of the 18 elements in the survey area are shown in Table 3.

    表  3  Analytical methods, detection limits and report percentages of the 18 elements in the survey area
    Analytical method Element content Specified detection limit for the 1∶50 000 geochemical measurement Detection limit of the method used Report percentage (%)
    GF-AAS w(Au)/10−9 0.3~1 0.23 100
    F-AAS w(Cu)/10−6 2 1.00 100
    w(Zn)/10−6 20 5.00 100
    HG-AFS w(As)/10−6 0.5~1 0.20 100
    w(Sb)/10−6 0.3 0.05 100
    CV-AFS w(Hg)/10−9 10~50 2.00 100
    w(Bi)/10−6 0.3 0.1 100
    ICP-OES w(Ti)/10−6 100 9.3 100
    w(V)/10−6 20 5 100
    OES w(Ag)/10−6 0.050 0.019 100
    w(Sn)/10−6 2 0.5 100
    ICP-MS w(Pb)/10−6 5~10 0.91 100
    w(W)/10−6 1 0.048 100
    w(Mo)/10−6 1 0.056 100
    w(Ni)/10−6 1 0.21 100
    w(Co)/10−6 1 0.10 100
    w(Cr)/10−6 10 1.00 100
    w(Cd)/10−6 0.2 0.02 100
    下载: 导出CSV 
    | 显示表格

    The measured original dataset on the 1∶50 000 stream sediments in the 7 map sheets of the integrated survey area of the Shiquan-Xunyang gold ore zone contains data in Excel form, including 7 separate sheets: Raofeng Sampling Points and Element Analytical Result Sheet, Tiefosi Sampling Points and Element Analytical Result Sheet, Hanyin Sampling Points and Element Analytical Result Sheet, Dahekou Sampling Points and Element Analytical Result Sheet, Zhaojiawan Sampling Points and Element Analytical Result Sheet, Yingfengjie Sampling Points and Element Analytical Result Sheet, and Ankang Sampling Points and Element Analytical Result Sheet (Song XL et al., 2017). Each sheet contains the following: sample No., Gaussian coordinates, map sheet No., stratigraphy, analyzed result (elements analyzed in Tiefosi, Dahekou, Hanyin and Zhaojiawan map sheets are Au, Hg, Ag, Cu, Pb, Zn, Mo, As, Sb, Ti, V and W; elements analyzed in Yingfengjie, Raofeng and Ankang map sheets are Au, Ag, Cu, Pb, Zn, As, Sb, Hg, Bi, Sn, W, Mo, Cd, Co, Cr and Ni) and remarks. Dataset structure could be seen in Table 4.

    表  4  Dataset structure of the measured original data of the stream sediments in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi
    No. Name of data item Dimension Data category Field length Real example
    1 Sample No. Character type 20 57C2
    2 Map sheet No. Character type 20 I49E018002
    3 Stratigraphy Character type 20 O3−S1b
    4 Gauss horizontal coordinate Character type 20 255460
    5 Gauss vertical coordinate Character type 20 3672075
    6 Longitude Character type 20 108°22′45″
    7 Latitude Character type 20 33°08′48″
    8 Au 10−9 Floating-point type 20 1.03
    9 Ag 10−6 Floating-point type 20 42
    10 Cu 10−6 Floating-point type 20 35.9
    11 Pb 10−6 Floating-point type 20 35.9
    12 Zn 10−6 Floating-point type 20 83.7
    13 As 10−6 Floating-point type 20 3.88
    14 Sb 10−6 Floating-point type 20 2.13
    15 Hg 10−9 Floating-point type 20 49
    16 Bi 10−6 Floating-point type 20 0.85
    17 Sn 10−6 Floating-point type 20 3
    18 W 10−6 Floating-point type 20 2.14
    19 Mo 10−6 Floating-point type 20 0.93
    20 Cd 10−6 Floating-point type 20 0.1
    21 Co 10−6 Floating-point type 20 22.3
    22 Cr 10−6 Floating-point type 20 94.6
    23 Ni 10−6 Floating-point type 20 41.9
    24 Ti 10−6 Floating-point type 20
    25 V 10−6 Floating-point type 20
    下载: 导出CSV 
    | 显示表格

    In the process of analyzing and testing geochemical samples in the Tiefosi, Hanyin, Dahekou and Zhaojiawan map sheets, every 50 samples were grouped to be coded and processed as one analytical batch, each analytical batch being randomly inserted with 4 Level-1 national standard substances which were GBW07302a, GBW07304a, GBW07309 and GBW07318, in order to monitor and control the precision of the analytical process. In addition, 12 Level-1 national standard substances are added randomly in sections (once for every 500 samples) for 15 times in total, to monitor the accuracy of the analytical process, and some high and low values of samples were randomly inspected and analyzed, with 2.6% of samples receiving random inspection.

