• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

黔东南地区牛蹄塘组页岩孔隙结构多尺度表征及其对页岩气富集的影响

葛明娜, 包书景, 石砥石, 马勇, 张金川, 张琴, 张立勤, 林燕华, 王婷

葛明娜,包书景,石砥石,马勇,张金川,张琴,张立勤,林燕华,王婷. 2024. 黔东南地区牛蹄塘组页岩孔隙结构多尺度表征及其对页岩气富集的影响[J]. 中国地质, 51(1): 57−72. DOI: 10.12029/gc20210923001
引用本文: 葛明娜,包书景,石砥石,马勇,张金川,张琴,张立勤,林燕华,王婷. 2024. 黔东南地区牛蹄塘组页岩孔隙结构多尺度表征及其对页岩气富集的影响[J]. 中国地质, 51(1): 57−72. DOI: 10.12029/gc20210923001
Ge Mingna, Bao Shujing, Shi Dishi, Ma Yong, Zhang Jinchuan, Zhang Qin, Zhang Liqin, Lin Yanhua, Wang Ting. 2024. Multi−scale characterization of shale pore structure of Niutitang Formation in southeastern Guizhou and its influence on shale gas enrichment[J]. Geology in China, 51(1): 57−72. DOI: 10.12029/gc20210923001
Citation: Ge Mingna, Bao Shujing, Shi Dishi, Ma Yong, Zhang Jinchuan, Zhang Qin, Zhang Liqin, Lin Yanhua, Wang Ting. 2024. Multi−scale characterization of shale pore structure of Niutitang Formation in southeastern Guizhou and its influence on shale gas enrichment[J]. Geology in China, 51(1): 57−72. DOI: 10.12029/gc20210923001

黔东南地区牛蹄塘组页岩孔隙结构多尺度表征及其对页岩气富集的影响

基金项目: 国家科技重大专项“页岩气资源评价方法与勘查技术攻关”(2016ZX05034)、国家自然科学基金重点项目(42130803)及中国地质调查局项目(DD20230257)联合资助。
详细信息
    作者简介:

    葛明娜,女,1988年生,硕士,高级工程师,主要从事非常规油气地质研究;E-mail:610144368@qq.com

    通讯作者:

    包书景,男,1964年生,硕士,教授级高级工程师,主要从事油气地质研究;E-mail:415530248@qq.com

  • 中图分类号: P618.13

Multi−scale characterization of shale pore structure of Niutitang Formation in southeastern Guizhou and its influence on shale gas enrichment

Funds: Supported by National Science and Technology Major Project "Shale gas resource evaluation methods and exploration techniques" (No. 2016ZX05034), National Natural Science Foundation of China (No. 42130803) and the project of China Geological Survey (No. DD20230257).
More Information
    Author Bio:

    GE Mingna, female, born in 1988, master, senior engineer, mainly engaged in the unconventional oil and gas geological study; E-mail: 610144368@qq.com

    Corresponding author:

    BAO Shujing, male, born in 1964, master, professor of engineering, mainly engaged in oil and gas geology; E-mail: 415530248@qq.com.

  • 摘要:
    研究目的 

    研究黔东南地区牛蹄塘组页岩孔隙结构特征及其对页岩气富集的影响,抛开不利因素,为黔东南地区页岩气勘探提供建议。

    研究方法 

    通过聚焦离子束扫描电镜(FIB−SEM)、场发射扫描电镜(FE−SEM)和氮气吸附等手段,对页岩微纳米孔隙结构进行多尺度表征,并结合研究区牛蹄塘组页岩的生烃及埋藏史,研究构造运动与孔隙结构关系,进而分析对页岩气富集的影响。

    研究结果 

    牛蹄塘组页岩主要发育毫米级微裂缝、微米级黄铁矿晶间孔以及纳米级有机质孔隙,以墨水瓶状孔隙和平板结构的狭缝孔为主,孔隙结构复杂;结合FIB−SEM三维重构结果,有机质在页岩中占比较高,其孔隙度在0.04%~2.48%,对总孔隙的贡献率介于14%~96%,与有机质共生的黄铁矿晶间孔是沟通裂缝的主要孔隙类型;该地区页岩气赋存状态以欠饱和的吸附气为主,游离气含量偏低。

    结论 

    牛蹄塘组页岩大量构造裂缝,沟通了有机质孔及黄铁矿晶间孔,改变了原有孔隙结构,致使原位聚集的页岩气沿裂缝逸散,是牛蹄塘组页岩含气量低的关键因素。热演化程度适中、构造保存好的区域是古隆起周缘下一步页岩气勘探的有利方向。

    创新点:

    (1)古隆起周缘牛蹄塘组页岩具有热演化程度适中,构造保存好的“二元富集”特征,是“古隆起控藏”的核心理论。(2)通过多尺度刻画黔东南地区牛蹄塘组页岩微观孔隙结构,明确了微裂缝和无机矿物孔是其主要储集空间。(3)牛蹄塘组页岩微观孔隙沟通储层构造裂缝,破坏了保存条件,致使原位聚集的页岩气沿裂缝逸散,是牛蹄塘组页岩含气量低的关键因素。

    Abstract:

    This paper is the result of oil and gas exploration engineering.

    Objective 

    It is necessary to study the pore structure characteristics of Niutitang Formation shale in Southeast Guizhou and its influence on shale gas enrichment, avoid unfavorable factors, and provide suggestions for shale gas exploration in Southeast Guizhou.

    Methods 

    Multi−scale characterization of the shale micro−nano pore structure is carried out by means of focused ion beam scanning electron microscopy (FIB−SEM), FE−SEM, and nitrogen adsorption. Combined with the hydrocarbon generation and burial history of the Niutitang Formation shale in the study area, the relationship between tectonic movement and pore structure is studied, and its control effect on shale gas enrichment is analyzed.

    Results 

    The Niutitang Formation shale mainly develops millimeter−scale micro−cracks, micron−scale pyrite intercrystalline pores and nano−scale organic pores, mainly ink bottle−shaped pores and slit pores with a flat plate structure, and the pore structure is complex. Combined with the results of FIB−SEM three−dimensional reconstruction, organic matter accounts for a relatively high proportion of shale, with a porosity of 0.04%−2.48% and a contribution rate of 14%−96% to the total porosity. The pyrite crystals co−existing with organic matter Pores are the main type of pores that communicate fractures, the shale gas in this area is dominated by undersaturated adsorbed gas, and the free gas content is low.

    Conclusions 

    A large number of structural fractures in the Niutitang Formation shale have connected organic matter pores and pyrite intercrystalline pores, and changed the original pore structure, causing the in−situ accumulated shale gas to escape along the fractures, which is a key factor in the low gas content of the shale of the Niutitang Formation. Finding areas with moderate thermal evolution and well−preserved structures is a favorable direction for shale gas exploration on the periphery of paleo−uplifts.

    Highlights:

    (1) The shale in the Niutitang Formation at the periphery of the paleo−uplift Shale has the characteristics of "dual enrichment" of "moderate thermal evolution and well−preserved structure", which is the core theory of "paleo−uplift controlling reservoir". (2) Through multi−scale characterization of the micro−pore structure of the Niutitang Formation shale in southeastern Guizhou, it is clear that micro−cracks and inorganic mineral pores are its main storage space. (3) The microscopic pores of the Niutitang Formation shale communicated with the structural fractures of the reservoir, which destroyed the preservation conditions and caused the in−situ accumulated shale gas to escape along the fractures,which is a key factor for the low gas content of the Niutitang Formation shale.

  • 美国页岩气的成功开发引领全球能源领域革命。据美国能源信息局(EIA)透露,美国页岩气日均产量占美国天然气日均产量的70%,页岩气的勘探开发受到越来越多国家的重视。通过借鉴美国页岩气勘探开发的成功经验,中国页岩气产业发展迅速,成为继美国、加拿大之后第三个实现商业化开发的国家。页岩气作为一种高效清洁资源,对助力碳减排和“双碳”目标的实现具有重要意义。

    页岩气作为一种非常规能源,具有自生自储、源储一体的非常规气藏特征(Zhai et al., 2018a)。微纳米孔隙作为页岩气的重要储集空间,成为页岩气近年来研究的热点(赵习等,2017吴松涛等,2018翟刚毅等,2020)。从页岩微观孔隙识别、微观孔隙种类划分,到孔径、孔容、比表面、分形等孔隙结构参数表征,再到微纳米孔隙的三维展布与连通性分析,已有十余年的研究进程。目前常用的微观孔隙分析手段主要涉及微观孔隙类型分析和孔隙结构分析。孔隙类型分析手段主要包含氩离子抛光扫描电镜、场发射扫描电镜(FE−SEM)、宽离子束扫描电镜、氦离子扫描电镜等2D分析手段和微米CT、纳米CT以及聚焦离子束扫描电镜(FIB−SEM)等3D分析手段;孔隙结构分析手段主要包含CO2吸附、低温N2吸附、高压压汞法、核磁共振等方法(Ge et al., 2018; 吴松涛等,2020李仲等,2021)(表1)。根据不同检测手段的属性,一种方法很难达到页岩微纳米孔隙的全方位、多尺度研究(赵日新等,2019)。因此,本文结合研究目的和仪器分辨率、研究范围等特性,选取了FE−SEM、低温N2吸附及FIB−SEM三种手段开展微纳米孔隙的多尺度表征。

    表  1  常见的微观孔隙检测方法
    Table  1.  Common microscopic pore detection methods
    检测方法 特点 局限性
    氩离子抛光-扫描
    电镜/Ar−ion Milling SEM
    页岩二维孔隙结构的定性研究,能够快速观测页岩样品中的孔隙含量、分布及孔径范围 仅适用于二维微纳米孔隙刻画,无法反映三维空间结构
    宽离子束-扫描电镜/ BIB−SEM
    场发射扫描电镜/ FE−SEM 页岩二维孔隙结构的定性研究,进行样品表层的微区点线面元素的定性、半定量及定量分析
    氦离子扫描电镜/HIM 是FE−SEM的补充,提供更强的样品表面信息对比度机制
    小角X射线散射/ SAXS 几十纳米以下微孔隙 后期数据分析处理受限
    (超)小角度中子散射/(U)SANS 纳米孔隙分布和几何形态
    核磁共振 微纳米孔隙全孔径分析,定性划分有机、无机孔 孔径分布准确性受影响
    高压压汞法 微纳米孔隙孔径分布、孔吼形态及发育情况,定性判断孔吼连通性 不适于表征微孔,且造成样品无法二次利用
    微米X射线显微镜/ Micro−CT 表征页岩三维空间结构特征 仅适合于表征页岩亚微米级至微米级孔隙结构
    纳米透射X射线显微镜/Nano−CT 反映三维空间结构,更加精确地实现页岩组分定量研究 分辨率有限,不适宜表征页岩介孔及微孔
    聚焦离子束−扫描电镜/FIB−SEM 数纳米级分辨率下,对页岩孔隙进行三维重构,定性、定量分析纳米—微米级孔隙度、孔径及连通性 页岩纳米级孔隙三维结构研究的主要技术手段,视域小,需结合MAPS技术综合分析
    下载: 导出CSV 
    | 显示表格

    微纳米孔隙的研究对页岩含气性有重要的地质意义(聂海宽等,2014张金川等,2021张保民等,2021)。尤其是对中国南方海相页岩来说,有机质微观孔隙的发育是页岩气富集高产的关键因素(Liu et al., 2020葛明娜等,2020)。本文分析了黔东南黄平地区页岩气赋存状态、页岩孔隙结构及保存条件,并在此基础上开展了页岩孔隙结构的演化以及对页岩气富集的影响。

    黄平地区位于贵州省东南部,主要属于黔东南苗族侗族自治州,构造上处于黔南坳陷的黄平凹陷内,区域广泛发育隔槽式褶皱和逆冲断层(刘瑞崟等,2016; Zhai et al., 2018b, 2020)。地层自下而上发育海相震旦系—中三叠统和陆相上三叠统—下白垩统两相沉积组合,总体发育较完整(梁兴等,2020)。受黔中隆起的影响,工区上奥陶统、下志留统、上石炭统、上三叠统受剥蚀(久凯等,2016王濡岳等,2019)。其中,下寒武统牛蹄塘组富有机质页岩为深水陆棚相沉积(王鹏万等,2011),沉积厚度大,热演化程度较高,是黔东南地区油气勘探的优质烃源岩(梁兴等,2014Chen et al.,2015Li et al.,2020)。自2009年,在邻区牛蹄塘组实施钻探了一批页岩气井,2009年方深1井牛蹄塘组老井压裂获日产17.6 m3产量,2011年钻探了岑页1井、2013年钻探黄页1、龙页1等4口井、2013—2015年钻探了天星1井(压裂试气井)(王濡岳等,2018)、天马1井(探井)、岑地1、岑地4井和黄地1井(3口调查井)等,目前研究区内及周缘牛蹄塘组页岩气钻井十余口,产量在100 m³/天以上的有天星1井、岑页1井和黄页1井,显示较好的主要有黔山1井、庄1井和黄地1井,其他井最大含气量一般低于0.7 m³/t。同四川盆地外围——川东南地区相比,研究区位于雪峰古隆起南缘,根据古隆起周缘演化程度适中,构造改造弱,保存条件好的页岩气富集模式(Bao et al., 2018),研究区牛蹄塘组页岩具有含气量高、电阻率高、氮气含量低的“两高一低”特征(图1)。

    图  1  研究区地理位置及典型钻井
    Figure  1.  Geographical location, and typical drilling in the study area

    研究选取了黄平地区上塘复背斜东翼南段的一口页岩气钻井——黄地1井10块页岩岩心样品(图1表2)。黄地1井为中国地质调查局油气资源调查中心2015年部署实施的一口地质调查井,旨在摸清牛蹄塘组在黄平地区的发育情况,确定牛蹄塘组暗色泥页岩厚度,获取牛蹄塘组含气性参数,总结油气地质特征。该井开孔层位寒武系娄山关组,自上而下依次钻遇娄山关组、高台组、清虚洞组、金顶山组、明心寺组、牛蹄塘组及灯影组,完钻井深1501.05 m,其中牛蹄塘组厚度119.95 m,岩性主要为黑色碳质页岩,底部为灰黑色磷块岩夹硅质岩(图2)。黄地1井实现了牛蹄塘组页岩气重要发现,为武陵山褶皱带南部显示最好的页岩气地质调查井(葛明娜等,2018)。