    In the process of analyzing and testing geochemical samples in the Raofeng, Yingfengjie and Ankang map sheets, every 50 samples were grouped to be coded and processed as one analytical batch, 243 batches in total. Each analytical batch is randomly inserted with 4 Level-1 national standard substances purchased from the CAGS Geophysical & Geochemical Exploration Institute, in order to monitor and control the accuracy of the analytical process. Of these, to analyze the 8 elements Au, Ag, Hg, Pb, Sn, As, Sb and Bi, GSD-10, GSD-14, GSD-18 and GSD-20 were inserted to control the precision of the analytical process; to analyze the other 8 elements Cr, Co, Ni, Cu, Zn, Mo, Cd and W, GSD-8a, GSD-9, GSD-10 and GSD-14 were inserted to control the precision of the analytical process, and some high and low values of samples were randomly inspected and analyzed, with 1.4 % of samples receiving random inspection.

    During this detection, the qualifying rate of element inner examination (duplicate sample) was more than 95.00%; all elements’ report percentages were 100%; the qualifying rate of element anomaly re-examination was at least 97.5%; the detection limits of analytical methods used all met the standard requirement on 1∶50 000 geochemical samples in DZ/T0130.4−2006. Precision of methods: the mean ΔlgC detected with Level-1 national standard substance was within –0.099~+0.099. Accuracy of methods: the mean ΔlgC detected with Level-1 national standard substance was within –0.099~+0.099. The detection limit, precision and accuracy of the analytical methods selected met the quality-related requirements in the Additional Rules for Regulating Sample Analysis Technologies of Geochemical Reconnaissance Surveys (Scale 150 000).

    Above-mentioned figures concerning quality-related parameters indicate that this examination fully complied with the quality-related requirements in the Additional Rules for Regulating Sample Analysis Technologies of Geochemical Reconnaissance Surveys (Scale 150 000) and DZ0130.4−2006.

    The measured results database of the 1∶50 000 stream sediments in the 7 map sheets including Raofeng on the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi (Wan CX et al., 2009), was set up in accordance with the geochemical data model by using the software platform DGSS (Pang JF et al., 2017), properties and structures of all the elements analysed were completed by referring to the content and structure of the CGS’s solid mineral survey database (Zuo QC et al., 2018; Li CL et al., 2013), to ensure that the data structure and content were complete and sound. The generated measurement databases of 1∶50 000 stream sediments in the 7 map sheets have been reviewed and accepted by the experts from the Xi'an Center of China Geological Survey and the Development and Research Center of China Geological Survey, scoring 93, awarded “Excellence”, and have thus been handed over.

    The scope of the work area involved in this database was the measurement of the 1∶50 000 stream sediments in the 7 map sheets including Raofeng in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, organized and implemented by the Xi'an Center and the Development and Research Center of China Geological Survey, covering 3 010 km2. It is the first time that unified sampling, analytical and testing methods have been used to analyze elements in a systematic way in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi. It is also the first time that a geochemical databases have been established in a standardized way in the integrated survey area, so as to obtain valuable first-hand geochemical measurement information.

    With the results from the database, 10 Au prospecting target areas and 12 Au prospective areas were delineated in the integrated survey area, and at the newly-discovered Bawanggou Au deposit from the Au-delineated prospecting target area at and around Shuanghekou, Hanyin County, Shaanxi, with a subsequent provincial fund for geological exploration, it was found that the Au resource (333+334) was 30 tons; in the Au-prospecting target area at and around Jiangjunshan, Ankang city, Shaanxi, the Zaoyang Au deposit was recently found, and a subsequent provincial fund created for geological exploration, the Au (333+334) resource is 20 tons. In addition, 4 new gold ore occurrences were discovered in Shaanxi by using the results from this database, and they are located in Yangou, Ningshan County; Liukeng, Hanbin District, Ankang City; Shiqiao and Zhanfang, Shiquan County, all of which have a certain prospecting potential. Furthermore, the results from the database have guided Shaanxi to find 2–4 new large-scale Au resource development bases.

    Notes:

    Zhang Yongqiang, Sun Jian, Tan Le. 2018. Comprehensive result report of sub-projects from 2016 to 2018 on mineral investigation and prospecting prediction in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi[R]. Ankang: Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co.Ltd., Ankang, Shaanxi, 1−260 (in Chinese).

  • 图  1   滇东典型煤矿区位置图

    Figure  1.   Location map of typical coal mine areas in eastern Yunnan

    图  2   滇东典型煤矿区土壤重金属分布及地层分布

    Figure  2.   Distribution of heavy metals in soil and strata in typical coal mining areas of eastern Yunnan Province

    图  3   污染负荷指数空间分布

    Figure  3.   Spatial distribution map of pollution load index

    图  4   土壤重金属单一潜在生态风险系数

    Figure  4.   Single potential ecological risk coefficient of soil heavy metals

    图  5   土壤重金属综合潜在生态风险指数空间分布(a)与土壤重金属贡献率(b)

    Figure  5.   Spatial distribution of comprehensive potential ecological risk index of soil heavy metals (a) and contribution rate of soil heavy metals (b)

    图  6   土壤重金属PMF模型解析结果

    Figure  6.   PMF model analysis results of heavy metals in soil

    表  1   土壤理化指标参比标准值

    Table  1   Reference standard value of soil physicochemical index

    元素
    指标
    土地
    类型
    风险筛选值/(mg/kg) 管制值/(mg/kg) 云南省土壤
    背景值/
    (mg/kg)
    pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5 pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5
    As 水田 30 30 25 20 200 150 120 100 18.40
    其他 40 40 30 25
    Cd 水田 0.3 0.4 0.6 0.8 1.5 2.0 3.0 4.0 0.22
    其他 0.3 0.3 0.3 0.6
    Cr 水田 250 250 300 350 800 850 1000 1300 65.20
    其他 150 150 200 250
    Cu 果园 150 150 200 200 46.30
    其他 50 50 100 100
    Hg 水田 0.5 0.5 0.6 1.0 2.0 2.5 4.0 6.0 0.06
    其他 1.3 1.8 2.4 3.4
    Ni 不区分 60 70 100 190 42.50
    Pb 水田 80 100 140 240 400 500 700 1000 40.60
    其他 70 90 120 170
    Zn 不区分 200 200 250 300 89.70
    SOM 3.89
    pH 5.70
      注:云南省土壤背景值中pH无量纲、SOM单位为%;风险筛选值和管制值源自《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618−2018)。
    下载: 导出CSV

    表  2   土壤重金属潜在生态风险分级标准

    Table  2   Classification criteria of potential ecological risk of heavy metals in soil

    参数 取值范围 单一潜在生态风险等级 参数 取值范围 综合潜在生态风险等级
    E E<40 轻度 RI RI<150 轻度
    40≤E<80 中等 150≤RI<300 中等
    80≤E<160 300≤RI<600
    160≤E<320 很强 RI≥600 很强
    E≥320 极强
    下载: 导出CSV

    表  3   土壤理化指标数理统计

    Table  3   Mathematical statistics of soil physicochemical indexes

    元素指标 最大值/
    (mg/kg)
    最小值/
    (mg/kg)
    中位数/
    (mg/kg)
    平均值/
    (mg/kg)
    标准偏差/
    (mg/kg)
    变异系数/
    %
    超云南省土
    壤背景值%
    超风险筛选值/
    %
    超管制值/
    %
    As 556.00 0.88 5.14 10.05 28.16 280.19 9.46 3.22 0.20
    Cd 8.75 0.13 0.57 0.68 0.67 98.09 99.60 94.97 1.41
    Cr 577.00 123.00 223.00 253.91 95.15 37.47 100.00 91.35 0
    Cu 1344.00 42.80 155.00 166.70 124.22 74.52 99.40 93.96 0
    Hg 0.77 0.01 0.06 0.07 0.06 91.92 40.85 0 0
    Ni 168.00 38.30 80.50 81.49 15.07 18.50 99.60 79.28 0
    Pb 66.10 7.71 24.30 25.24 7.54 29.86 3.62 0 0
    Zn 250.00 70.90 144.00 145.21 27.75 19.11 98.19 3.42 0
    SOM 20.26 0.34 4.24 4.67 23.38 50.10 56.94
    pH 8.19 3.84 5.10 5.39 0.86 15.95 29.58
      注:最大值、最小值、中位数、平均值、标准偏差中pH无量纲;SOM单位为%。
    下载: 导出CSV

    表  4   土壤理化指标相关性分析

    Table  4   Correlation analysis of soil physicochemical indexes

    元素指标 As Cd Cr Cu Hg Ni Pb Zn SOM pH
    As 1
    Cd 0.29 1
    Cr 0.09 0.19 1
    Cu −0.10 0.11 0.21 1
    Hg 0.65** 0.52** 0.07 −0.08 1
    Ni −0.07 0.03 0.45** 0.12 −0.15 1
    Pb 0.22 0.30 0.02 −0.09 0.38** −0.25 1
    Zn −0.05 0.16 −0.03 0.03 −0.01 0.55** −0.01 1
    SOM −0.04 0.13 −0.19 0.01 0.23 −0.28 0.41** 0.08 1
    pH 0.17 0.26 0.14 0.04 0.15 −0.12 0.14 −0.05 0.08 1
      注:** 在 0.01 级别(双尾),相关性显著。
    下载: 导出CSV

    表  5   土壤重金属主成分分析结果

    Table  5   Principal component analysis results of heavy metals in soil

    元素 成分
    1 2 3 4 5
    As 0.90 −0.08 0.06 −0.03 −0.11
    Cd 0.51 0.23 0.08 0.50 0.32
    Cr 0.07 −0.01 0.96 0.06 0.13
    Cu −0.07 0.00 0.11 −0.06 0.95
    Hg 0.86 −0.02 −0.02 0.30 −0.01
    Ni −0.07 0.71 0.57 −0.25 0.00
    Pb 0.13 −0.09 −0.01 0.91 −0.12
    Zn −0.01 0.96 −0.08 0.06 0.02
    特征值 1.85 1.48 1.28 1.26 1.06
    贡献率/% 23.15 18.49 16.02 15.20 13.20
    累积贡献率/% 23.15 41.64 57.66 73.36 86.56
    下载: 导出CSV
  • [1]

    Chen Qiyong, Gao Yunbing, Ni Runxiang, Pan Yuchun, Yan Yuguan, Yang Jing, Liu Xiaoyang, Gu Xiaohe. 2022. Temporal and spatial variation characteristics of heavy metal in atmospheric deposition in China from 2000 to 2018[J]. Environmental Science, 43(9): 4413−4424 (in Chinese with English abstract).