    表  2  样品基本信息
    Table  2.  Basic information of samples
    序号 层段 岩性 TOC/% Ro/% 石英/% 碳酸盐/% 黄铁矿/% 伊利石相对含量/%
    HD−1 牛蹄塘组上段 含碳酸盐钙质页岩 2.5 1.44 28 35 3 37
    HD−2 牛蹄塘组上段 含碳质页岩 1.39 2.12 35 4 4 32
    HD−3 牛蹄塘组上段 含碳质页岩 0.84 2.65 34 0 4 34
    HD−4 牛蹄塘组上段 含碳质页岩 2 / 29 9 4 27
    HD−5 牛蹄塘组中段 含粉砂质碳质页岩 0.79 / 32 / 4 39
    HD−6 牛蹄塘组中段 含粉砂质碳质页岩 5.85 2.71 28 4 11 43
    HD−7 牛蹄塘组下段 碳质页岩 5.67 / 43 7 6 40
    HD−8 牛蹄塘组下段 碳质页岩 2.97 / 43 4 6 45
    HD−9 牛蹄塘组下段 含粉砂质碳质页岩 3 2.79 43 4 5 45
    HD−10 牛蹄塘组下段 碳质页岩 6.01 / 53 5 4 48
    下载: 导出CSV 
    | 显示表格
    图  2  黄地1井岩性柱状图
    Figure  2.  Lithology histogram of Huangdi Well 1

    本次微纳米孔隙研究主要进行FIB−SEM 3D重构、低温N2吸/脱附实验、FE−SEM实验,结合含气量解析及其他配套有机地化和岩矿分析实验进行综合研究。微纳米孔隙三维重构实验采用的是德国Zeiss公司生产的、型号为Zeiss Crossbeam 540的聚焦离子束扫描电镜。样品测试步骤主要包括预磨、高能抛光、样品喷碳处理、三维成像。其中,样品喷碳处理目的是增加导电性,提高成像质量和分辨率;三维成像采用离子束进行切片,切片厚度为5~10 nm;采用电子束进行同步观察图像,分辨率5~10 nm,最终获得系列二维图像用于三维重构(Ma et al., 2015; 马勇等,2015王晓琦等,2019),可刻画出微纳米孔隙形貌,有机质、孔隙、黄铁矿及其他无机矿物在选区视域内的空间展布,计算出孔隙度、有机质孔隙度、有机质占比、黄铁矿占比等参数值。

    鉴于FIB−SEM对10 nm以下孔隙分辨率受限,孔径研究采用了美国麦克公司的全自动快速比表面积及中孔/微孔分析仪,型号为ASAP 2020,可进行单点、多点BET比表面积、Langmuir比表面积、BJH中孔、孔分布、孔大小及总孔体积和面积、密度函数理论(DFT)、吸附热及平均孔大小等多种数据分析,孔径测量范围0.35~500 nm,微观孔隙类型分析采用的德国Zeiss公司生产的、型号为Merlin Compact的FE−SEM,理论分辨率可达0.8 nm,可获得优质微纳米孔隙图像、矿物共生关系及能谱图像。

    牛蹄塘组页岩矿物成分主要以石英为主,含量28%~43%,平均33.6%,其次是黏土矿物,黏土矿物主要为伊利石,表明页岩处于晚成岩期(辛云路等,2023),且随着埋深增加伊利石含量增加(表2);牛蹄塘组上段碳酸盐矿物含量较高,页岩的脆性较好,利于后期储层改造,页岩主要发育层理缝,极易剥离,岩性硬且脆,呈碎块状(图3a、b),属于非构造裂缝;中段页岩的粉砂含量较高,裂缝不发育,为完整的碳质页岩(图3c、d);中下段发育张剪性裂缝, 开度0.1 mm左右,呈高角度产出且相互交错,裂缝被方解石充填(图3e),被方解石充填的裂缝则有利于页岩气的开采(Curtis, 2002; Bowker, 2007);牛蹄塘组下段发育滑脱性裂缝(图3f),这些裂缝作为渗流通道,对气体的保存起到了破坏作用。

    图  3  黄地1井牛蹄塘组页岩岩心特征
    a—牛蹄塘组上段,1288.7 m,页理发育,呈碎块状;b—牛蹄塘组上段,1299.6 m,呈碎块状;c—牛蹄塘组中下段,1345 m,黑色碳质页岩;d—牛蹄塘组中下段,1358 m,黑色碳质页岩;e—牛蹄塘组中下段,1363 m,发育张剪性裂缝,可见碳酸盐矿物充填其中;f—牛蹄塘组下段,1371 m,发育滑脱裂缝
    Figure  3.  Shale core characteristics of Niutitang Formation in Huangdi Well 1
    a−Upper part of Niutitang Formation, 1288.7 m, foliation developed, fragmentary; b−Upper part of Niutitang Formation, 1299.6 m, in the shape of fragments; c−Middle and lower Niutitang Formation, 1345 m, black carbonaceous shale; d−Middle and lower Niutitang Formation, 1358 m, black carbonaceous shale; e−The middle and lower part of Niutitang Formation, 1363 m, develops tension−shear fractures, which are filled with carbonate minerals; f−The lower part of Niutitang Formation, 1371 m, developed detachment fractures

    页岩的微观孔隙空间是由基质孔隙和微裂缝所组成,结构复杂,以发育多种类型微纳米级微孔为特征,包括粒内孔、粒间孔以及有机质孔3种类型(马勇等,2014)。黄地1井牛蹄塘组页岩样品发育微裂缝、有机质孔隙和无机孔隙,无机孔隙又以黄铁矿晶间孔和黏土矿物层间孔居多。黄地1井页岩样品微裂缝可分为成岩缝(图4a)、有机质收缩缝(图4b)及矿物边缘缝(图4c),以成岩缝居多,呈不规则弯曲,矿物边缘缝一般发育较平直。整体上,牛蹄塘组自上至下有机质含量增高,有机质孔隙呈增多趋势,相应孔径呈减小趋势:上段有机质含量低,陆源碎屑含量高,几乎无有机质孔隙(顶部样品除外),孔径10~150 nm(图4d);中段有机质含量高,有机质孔隙发育,孔隙分布面积大、呈海绵状,孔径10~100 nm(图4e);下段有机质含量高,与磷灰石伴生,有机质孔隙较中段页岩欠发育,孔径多小于30 nm(图4f)。黄铁矿晶粒间孔隙形态不规则,孔径介于200~500 nm(图4g、h),其微晶集合体所形成的刚性构架(多为应力三角结构区)可以构成微晶间孔隙保存的良好条件,可见黏土矿物层间孔和长石、碳酸盐矿物粒间溶蚀孔隙(图4i)。

    图  4  黄地1井页岩样品扫描电镜孔隙表征
    Figure  4.  SEM pore characterization of shale samples from Huangdi Well 1

    对黄平地区黄地1井牛蹄塘组5块碳质页岩样品微纳米孔隙进行三维重构,结果表明:①从孔隙类型来看,可分为微纳米孔隙和微裂缝两种;从孔隙成因来看,可分为有机质孔隙、无机矿物孔和微裂缝;对页岩样品进行三维分割后,得出矿物微裂缝较发育(图5中HD−6),并且贯穿于有机质孔及黄铁矿晶间孔,与岩心宏观裂缝发育位置具有一定的对应关系。同时,页岩样品HD−6和HD−9的有机质占比高,沥青质经后期持续热演化生成大量有机质孔隙,有机质孔隙占比介于14%~96%,对孔隙度的贡献较大,尤其是HD−9样品孔隙几乎全部为有机孔(图5);②黄地1井富含黄铁矿,通过三维重构得出黄铁矿占比1.5%~5%(表3),以草莓状为主,草莓状黄铁矿直径介于3.8~5.1 μm,其晶间孔直径介于200~500 nm,微晶黄铁矿直径介于0.38~1.5 μm,两者之比介于2.67~13.42,与含气量有较好的线性负相关;③牛蹄塘组页岩整体孔径介于10~100 nm(受观测分辨率限制,孔径仅对10 nm以上的孔隙进行统计),直径(等效直径)为10~100 nm的孔隙所占体积最大(图6图7),表明孔径对孔隙度的贡献与孔径分布一致。