    [2]

    Chen Zijie, Xiao Tangfu, Liu Yizhang, Xing Dan, Yang Jun, Zhu Zhengjie, Ning Zengping. 2021. Accumulation of heavy metals in agricultural soils and maize in a typical black shale area with high geochemical background[J]. Chinese Journal of Ecology, 40(8): 2315−2323 (in Chinese with English abstract).

    [3]

    Chueinta W, Hope P K, Paatero P. 2000. Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization[J]. Atmospheric Environment, 34(20): 3319−3329. doi: 10.1016/S1352-2310(99)00433-1

    [4]

    Ding Yi. 2000. Overview of national large-scale coal base planning[J]. Coal Engineering, 39(2): 12−14 (in Chinese with English abstract).

    [5]

    Ding Zhenhua, Zheng Baoshan, Zhuang Min, Hu Tiandou, Liu Tao. 2009. Modes of occurrence of arsenic in High-As coals from north western Guihzou Province, China[J]. Acta Mineralogica Sinica, 29(1): 70−74 (in Chinese with English abstract).

    [6]

    Guo Shengli, Li Dongwei, Geng Weile, Zhang Jian. 2015. Controlling effect of the modified calcium carbonate on the capture of As, Cd and Zn during coal combustion[J]. Journal of China Coal Society, 40(12): 2967−2973 (in Chinese with English abstract).

    [7]

    Hakanson L. 1980. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8

    [8]

    He Ling, Wu Chao, Zeng Daoming, Cheng Xiaomeng, Sun Binbin. 2021. Distribution of heavy metals and ecological risk of soils in the typical geological background region of Southwest China[J]. Rock and Mineral Analysis, 40(3): 384−396 (in Chinese with English abstract).

    [9]

    Joanna B K, Ryszard M, Michał G, Tomasz Z. 2018. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review[J]. Environmental Geochemistry and Health, 40: 2395−2420. doi: 10.1007/s10653-018-0106-z

    [10]

    Jiang Yulian, Yu Jing, Wang Rui, Wang Jiabin, Li Yu, Yu Fei, Zhang Yunyi. 2023. Source analysis and pollution assessment of soil heavy metals in typical geological high background area in Southeastern Chongqing[J]. Environmental Science, 44(7): 4017−4026 (in Chinese with English abstract).

    [11]

    Li Jihua, He Jun, Kan Qiangbo, Duan Zhongming, Huang Yunchao. 2021. Geostatistical analysis of village-level lung cancer mortality from 2010 to 2019 in Fuyuan County, Yunnan Province[J]. China Cancer, 30(10): 8(in Chinese with English abstract).

    [12]

    Li Lihui, Wang Baolu. 2008. Geochemical characteristics of As and Cd in soils of Yunnan province[J]. Geophysical and Geochemical Exploration, 32(5): 497−501 (in Chinese with English abstract).

    [13]

    Li Qiang, Ai Feng, Wang Xi, Ma Yongbo, Liu Lang, Zhu Zhanrong, Zhang Kaiyu. 2023. Theoretical analysis and practical exploration on ecological restoration of mines with Multi-source solid wastes: example from Yulin City, Shaanxi Province[J]. Northwestern Geology, 56(3): 70−77(in Chinese with English abstract).

    [14]

    Li Wei, Gao Haitao, Zhang Na, Sun Jing, Basang, Lü Xuebin, Xiong Jian. 2022. Distribution characteristics and ecological risk assessment of heavy metals in soil of Lasha City[J]. Journal of Environmental Engineering Technology, 12(3): 869−877 (in Chinese with English abstract).

    [15]

    Liu Peng, Hu Wenyou, Huang Biao, Liu Benle, Zhou Yi. 2019. Advancement in researches on effect of atmospheric deposition on heavy metals accumulation in soils and crops[J]. Acta Pedologica Sinica, 56(5): 1048−1059 (in Chinese with English abstract).

    [16]

    Liu Tong, Liu Chuanpeng, Deng Jun, Kang Pengyu, Wang Kaikai, Zhao Yuyan. 2022. Ecological health risk assessment of soil heavy metals in eastern Yinan County, Shandong Province[J]. Geology in China, 49(5): 1497−1508 (in Chinese with English abstract).

    [17]

    Ma Honghong, Peng Min, Liu Fei, Guo Fei, Tang Shiqi, Liu Xiujin, Zhou Yalong, Yang Ke, Li Kuo, Yang Zheng, Cheng Hangxin. 2020. Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 41(1): 449−459 (in Chinese with English abstract).

    [18]

    Mamattursun Eziz, Ajigul Mamut, Anwar Mohammad, Ma Guofei. 2017. Assessment of heavy metal pollution and its potential ecological risks of farmland soils of oasis in Bosten Lake Basin[J]. Acta Geographica Sinica, 72(9): 1680−1694 (in Chinese with English abstract).

    [19]

    Ni Lin, Cui Xiaofeng, Xu Lijia, Lin Qian, Guo Kun. 2020. Study on distribution and enrichment of heavy metal elements in fly ash and slag from fuel coal[J]. Coal Science and Technology, 48(5): 203−208 (in Chinese with English abstract).

    [20]

    Nie Aiguo, Xie Hong. 2004. A research on origin between Emei Mountain basalt magma and High-As coal in Guizhou[J]. Coal Geology and Exploration, 32(1): 8−10 (in Chinese with English abstract).

    [21]

    Ou Lingzhi, Hu Mingming, An Dezhang, Tang Ming, Qin Fanxin, Li Fei, Sun Yuanyuan. 2023. Characteristics and health risk assessment of heavy metals in dryland soil and crops around a coal mine with high levels of arsenic[J]. Journal of Agricultural Resources and Environment, 40(1): 25−35 (in Chinese with English abstract).

    [22]

    Paatero P, Tapper U. 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 5(2): 111−126. doi: 10.1002/env.3170050203

    [23]

    Pan L B, Guan X, Liu B, Chen Y J, Pei Y, Pan J, Zhang Y, Hao Z Z. 2021. Pollution characteristics, distribution and ecological risk of potentially toxic elements in soils from an abandoned coal mine area in Southwestern China[J]. Minerals, 11(3): 1−16.

    [24]

    Pang Wenpin, Qin Fanxin, Lü Yachao, Li Yingju, Li Gang, Li Xinli. 2016. Chemical speciations of heavy metals and their risk assessment in agricultural soils in a coal mining area from Xingren County, Guizhou Province, China[J]. Chinese Journal of Applied Ecology, 27(5): 1468−1478 (in Chinese with English abstract).

    [25]

    Qin Yuanli, Zhang Fugui, Peng Min, Zhang Li, Tang Ruiling, Cheng Hangxin. 2022. Influencing factors and ecological risk assessment of soil heavy metals in agricultural areas of Xuanwei City, Yunnan Province[J]. Geology and Exploration, 58(2): 360−368 (in Chinese with English abstract).

    [26]

    Qiu G L, Feng X B, Wang S F, Shang L H. 2006. Environmental contamination of mercury from Hg-mining areas in Wuchuan, Northeastern Guizhou, China[J]. Environmental Pollution, 142(3): 549−558. doi: 10.1016/j.envpol.2005.10.015

    [27]

    Reff A, Eberly S I, Bhave P V. 2007. Receptor modeling of ambientparticulate matter data using positive matrix factorization: review of existing methods[J]. Journal of the Air and Waste Management Association, 57(2): 146−154. doi: 10.1080/10473289.2007.10465319

    [28]

    Song Mian, Gong Lei, Wang Yan, Tian Dazheng, Wang Xinfeng, Li Yue, LI Wei. 2022. Risk assessment of heavy metals in topsoil on human health in Fuping County, Hebei Province[J]. Rock and Mineral Analysis, 41(1): 133−144 (in Chinese with English abstract).

    [29]

    Su Huiyue, Liu Jiangchuan, Wang Lu, Li Bo, Yu Huan, Chen Zhikui, Hu Yueming. 2022. Geographic distribution and source apportionment of heavy metals in soils and vegetable in urban fringe[J]. Journal of Ecology and Rural Environment, 38(2): 184−193 (in Chinese with English abstract).

    [30]

    Sun Rui, Zhou Xiaofang, Chen Yang, Wang Xinfu, Gao Liangmin. 2021. Positive definite matrix factor model analysis of the source of heavy metals in coal mine soils in the Ordos Plateau[J]. Science Technology and Engineering, 21(16): 6937−6943 (in Chinese with English abstract).

    [31]

    Tong Wenbin, Guo Bin, Lin Yicheng, Liu Chen, Song Jianzhong. 2020. Assessment of input-output patterns of Cd and Pb of typical heavy metal polluted agricultural land in Quzhou[J]. Journal of Nuclear Agricultural Sciences, 34(5): 1061−1069 (in Chinese with English abstract).

    [32]

    Tu Chunlin, Yang Kun, He Chengzhong, Zhang Liankai, Li Bo, Wei Zong, Jiang Xin, Yang Minghua. 2023. Sources and risk assessment of heavy metals in sediments of small watersheds in typical coal mining areas of Eastern Yunnan[J]. Geology in China, 50(1): 206−221 (in Chinese with English abstract).

    [33]

    Wang Changyu, Zhang Surong, Liu Jihong, Xing Yi, Li Mingze, Liu Qingxue. 2021. Polution level and risk assessment of heavy metals in a metal smelting area of Xiong'an New District[J]. Geology in China, 48(6): 1697−1709 (in Chinese with English abstract).

    [34]

    Wang W J, Wang Q L, Zou Z L, Zheng F Y, Zhang A H. 2020. Human arsenic exposure and lung function impairment in coal-burning areas in Guizhou, China[J]. Ecotoxicology and Environmental Safety, 190: 110174. doi: 10.1016/j.ecoenv.2020.110174

    [35]

    Wei Fusheng, Chen Jingsheng, Wu Yanyu, Zheng Chunjiang. 1990. Study on Soil Environmental Background Values in China[M]. Beijing: China Environmental Press, 330-483(in Chinese with English abstract).

    [36]

    Wei Yinghui, Li Guochen, Wang Yanhong, Zhang Qi, Li Bo, Wang Shicheng, Cui Jiehua, Zhang Hong, Zhou Qiang. 2018. Investigating factors influencing the PMF model: A case study of source apportionment of heavy metals in farmland soils near a lead-zinc ore[J]. Journal of Agro−Environment Science, 37(11): 2549−2559 (in Chinese with English abstract).