    图  5  黄地1井页岩样品三维分割及孔隙类型
    (红色代表孔隙,绿色代表有机质,黄色为黄铁矿,灰色为矿物颗粒)
    Figure  5.  Three−dimensional segmentation and pore types of shale samples from Huangdi Well 1
    (Red for pores, green for organic matter, yellow for pyrite, gray for mineral particles)
    表  3  黄地1井页岩样品三维重构结果
    Table  3.  3D reconstruction results of shale samples in Huangdi Well 1
    样品编号深度/m三维重构孔隙度/%有机质孔隙度/%贡献率/%孔径分布区间/nm有机质占比重/%黄铁矿占比重/%
    HD−11285.400.42//10~607.772.68
    HD−21292.300.370.0822.2910~1003.182.91
    HD−31302.000.290.0413.7910~1003.631.64
    HD−61331.450.580.2441.0310~10010.204.87
    HD−91369.952.572.4896.5610~8021.70/
    下载: 导出CSV 
    | 显示表格
    图  6  黄地1井5块页岩样品三维重构
    Figure  6.  Three-dimensional reconstruction of 5 shale samples from Huangdi Well 1
    图  7  黄地1井5块页岩样品三维重构及孔径分布
    Figure  7.  3D reconstruction results and pore size distribution of 5 shale samples from Huangdi Well 1

    液氮的等温吸附可以定量表征页岩微孔至介孔(2~50 nm)分布特征,其结果与扫描电镜分析联合起来可有效表征页岩从微孔到介孔、宏孔的孔隙分布特征。页岩比表面积3.9~13.41 m²/g,平均值为7.66 m²/g,总孔容在0.001~0.007 mL/g,平均值为0.0031 mL/g(表4)。这也印证了牛蹄塘组页岩发育的微孔隙尺寸更小,这些较小的微孔隙使得牛蹄塘组页岩的比表面积和总孔容更大。此外,结合页岩N2吸附和解吸等温线(图8),吸附曲线均呈反“S”型,当相对压力较低(P/P0<0.4)时,以微孔的单分子层吸附为主,吸附量较快增加;在中等压力下(0.4<P/P0<0.8),吸附量平缓地增加,可能是由于发生多分子层吸附,吸附曲线与解吸曲线分离出现滞后环。在高压阶段(P/P0>0.8)时,发生部分中孔吸附,导致吸附量增加且达到吸附饱和,吸附与脱附曲线之间形成的滞后回线是由孔隙中吸附过程发生的毛细凝聚和脱附过程的解吸蒸发之间的相对压力差异所造成的(曾宏斌等,2021)。样品HD−4、HD−5、HD−8对应IUPAC磁滞回线分类中的H2型,通常出现在墨水瓶型孔隙中;样品HD−7对应H4型滞后环,发育狭窄的狭缝形孔隙,通常在微孔中出现;由氮气吸附获得的页岩的孔径分布特征可以看出,牛蹄塘组上段—中下段页岩孔隙仅在10 nm以下相对发育,且峰值也集中在4 nm左右,样品HD−10对应H3型滞后环,对应的是平板状的狭缝型孔隙;下段孔隙直径主要集中在40 nm左右,为裂缝贯通部位;表明牛蹄塘组孔隙非均质性较明显,孔隙结构复杂。

    表  4  黄地1井低温N2吸附孔隙结构参数
    Table  4.  Pore structure parameters of low temperature N2 adsorption in Huangdi Well 1
    样品编号 BET比表面积/
    (m2/g)
    BJH 解吸总孔体积/
    (mL/g)
    平均孔径/
    nm
    HD−1 4.273 0.00123 3.3
    HD−2 3.933 0.00118 3.13
    HD−3 6.693 0.00411 3.86
    HD−4 6.692 0.00788 5.64
    HD−5 7.035 0.00335 3.45
    HD−6 10.023 0.00438 3.2
    HD−7 13.411 0.00101 2.37
    HD−8 8.091 0.00398 3.31
    HD−9 5.178 0.00103 3.05
    HD−10 11.248 0.00319 2.68
    下载: 导出CSV 
    | 显示表格
    图  8  氮气吸附分析得到的页岩孔隙特征
    Figure  8.  Pore characteristics of shale obtained by nitrogen adsorption analysis

    黄地1井牛蹄塘组页岩最高解吸气量为0.66 m3/t,其损失气及残余气含量普遍小于0.3 m3/t,总含气量介于0.3~1.2 m3/t(Ge et al., 2020),平均为0.5 m3/t,相较于已成功实现商业化开发地区页岩层系的含气量,该地牛蹄塘组页岩处于中等水平,由该套页岩的地球化学特征可知,牛蹄塘组中下段页岩的TOC含量最高,但含气量较小,同时随着埋藏深度的增加,其解吸气量下降趋势较明显,具有较大的含气差异性;随着地层深度的增加,解吸气含量减小,孔隙之中只剩残余气,其含量低于0.4 m3/t,平均为0.17 m3/t,这些残余气在解吸实验后仍残存于页岩孤立孔隙中,尤其是在吸附气含量较高的页岩中(Ma et al.,2015Ge et al.,2020)。

    牛蹄塘组页岩样品吸附气量介于1.1~2.3 m3/t,平均为1.59 m3/t,吸附气含量较高;而现场解吸得到的解吸气含量与最大吸附量(VL)的关系(图9)说明存在以下几种可能:(1)解吸气量远低于VL,可能是黄地1井牛蹄塘组页岩自身含气量低,且VL表征最大吸附气量,原位吸附气量本就低于VL;(2)黄地1井牛蹄塘组页岩吸附气含量低,且属于吸附欠饱和吸附状态(解吸气焰蓝色,可点燃,可能是岩心由于压力降低,自然解吸而形成新的游离气);(3)牛蹄塘组页岩裂缝发育,尤其是顶部岩心破碎,页岩在由地层至解析罐过程中损失气量较大,使解吸气含量远小于实际结果。

    图  9  解吸气量与兰氏体积相关性
    Figure  9.  Correlation between desorption gas volume and Langley volume

    牛蹄塘组页岩发育了微裂缝−无机矿物孔(黄铁矿晶间孔、粒内孔)−有机质孔等不同尺度的孔−缝网络系统(Yang et al., 2019),牛蹄塘组页岩碳质含量较高,这些碳质为沥青质,其内部有机质孔发育程度较高,以蜂窝状为主,孔径为纳米级,多形成于有机质演化和生排烃过程中,这些沥青呈不规则块状与石英、黄铁矿等矿物共存;无机矿物孔以草莓状黄铁矿晶间孔为主,主要发育两种类型,一种是未被有机质充填的原生孔,另一种是有机质充填后,后期热演化形成的次生有机孔,孔径多为微米级;而微裂缝多在成岩作用和构造作用中形成,具有明显的方向性(彭中勤等,2019),成岩微裂缝一般延伸很短,主要是在成岩、超压、矿物相变、重结晶等作用下,形成的收缩缝、超压裂缝等(图4a),而构造微裂缝不仅延伸长度大,还将无机孔和有机孔连接起来,虽然有些裂缝被胶结物充填并失去了渗透性(图3e),但这些裂缝对于开发时增加诱导裂缝仍有重要的作用(焦淑静等,2015),其长度多为几十甚至上百毫米,形成页岩气的渗流通道(图10);这种构造缝主要发育在牛蹄塘组中下段,并且发育较集中,以不同角度相交(图3e),属于张剪性裂缝,同时发育构造滑脱裂缝(图2f),两种不同类型的裂缝共同造就了页岩的孔隙结构。