    [37]

    Weng Huanxin, Zhang Xiaoyu, Zou Lejun, Zhang Xingmao, Liu Guangshen. 2000. Natural existence of arsenic in soil of China and its cause of formation[J]. Journal of Zhejiang University ( Engineering Science), 34(1): 90−94 (in Chinese with English abstract).

    [38]

    Wu Xianliang, Huang Xianfei, LI Chaochan, Hu Jiwei, Tang Fenghua, Zhang Zedong. 2018. Soil heavy metal pollution degrees and metal chemical forms around the coal mining area in Western Guizhou[J]. Research of Soil and Water Conservation, 25(6): 335−341 (in Chinese with English abstract).

    [39]

    Wu Yuezhao, Pan Mao. 1993. Study on the regularicy of changes of contents of the parent rock and soil elements in the basact regions, Eastern China[J], Advances in Environmental Science, 1(5): 26-36(in Chinese with English abstract).

    [40]

    Xiao Gaoqiang, Chen Jie, Bai Bing, Li Yuanbin, Zhu Nengang. 2021. Content characteristics and risk assessment of heavy metals in soil of typical high geological background areas, Yunnan Province[J]. Geology and Exploration, 57(5): 1077−1086(in Chinese with English abstract).

    [41]

    Xu Xingyang, Qian Facong, Luo Yun, Yang Yi, Chen Chu, Zhang Jing, Dong Shifei, Yang Yingming. 2020. Basic characteristics and safety of farmyard manure in Kunming tobacco-growing area[J]. Southwest China Journal of Agricultural Sciences, 33(8): 1748−1753 (in Chinese with English abstract).

    [42]

    Xue Zhibin, Li Ling, Zhang Shaokai, Dong Jing. 2018. Comparative study between nemerow index method and compound index method for the risk assessment of soil heavy metal pollution[J]. Science of Soil and Water Conservation, 16(2): 119−125 (in Chinese with English abstract).

    [43]

    Yang Ling, Tian Lei, Bai Guangyu, Pei Shengliang, Zhang Deqiang. 2022. Ecological risk assessments and source analysis of heavy metals in the soil of Xin Barag Youqi, Inner Mongolia[J]. Geology in China, 49(6): 1970−1983 (in Chinese with English abstract).

    [44]

    Yao Chengbin, Zhou Mingzhong, Xiong Kangning, Zhang Di, Yang Hua, Zhang Xianrong, Yang Liansheng. 2021. Contents of heavy metals in soils and crops in the demonstration area of karst rocky desertification control of the karst plateau−gorge[J]. China Environmental Science, 41(1): 316−326 (in Chinese with English abstract).

    [45]

    Yin Fang, Feng Kai, Yin Cuijing, Bai Dezhen, Wang Rui, Zhou Yuanyuan, Liang Yongchun, Liu Lei. 2021. Evaluation and source analysis of heavy metal in cultivated soil around typical industrial district of Qinghai Province[J]. China Environmental Science, 41(11): 5217−5226 (in Chinese with English abstract).

    [46]

    Yu Danyang, Wang Yanhong, Ding Fu, Chen Xin, Wang Jingran. 2021. Comparison of analysis methods of soil heavy metal pollution sources in china in last ten years[J]. Chinese Journal of Soil Science, 52(4): 1000−1008 (in Chinese with English abstract).

    [47]

    Zhang Guotao, Peng Zhongqin, Wang Chuanshang, Li Zhihong. 2016. Geochemical characteristics of the lower permian Liangshan formation in dushan area of Guizhou Province and their implications for the paleoenvironment[J]. Geology in China, 43(4): 1291−1303 (in Chinese with English abstract).

    [48]

    Zhang Z W, Yang X Y, Li S, Zhang Z S. 2010. Geochemical characteristics of the Xuanwei Formation in West Guizhou: Significance of sedimentary environment and mineralization[J]. Chinese Journal of Geochemistry, 29(4): 355−364. doi: 10.1007/s11631-010-0467-1

    [49]

    Zhao Jiayin, Yang Di, Yang Xiangzhi, Zhang Ning, Liu Yu, Wang Mengmeng, Wu Yuncheng, Chen Qiuhui, Tian Wei. 2022. Pollution assessment and source identifification of heavy metals in farmland soils around a coal mine area in Yunnan Province[J]. Journal of Ecology and Rural Environment, 38(11): 1473−1481 (in Chinese with English abstract) .

    [50] 陈其永, 郜允兵, 倪润祥, 潘瑜春, 阎跃观, 杨晶, 刘孝阳, 顾晓鹤. 2022. 2000~2018年我国大气重金属沉降通量时空变化特征[J]. 环境科学, 43(9): 4413−4424.
    [51] 陈梓杰, 肖唐付, 刘意章, 邢丹, 杨军, 朱正杰, 宁增平. 2021. 典型黑色岩系地质高背景区农田土壤−玉米系统重金属富集特征[J]. 生态学杂志, 40(8): 2315−2323.
    [52] 丁易. 2007. 国家大型煤炭基地规划概述[J]. 煤炭工程, 39(2): 12−14.
    [53] 丁振华, 郑宝山, 庄敏, 胡天斗, 刘涛. 2009. 贵州中北部燃煤型砷中毒地区煤中砷的赋存状态研究[J]. 矿物学报, 29(1): 70−74.
    [54] 郭胜利, 李东伟, 耿伟乐, 张建. 2015. 调制碳酸钙对燃煤重金属As, Cd, Zn的排放控制[J]. 煤炭学报, 40(12): 2967−2973.
    [55] 贺灵, 吴超, 曾道明, 成晓梦, 孙彬彬. 2021. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 40(3): 384−396.
    [56] 蒋玉莲, 余京, 王锐, 王佳彬, 李瑜, 余飞, 张云逸. 2023. 渝东南典型地质高背景区土壤重金属来源解析及污染评价[J]. 环境科学, 44(7): 4017−4026.
    [57] 李继华, 何俊, 阚强波, 段忠明, 黄云超. 2021. 基于行政村级的云南省富源县2010—2019年肺癌死亡空间分析[J]. 中国肿瘤, 30(10): 8.
    [58] 李丽辉, 王宝禄. 2008. 云南省土壤As、Cd元素地球化学特征[J]. 物探与化探, 32(5): 497−501.
    [59] 李强, 艾锋, 王玺, 马泳波, 刘浪, 朱占荣, 张凯煜. 2023. 煤基固废协同矿山土壤生态修复的理论解析与实践探索—以陕西榆林市为例[J]. 西北地质, 56(3): 70−77.
    [60] 李伟, 高海涛, 张娜, 孙晶, 巴桑, 吕学斌, 熊健. 2022. 拉萨市城区土壤重金属分布特征及生态风险评价[J]. 环境工程技术学报, 12(3): 869−877.
    [61] 刘鹏, 胡文友, 黄标, 刘本乐, 周怡. 2019. 大气沉降对土壤和作物中重金属富集的影响及其研究进展[J]. 土壤学报, 56(5): 1048−1059.
    [62] 刘同, 刘传朋, 邓俊, 康鹏宇, 王凯凯, 赵玉岩. 2022. 山东省沂南县东部土壤重金属生态健康风险评价[J]. 中国地质, 49(5): 1497−1508.
    [63] 马宏宏, 彭敏, 刘飞, 郭飞, 唐世琪, 刘秀金, 周亚龙, 杨柯, 李括, 杨峥, 成杭新. 2020. 广西典型碳酸盐岩区农田土壤−作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 41(1): 449−459.
    [64] 麦麦提吐尔逊·艾则孜, 阿吉古丽·马木提, 艾尼瓦尔·买买提, 马国飞. 2017. 博斯腾湖流域绿洲农田土壤重金属污染及潜在生态风险评价[J]. 地理学报, 72(9): 1680−1694.
    [65] 倪琳, 崔小峰, 徐立家, 林茜, 郭坤. 2020. 燃料煤重金属元素在飞灰及炉渣中的分布与富集研究[J]. 煤炭科学技术, 48(5): 203−208.
    [66] 聂爱国, 谢宏. 2004. 峨眉山玄武岩浆与贵州高砷煤成因研究[J]. 煤田地质与勘探, 32(1): 8−10.
    [67] 欧灵芝, 胡鸣明, 安德章, 唐明, 秦樊鑫, 李菲, 孙媛媛. 2023. 高砷煤矿周围旱作土壤重金属污染特征及农作物健康风险评价[J]. 农业资源与环境学报: 40(1): 25−35.
    [68] 庞文品, 秦樊鑫, 吕亚超, 李英菊, 李刚, 李新丽. 2016. 贵州兴仁煤矿区农田土壤重金属化学形态及风险评估[J]. 应用生态学报, 27(5): 1468−1478.
    [69] 秦元礼, 张富贵, 彭敏, 张利, 唐瑞玲, 成杭新. 2022. 云南省宣威市农耕区土壤重金属元素分布影响因素及生态风险评价[J]. 地质与勘探, 58(2): 360−368.
    [70] 宋绵, 龚磊, 王艳, 田大争, 王新峰, 李跃, 李伟. 2022. 河北阜平县表层土壤重金属对人体健康的风险评估[J]. 岩矿测试, 41(1): 133−144.
    [71] 苏辉跃, 刘江川, 王璐, 李波, 于欢, 陈志奎, 胡月明. 2022. 城乡过渡区土壤−蔬菜中重金属耦合分异特征及形成机理解析[J]. 生态与农村环境学报, 38(2): 184−193.
    [72] 孙锐, 周晓芳, 陈阳, 王新富, 高良敏. 2021. 正定矩阵因子模型解析鄂尔多斯高原煤矿土壤重金属来源[J]. 科学技术与工程, 21(16): 6937−6943.
    [73] 童文彬, 郭彬, 林义成, 刘琛, 宋建忠. 2020. 衢州典型重金属污染农田镉、铅输入输出平衡分析[J]. 核农学报, 34(5): 1061−1069.
    [74] 涂春霖, 杨坤, 和成忠, 张连凯, 李博, 魏总, 姜昕, 杨明花. 2023. 滇东典型煤矿区小流域沉积物重金属来源及风险评价[J]. 中国地质, 50(1): 206−221.
    [75] 王昌宇, 张素荣, 刘继红, 邢怡, 李名则, 刘庆学. 2021. 雄安新区某金属冶炼区土壤重金属污染程度及风险评价[J]. 中国地质, 48(6): 1697−1709.
    [76] 魏复盛, 陈静生, 吴燕玉, 郑春江. 1990. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 330-483.
    [77] 魏迎辉, 李国琛, 王颜红, 张琪, 李波, 王世成, 崔杰华, 张红, 周强. 2018. PMF模型的影响因素考察——以某铅锌矿周边农田土壤重金属源解析为例[J]. 农业环境科学学报, 37(11): 2549−2559.
    [78] 翁焕新, 张霄宇, 邹乐君, 张兴茂, 刘广深. 2000. 中国土壤中砷的自然存在状况及其成因分析[J]. 浙江大学学报(工学版), 34(1): 90−94.
    [79] 吴先亮, 黄先飞, 李朝婵, 胡继伟, 唐凤华, 张泽东. 2018. 黔西煤矿区土壤重金属污染水平及其形态[J]. 水土保持研究, 25(6): 335−341.
    [80] 吴月照, 潘懋. 1993. 中国东部玄武岩地区母岩及土壤元素含量变化规律研究[J]. 环境科学进展, 1(5): 26−36.
    [81] 肖高强, 陈杰, 白兵, 李元彬, 朱能刚. 2021. 云南典型地质高背景区土壤重金属含量特征及污染风险评价[J]. 地质与勘探, 57(5): 1077−1086.
    [82] 徐兴阳, 钱发聪, 罗云, 杨义, 陈初, 张静, 董石飞, 杨应明. 2020. 昆明烟区农家肥的基本特性与安全性现状研究[J]. 西南农业学报, 33(8): 1748−1753.
    [83] 薛志斌, 李玲, 张少凯, 董晶. 2018. 内梅罗指数法和复合指数法在土壤重金属污染风险评估中的对比研究[J]. 中国水土保持科学, 16(2): 119−125.
    [84] 杨玲, 田磊, 白光宇, 裴圣良, 张德强. 2022. 内蒙古新巴尔虎右旗土壤重金属生态风险与来源分析[J]. 中国地质, 49(6): 1970−1983.
    [85] 姚成斌, 周明忠, 熊康宁, 张迪, 杨桦, 张先荣, 杨连升. 2021. 喀斯特高原石漠化治理示范区土壤和农作物重金属含量特征[J]. 中国环境科学, 41(1): 316−326. doi: 10.3969/j.issn.1000-6923.2021.01.037
    [86] 尹芳, 封凯, 尹翠景, 拜得珍, 王蕊, 周园园, 梁永春, 刘磊. 2021. 青海典型工业区耕地土壤重金属评价及源解析[J]. 中国环境科学, 41(11): 5217−5226. doi: 10.3969/j.issn.1000-6923.2021.11.030
    [87] 于旦洋, 王颜红, 丁茯, 陈欣, 王镜然. 2021. 近十年来我国土壤重金属污染源解析方法比较[J]. 土壤通报, 52(4): 1000−1008.
    [88] 张国涛, 彭中勤, 王传尚, 李志宏. 2016. 贵州独山下二叠统梁山组地球化学特征及其沉积环境意义[J]. 中国地质, 43(4): 1291−1303.
    [89] 赵家印, 杨地, 杨湘智, 张宁, 刘宇, 王蒙蒙, 吴云成, 陈秋会, 田伟. 2022. 云南省某煤矿开采遗址周边农用地土壤重金属污染评价及源解析研究[J]. 生态与农村环境学报, 38(11): 1473−1481.
  • 期刊类型引用(6)