    图  10  页岩孔隙连通网络模型
    Figure  10.  Pore connectivity network model of shale

    牛蹄塘组页岩在地质历史时期先后经历了多期构造运动(Zhai et al., 2018bZhang et al., 2020),保存条件较复杂(刘瑞崟等,2016门玉澎等,2020)。许多学者通过研究牛蹄塘组页岩的生烃史,得出525~240 Ma为牛蹄塘组页岩主要生油气期。在这个过程中525~425 Ma主要为干酪根生油阶段,425~350 Ma干酪根和液态烃开始裂解生气,为裂解生凝析气阶段,350~240 Ma为主要裂解生干气阶段(陈方文等,20152016)。在受到加里东运动的影响后,地层短暂的构造抬升,之后进入稳定的沉积阶段,到石炭纪开始转入干气生成阶段,中侏罗世达到最大埋深,牛蹄塘组已完成生烃及有机质孔隙的形成;从印支运动开始,地层发生强烈的抬升改造,大量的油气藏遭到破环,虽然燕山运动经历了短暂沉积,但从早白垩世至今地层持续抬升,使牛蹄塘组的保存条件持续遭到破坏(金宠等,2012陈方文等,2015);这之后的构造抬升使得页岩孔隙中的游离气沿着连通性极佳的孔−缝网络系统逸散,游离气逸散后使得孔隙压力降低,引起吸附气脱附,进一步进入孔−缝系统从而逸散(Liang et al., 2014),最终使得该地区现今只保存了少量的吸附气(图11)。

    图  11  黔东南牛蹄塘组沉积埋藏史(据彭中勤等,2019修改)
    Figure  11.  Sedimentary and burial history of Niutitang Formation in Southeastern Guizhou (modified from Peng Zhongqin et al., 2019)

    一般来讲,吸附气量与孔隙结构的复杂程度具有一定的关系,孔隙结构越复杂,越容易吸附(杨永飞等,2016);同时随着埋深的增加,地层温度升高会使得处于吸附状态的天然气发生脱吸附作用(图12邢翔等,2013),不同尺度的孔隙其脱吸附效果具有明显差异(朱汉卿等,2018),但均增强了游离气的膨胀作用,在页岩气保存条件好的情况下,这种作用也会使微裂缝趋向于贯穿;同时有机质的持续演化也会产生收缩缝,连通性较差;因此,构造运动产生的裂缝才是改变孔隙结构的主要原因,而孔隙结构的改变直接导致页岩气保存条件遭到破坏从而影响了页岩气的富集。

    图  12  不同尺度下页岩气流动及产出(据Javadpour, 2007)
    Figure  12.  Flow and production of shale gas at different scales (after Javadpour, 2007)

    (1)黄平地区牛蹄塘组页岩微观孔隙以毫米级微裂缝、纳米级有机质孔隙以及微米级黄铁矿晶间孔为主,中下段页岩有机质孔对孔隙度的贡献率较高,墨水瓶状孔隙主要为有机质孔隙,黄铁矿晶间孔多为吸附孔,经裂缝延伸将有机质孔与黄铁矿晶间孔结合起来,形成不同尺度下的孔隙系统。

    (2)页岩有机质演化已到过成熟阶段,其有机质孔隙表面残留大量吸附气,而游离气在牛蹄塘组中下段裂缝发育区含量极低,解吸气量以吸附气为主,其含量远小于兰氏体积,未达到最大吸附量,页岩处于欠饱和吸附状态。

    (3)研究区牛蹄塘组页岩由于印支—喜山期构造运动,地层持续抬升直至出露,期间生烃中止,且伴生大量构造微裂缝,沟通了有机质孔及黄铁矿晶间孔,改变了原有孔隙结构,致使原位聚集的页岩气沿裂缝逸散,是牛蹄塘组页岩含气量低的关键因素。

  • 图  1   研究区地理位置及典型钻井

    Figure  1.   Geographical location, and typical drilling in the study area

    图  2   黄地1井岩性柱状图

    Figure  2.   Lithology histogram of Huangdi Well 1

    图  3   黄地1井牛蹄塘组页岩岩心特征

    a—牛蹄塘组上段,1288.7 m,页理发育,呈碎块状;b—牛蹄塘组上段,1299.6 m,呈碎块状;c—牛蹄塘组中下段,1345 m,黑色碳质页岩;d—牛蹄塘组中下段,1358 m,黑色碳质页岩;e—牛蹄塘组中下段,1363 m,发育张剪性裂缝,可见碳酸盐矿物充填其中;f—牛蹄塘组下段,1371 m,发育滑脱裂缝

    Figure  3.   Shale core characteristics of Niutitang Formation in Huangdi Well 1

    a−Upper part of Niutitang Formation, 1288.7 m, foliation developed, fragmentary; b−Upper part of Niutitang Formation, 1299.6 m, in the shape of fragments; c−Middle and lower Niutitang Formation, 1345 m, black carbonaceous shale; d−Middle and lower Niutitang Formation, 1358 m, black carbonaceous shale; e−The middle and lower part of Niutitang Formation, 1363 m, develops tension−shear fractures, which are filled with carbonate minerals; f−The lower part of Niutitang Formation, 1371 m, developed detachment fractures

    图  4   黄地1井页岩样品扫描电镜孔隙表征

    Figure  4.   SEM pore characterization of shale samples from Huangdi Well 1

    图  5   黄地1井页岩样品三维分割及孔隙类型

    (红色代表孔隙,绿色代表有机质,黄色为黄铁矿,灰色为矿物颗粒)

    Figure  5.   Three−dimensional segmentation and pore types of shale samples from Huangdi Well 1

    (Red for pores, green for organic matter, yellow for pyrite, gray for mineral particles)

    图  6   黄地1井5块页岩样品三维重构

    Figure  6.   Three-dimensional reconstruction of 5 shale samples from Huangdi Well 1

    图  7   黄地1井5块页岩样品三维重构及孔径分布

    Figure  7.   3D reconstruction results and pore size distribution of 5 shale samples from Huangdi Well 1

    图  8   氮气吸附分析得到的页岩孔隙特征

    Figure  8.   Pore characteristics of shale obtained by nitrogen adsorption analysis

    图  9   解吸气量与兰氏体积相关性

    Figure  9.   Correlation between desorption gas volume and Langley volume

    图  10   页岩孔隙连通网络模型

    Figure  10.   Pore connectivity network model of shale

    图  11   黔东南牛蹄塘组沉积埋藏史(据彭中勤等,2019修改)

    Figure  11.   Sedimentary and burial history of Niutitang Formation in Southeastern Guizhou (modified from Peng Zhongqin et al., 2019)

    图  12   不同尺度下页岩气流动及产出(据Javadpour, 2007)

    Figure  12.   Flow and production of shale gas at different scales (after Javadpour, 2007)