    1. 韩双宝,周殷竹,郑焰,周金龙,李长青,韩强强,李甫成. 银川平原地下水化学成因机制与组分来源解析. 环境科学. 2024(08): 4577-4588 . 百度学术
    2. 张卓,郭华明,韩双宝,牛笑童. 沉积物中砷的赋存特征及对地下水砷富集的控制:以内蒙古河套盆地为例. 中国地质. 2024(04): 1331-1341 . 本站查看
    3. 吴光伟,李浩林,王庆兵,顾莎,郭梓烽,刘中业. 鲁西北平原地下水高氟与高碘成因分析. 岩矿测试. 2023(04): 793-808 . 百度学术
    4. 张卓,柳富田,陈社明. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用. 华北地质. 2023(03): 49-56 . 百度学术
    5. 李红超,单强,马丙太,赵德刚. 基于逻辑回归分析的焦化行业地下水有机污染物分布特征及影响因素研究. 华北地质. 2023(04): 47-54 . 百度学术
    6. 邢世平,郭华明,吴萍,胡学达,赵振,袁有靖. 化隆—循化盆地不同类型含水层组高氟地下水的分布及形成过程. 地学前缘. 2022(03): 115-128 . 百度学术

    其他类型引用(2)

图(6)  /  表(5)
计量
  • 文章访问数:  2050
  • HTML全文浏览量:  872
  • PDF下载量:  272
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-03-23
  • 网络出版日期:  2024-02-03
  • 刊出日期:  2024-01-24

目录

/

返回文章
返回
x 关闭 永久关闭