    表  1   常见的微观孔隙检测方法

    Table  1   Common microscopic pore detection methods

    检测方法 特点 局限性
    氩离子抛光-扫描
    电镜/Ar−ion Milling SEM
    页岩二维孔隙结构的定性研究,能够快速观测页岩样品中的孔隙含量、分布及孔径范围 仅适用于二维微纳米孔隙刻画,无法反映三维空间结构
    宽离子束-扫描电镜/ BIB−SEM
    场发射扫描电镜/ FE−SEM 页岩二维孔隙结构的定性研究,进行样品表层的微区点线面元素的定性、半定量及定量分析
    氦离子扫描电镜/HIM 是FE−SEM的补充,提供更强的样品表面信息对比度机制
    小角X射线散射/ SAXS 几十纳米以下微孔隙 后期数据分析处理受限
    (超)小角度中子散射/(U)SANS 纳米孔隙分布和几何形态
    核磁共振 微纳米孔隙全孔径分析,定性划分有机、无机孔 孔径分布准确性受影响
    高压压汞法 微纳米孔隙孔径分布、孔吼形态及发育情况,定性判断孔吼连通性 不适于表征微孔,且造成样品无法二次利用
    微米X射线显微镜/ Micro−CT 表征页岩三维空间结构特征 仅适合于表征页岩亚微米级至微米级孔隙结构
    纳米透射X射线显微镜/Nano−CT 反映三维空间结构,更加精确地实现页岩组分定量研究 分辨率有限,不适宜表征页岩介孔及微孔
    聚焦离子束−扫描电镜/FIB−SEM 数纳米级分辨率下,对页岩孔隙进行三维重构,定性、定量分析纳米—微米级孔隙度、孔径及连通性 页岩纳米级孔隙三维结构研究的主要技术手段,视域小,需结合MAPS技术综合分析
    下载: 导出CSV

    表  2   样品基本信息

    Table  2   Basic information of samples

    序号 层段 岩性 TOC/% Ro/% 石英/% 碳酸盐/% 黄铁矿/% 伊利石相对含量/%
    HD−1 牛蹄塘组上段 含碳酸盐钙质页岩 2.5 1.44 28 35 3 37
    HD−2 牛蹄塘组上段 含碳质页岩 1.39 2.12 35 4 4 32
    HD−3 牛蹄塘组上段 含碳质页岩 0.84 2.65 34 0 4 34
    HD−4 牛蹄塘组上段 含碳质页岩 2 / 29 9 4 27
    HD−5 牛蹄塘组中段 含粉砂质碳质页岩 0.79 / 32 / 4 39
    HD−6 牛蹄塘组中段 含粉砂质碳质页岩 5.85 2.71 28 4 11 43
    HD−7 牛蹄塘组下段 碳质页岩 5.67 / 43 7 6 40
    HD−8 牛蹄塘组下段 碳质页岩 2.97 / 43 4 6 45
    HD−9 牛蹄塘组下段 含粉砂质碳质页岩 3 2.79 43 4 5 45
    HD−10 牛蹄塘组下段 碳质页岩 6.01 / 53 5 4 48
    下载: 导出CSV

    表  3   黄地1井页岩样品三维重构结果

    Table  3   3D reconstruction results of shale samples in Huangdi Well 1

    样品编号深度/m三维重构孔隙度/%有机质孔隙度/%贡献率/%孔径分布区间/nm有机质占比重/%黄铁矿占比重/%
    HD−11285.400.42//10~607.772.68
    HD−21292.300.370.0822.2910~1003.182.91
    HD−31302.000.290.0413.7910~1003.631.64
    HD−61331.450.580.2441.0310~10010.204.87
    HD−91369.952.572.4896.5610~8021.70/
    下载: 导出CSV

    表  4   黄地1井低温N2吸附孔隙结构参数

    Table  4   Pore structure parameters of low temperature N2 adsorption in Huangdi Well 1

    样品编号 BET比表面积/
    (m2/g)
    BJH 解吸总孔体积/
    (mL/g)
    平均孔径/
    nm
    HD−1 4.273 0.00123 3.3
    HD−2 3.933 0.00118 3.13
    HD−3 6.693 0.00411 3.86
    HD−4 6.692 0.00788 5.64
    HD−5 7.035 0.00335 3.45
    HD−6 10.023 0.00438 3.2
    HD−7 13.411 0.00101 2.37
    HD−8 8.091 0.00398 3.31
    HD−9 5.178 0.00103 3.05
    HD−10 11.248 0.00319 2.68
    下载: 导出CSV
  • [1]

    Bao Shujing, Zhai Gangyi, Zhou Zhi, Yu Shufang, Chen Ke, Wang Yufang, Wang Hao, Liu Yimin. 2018. The evolution of the Huangling uplift and its control on the accumulation and preservation of shale gas[J]. China Geology, 1: 346−353. doi: 10.31035/cg2018052

    [2]

    Bowker K A. 2007. Barnett Shale gas production, FortWorth Basin: Issues and discussion[J]. AAPG Bulletin, 91(4): 523−533. doi: 10.1306/06190606018

    [3]

    Chen D Z, Zhou X Q, Fu Y, Wang J G, Yan D T. 2015. New U−Pb zircon ages of the Ediacaran−Cambrian boundary strata in South China[J]. Terra Nova, 27: 62−68. doi: 10.1111/ter.12134

    [4]

    Chen Fangwen, Lu Shuangfang, Ding Xue. 2015. Evaluation model of gas adsorption capacity of shale: A case of adsorbed gas content from Niutitang Formation in Qiannan depression[J]. Journal of China University of Mining & Technology, 44(3): 508−513 (in Chinese with English abstract).

    [5]

    Chen Fangwen, Lu Shuangfang, Ding Xue. 2016. Gas generation period and quantity of organic−rich Niutitang shale in Qiannan Depression, China[J]. Journal of China University of Pretroleum, 40(3): 55−62 (in Chinese with English abstract).

    [6]

    Curtis J B. 2002. Fractured shale gas systems[J]. AAPG Bulletin, 11: 1921−1938.

    [7]

    Ge Mingna, Bao Shujing, He Wei, Chen Xianglin, Lin Tuo, Chen Ke. 2018. The discovery of shale gas in Lower Cambrian marine shale gas at Huangdi−1 well in Huangping region of northern Guizhou[J]. Geology in China, 45(4): 851−852 (in Chinese with English abstract).

    [8]

    Ge Mingna, Chen Ke, Chen Xianglin, Wang Chao, Bao Shujing. 2020. The influence factors of gas−bearing and geological characteristics of Niutitang Formation shale in the southern margin of Xuefeng Mountain ancient uplift: A case of Well Huangdi 1[J]. China Geology, 3(4): 533−544. doi: 10.31035/cg2020072

    [9]

    Ge Mingna, Ren Shoumai, Guo Tianxu, Wang Shengjian, Zhou Zhi. 2020. Identification method of marine shale gas 'High−Quality Layer' in the Lower Paleozoic area, Southern China and its application[J]. Rock and Mineral Analysis, 39(3): 350−361 (in Chinese with English abstract).

    [10]

    Ge Mingna, Ren Shoumai, Guo Tianxu, Zhou Zhi, Wang Shengjian, Bao Shujing. 2018. Characterizing the micropores in lacustrine shales of the Late Cretaceous Qingshankou Formation of Southern Songliao Basin, NE China[J]. Acta Geologica Sinica(English Edition), 92(6): 2267−2279.

    [11]

    Javadpour F, Fisher D, Unsworth M. 2007. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 46(10): 55−61.

    [12]

    Jiao Shujing, Zhang Hui, Xue Dongchuan, Ma Yong. 2015. Study on morphological characteristics of micropores and microcracks in shale[J]. Journal of Chinese Electron Microscopy Society, 34(5): 421−427 (in Chinese with English abstract).

    [13]

    Jin Chong, Chen Anqing, Lou Zhanghua, Li Sanzhong. 2012. Tectonic movement, fluid response and hydrocarbon preservation of Southern Guizhou depression[J]. Journal of Zhejiang University (Engineering Science), 46(10): 1910−1922 (in Chinese with English abstract).

    [14]

    Jiu Kai, Ding Weilong, Wang Zhe, Huang Yong, Zhu Baocun, Zhang Zhenhua, Zeng Weite, Wang Ruyue. 2016. Reservoir space and evolution on process of Longmaxi shale in the Fenggang area of northern Guizhou[J]. Earth Science Frontiers, 23(1): 195−205 (in Chinese with English abstract).

    [15]

    Li Z, Zhang J C, Gong D J, Tan J Q, Liu Y, Wang D S, Li P, Tong Z Z, Niu J L. 2020. Gas−bearing property of the Lower Cambrian Niutitang Formation shale and its influencing factors: A case study from the Cengong block, northern Guizhou Province, South China[J]. Marine and Petroleum Geology, 120: 104556. doi: 10.1016/j.marpetgeo.2020.104556

    [16]

    Li Zhong, Zhao Shengxian, Feng Xiao, Liu Yongyang, Li Bo, Xia Ziqiang, Zhang Chenglin, Cao Lieyan. 2021. Application of large field splicing scanning electron microscopy on quantitatively evaluation of shale pore structure: A case study of Longmaxi Formation reservoir in deep western Chongqing Block to southern Sichuan[J]. Reservoir Evaluation and Development, 11(4): 569−576 (in Chinese with English abstract).

    [17]

    Liang Xing, Zhang Tingshan, Shu Honglin, Min Huajun, Zhang Chao, Zhang Lei. 2020. Evaluation of shale gas resource potential of Longmaxi Formation in Zhaotong National Shale Gas Demonstration Area in the northern Yunnan−Guizhou[J]. Geology in China, 47(1): 72−87 (in Chinese with English abstract).

    [18]

    Liang Xing, Zhang Tingshan, Yang Yang, Zhang Chao, Gong Qisen, Ye Xi, Zhang Jiehui. 2014. Microscopic pore structure and its controlling factors of overmature shale in the Lower Cambrian Qiongzhusi Fm, northern Yunnan and Guizhou Provinces of China[J]. Natural Gas Industry, 34(2): 18−26 (in Chinese with English abstract).

    [19]

    Liu Ruiyin, Chen Qinggang, Wang Ganlu, Mou Yuliang, Zhou Hao, Shang Fuhua. 2016. Analysis of sealing property of Lower Cambrian Niutitang Shale in north area of Guizhou[J]. Coal Technology, 47(1): 72−87 (in Chinese with English abstract).

    [20]

    Liu Z X, Yan D T, Niu X. 2020. Insights into pore structure and fractal characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China[J]. Journal of Earth Science, 31(1): 169−180. doi: 10.1007/s12583-020-1259-0

    [21]

    Ma Yong, Zhong Ningning, Cheng Lijun, Pan Zhejun, Li Hongying, Xie Qingming, Li Chao. 2015. Pore structure of two organic−rich shales in southeastern Chongqing area: Insight from focused ion beam scanning electron microscope (FIB−SEM)[J]. Petroleum Geology & Experiment, 37(1): 109−116 (in Chinese with English abstract).

    [22]

    Ma Yong, Zhong Ningning, Huang Xiaoyan, Guo Zhouping, Yao Lipeng. 2014. The application of focused ion beam scanning electron microscope (FIB−SEM) to the nanometer−sized pores in shales[J]. Journal of Chinese Electron Microscopy Society, 33(3): 251−256 (in Chinese with English abstract).

    [23]

    Ma Y, Zhong N N, Li D H, Pan Z J, Cheng L J, Liu K Y. 2015. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north−eastern part of the upper Yangtze area, China: A possible microscopic mechanism for gas enrichment[J]. International Journal of Coal Geology, 137: 38−54. doi: 10.1016/j.coal.2014.11.001

    [24]

    Men Yupeng, Yan Jianfei, Qi Minghui, Xiong Guoqing, Ma Long, Yang Fei, Kang Jianwei. 2020. Effects of bottom and top layers of Niutitang Formation on preservation of shale gas in southern Guizhou[J]. Sedimentary Geology and Tethyan Geology, 40(1): 53−59 (in Chinese with English abstract).

    [25]

    Nie Haikuan, Bian Ruikang, Zhang Peixian, Gao Bo. 2014. Micro−types and characteristics of shale reservoir of the Lower Paleozoic in Southeast Sichuan Basin, and their effects on the gas content[J]. Earth Science Frontiers, 21(4): 331−343 (in Chinese with English abstract).

    [26]

    Peng Zhongqin, Tian Wei, Miao Fengbin, Wang Baozhong, Wang Chuanshang. 2019. Geological features and favorable area prediction of shale gas in Lower Cambrian Niutitang Formation of Xuefeng ancient uplift and its periphery[J]. Earth Science, 44(10): 3512−3528 (in Chinese with English abstract).

    [27]

    Wang Pengwan, Chen Ziliao, He Xunyun, Li Xianjing, Ma Liqiao, Xu Zhengyu, Dong Yong, Huang Ling. 2011. Accumulation of Lower Cambrian Niutitang Shale Gas and Prediction of Potential Area in Qiannan Sag[J]. Natural Gas Geoscience, 22(3): 518−524 (in Chinese with English abstract).

    [28]

    Wang Ruyue, Hu Zongquan, Nie Haikuan, Liu Zhongbao, Chen Qian, Gao Bo, Liu Guangxiang, Gong Dajian. 2018. Comparative analysis and discussion of shale reservoir characteristics in the Wufeng−Longmaxi and Niutitang Formations: A case study of the well JY1 in SE Sichuan Basin and well TX1 in SE Guizhou area[J]. Petroleum Geology & Experiment, 40(5): 639−649 (in Chinese with English abstract).

    [29]

    Wang Ruyue, Hu Zongquan, Yang Tao, Gong Dajian, Yin Shuai, Liu Zhongbao, Gao Bo. 2019. Pore structure characteristics of the Lower Cambrian black shale in the Cengong block, southeastern Guizhou area[J]. Petroleum Geology & Experiment, 41(2): 207−214 (in Chinese with English abstract).

    [30]

    Wang Xiaoqi, Jin Xu, Li Jianming, Jiao Hang, Wu Songtao, Liu Xiaodan. 2019. FIB−SEM applications in petroleum geology research[J]. Journal of Chinese Electron Microscopy Society, 38(3): 303−319 (in Chinese with English abstract).

    [31]

    Wu Genyao, Wang Weifeng, Chi Hongxing. 2012. Basin evolution and later reformation of marine sediments in southern Guizhou Depression and neighboring areas[J]. Journal of Palaeogeography, 14(4): 507−521 (in Chinese with English abstract).

    [32]

    Wu Songtao, Zhu Rukai, Cui Jingwei, Mao Zhiguo, Liu Keyu, Wang Xiaoqi. 2020. Ideas and prospect of porous structure characterization in unconventional reservoirs[J]. Geological Review, 66(S1): 151−154 (in Chinese with English abstract).

    [33]

    Wu Songtao, Zhu Rukai, Li Xun, Jin Xu, Yang Zhi, Mao Zhiguo. 2018. Evaluation and application of porous structure characterization technologies in unconventional tight reservoirs[J]. Earth Science Frontiers, 25(2): 191−203 (in Chinese with English abstract).

    [34]

    Xing Xiang, Hu Wangshui, Ji Lin, Li Tao, Zhang Chenlu. 2013. Based on the isothermal adsorption experiments of shale gas content calculation method[J]. Science Technology and Engineering, 13(16): 4659−4662 (in Chinese with English abstract).

    [35]

    Xin Yunlu, Ge Jia, Li Zhao, Jin Chunshuang. 2023. Geological conditions and favorable area prediction of shale gas in Wufeng Formation−Longmaxi Formation of Kuankuo−Fuyan Area, Northern Guizhou[J]. Northwestern Geology, 56(1): 232−244(in Chinese with English abstract).

    [36]

    Yang Yongfei, Wang Chenchen, Yao Jun, Hu Rongrong, Sun Hai, Zhao Jianlin. 2016. A new method for microscopic pore structure analysis in shale matrix[J]. Earth Science, 41(6): 1067−1073 (in Chinese with English abstract).

    [37]

    Yang Yuru, Liu Xiaochen, Zhang Hui, Zhai Gangyi, Zhang Jiaodong, Hu Zhifang, Bao Shujing, Zhang Cong, Wang Xianghua, Yang Xiao, Liu Zhengzhuang, Xie Ting, Chen Juan, Fang Liyu, Qin Lijuan. 2019. A review and research on comprehensive characterization of microscopic shale gas reservoir space[J]. China Geology, 2(4): 541−556.

    [38]

    Zeng Hongbin, Wang Furong, Luo Jing, Tao Tao, Wu Shiqiang. 2021. Characteristics of pore structure of intersalt shale oil reservoir by low temperature nitrogen adsorption and high pressure mercury pressure methods in Qianjiang Sag[J]. Bulletin of Geological Science and Technology, 40(5): 242−252(in Chinese with English abstract).

    [39]

    Zhao Xi, Liu Bo, Guo Rongtao, Zhang Danming, Li Yang, Tian Zepu. 2017. Reservoir characterization and its application to development[J]. Petroleum Geology & Experiment, 39(2): 287−294(in Chinese with English abstract).

    [40]

    Zhai G Y, Wang Y F, Liu G H. 2020. Accumulation model of the Sinian−Cambrian shale gas in western Hubei Province, China[J]. Journal of Geomechanics, 26(5): 696−713.

    [41]

    Zhai Gangyi, Wang Yufang, Zhou Zhi, Liu Guoheng, Yang Yuru, Li Juan. 2018a. “Source−Diagenesis−Accumulation” enrichment and accumulation regularity of marine shale gas in southern China[J]. China Geology, 1(3): 319−330. doi: 10.31035/cg2018059

    [42]

    Zhai Gangyi, Wang Yufang, Zhou Zhi, Yu Shufang, Chen Xianglin, Zhang Yunxiao. 2018b. Exploration and research progress of shale gas in China[J]. China Geology, 1(2): 257−272.

    [43]

    Zhai Gangyi, Wang Yufang, Liu Guoheng, Lu Yongchao, He Sheng, Zhou Zhi, Li Juan, Zhang Yunxiao. 2020. Accumulation model of the Sinian−Cambrian shale gas in western Hubei Province, China[J]. Journal of Geomechanics, 26(5): 696−713(in Chinese with English abstract).

    [44]

    Zhang Baomin, Cai Quansheng, Chen Xiaohong, Wang Chuanshang, Zhang Guotao, Chen Lin, Li Peijun, Li Yangui. 2021. Reservoir characteristics and gas−bearing capacity of the Wufeng−Longmaxi Formation in the Well Eyy2, east Huangling Uplift, western Hubei Province[J]. Geology in China, 48(5): 1485−1498 (in Chinese with English abstract).

    [45]

    Zhang Jinchuan, Liu Shugen, Wei Xiaoliang, Tang Xuan, Liu Chang. 2021. Evaluation of gas content in shale[J]. Oil & Gas Geology, 42(1): 28−40 (in Chinese with English abstract).

    [46]

    Zhang Junfeng, Zhai Gangyi, Wang Daming, Bao Shujing, Chen Ke, Li Haohan, Song Teng, Wang Peng, Zhou Zhi. 2020. Tectonic evolution of the Huangling dome and its control effect on shale gas preservation in the north margin of the Yangtze Block, South China[J]. China Geology, 3(1): 28−37.

    [47]

    Zhao Rixin, Lu Shuangfang, Xue Haitao, Tian Shansi. 2019. Effect of SEM parameters on quantitative evaluation of shale micropores[J]. Oil & Gas Geology, 40(5): 1141−1154 (in Chinese with English abstract).

    [48]

    Zhao Xi, Liu Bo, Guo Rongtao, Zhang Danming, Li Yang, Tian Zepu. 2017. Reservoir characterization and its application to development[J]. Petroleum Geology & Experiment, 39(2): 287−294.

    [49]

    Zhu Hanqing, Jia Ailin, Wei Yunsheng, Jia Chengye, Jin Yiqiu, Yuan He. 2018. Microscopic pore structure characteristics of shale reservoir based on low−temperature argon adsorption experiments[J]. Petroleum Geology & Experiment, 40(4): 559−565 (in Chinese with English abstract).

    [50] 陈方文, 卢双舫, 丁雪. 2015. 泥页岩吸附气能力评价模型——以黔南坳陷牛蹄塘组吸附气含量为例[J]. 中国矿业大学学报, 44(3): 508−513.
    [51] 陈方文, 卢双舫, 丁雪. 2016. 黔南坳陷牛蹄塘组富有机质页岩生气期和生气量[J]. 中国石油大学学报(自然科学版), 40(3): 55−62.
    [52] 葛明娜, 包书景, 何伟, 陈相霖, 林拓, 陈科. 2018. 黔北黄平地区黄地1井下寒武统发现海相页岩气[J]. 中国地质, 45(4): 851−852.
    [53] 葛明娜, 任收麦, 郭天旭, 王胜建, 周志. 2020. 中国南方下古生界海相页岩气“优质层段”识别方法与应用[J]. 岩矿测试, 39(3): 350−361.
    [54] 焦淑静, 张慧, 薛东川, 马勇. 2015. 泥页岩孔隙类型、形态特征及成因研究[J]. 电子显微学报, 34(5): 421−427.
    [55] 金宠, 陈安清, 楼章华, 李三忠. 2012. 黔南坳陷构造运动与流体响应及油气保存[J]. 浙江大学学报(工学版), 46(10): 1910−1922.
    [56] 久凯, 丁文龙, 王哲, 黄勇, 朱宝存, 张振华, 曾维特, 王濡岳. 2016. 黔北凤冈地区龙马溪组页岩储层储集空间划分与演化过程分析[J]. 地学前缘, 23(1): 195−205.
    [57] 李仲, 赵圣贤, 冯枭, 刘永旸, 李博, 夏自强, 张成林, 曹埒焰. 2021. 应用大视域拼接扫描电镜技术定量评价页岩孔隙结构——以川南深层渝西区块龙马溪组储层为例[J]. 油气藏评价与开发, 11(4): 569−576.
    [58] 梁兴, 张廷山, 舒红林, 闵华军, 张朝, 张磊. 2020. 滇黔北昭通示范区龙马溪组页岩气资源潜力评价[J]. 中国地质, 47(1): 72−87.
    [59] 梁兴, 张廷山, 杨洋, 张朝, 龚齐森, 叶熙, 张介辉. 2014. 滇黔北地区筇竹寺组高演化页岩气储层微观孔隙特征及其控制因素[J]. 天然气工业, 34(2): 18−26.
    [60] 刘瑞崟, 陈庆刚, 王甘露, 牟雨亮, 周豪, 尚福华. 2016. 黔北地区下寒武统牛蹄塘组页岩气层封闭性分析[J]. 煤炭技术, 35(10): 111−113.
    [61] 马勇, 钟宁宁, 程礼军, 潘哲君, 李红英, 谢庆明, 李超. 2015. 渝东南两套富有机质页岩的孔隙结构特征——来自FIB−SEM的新启示[J]. 石油实验地质, 37(1): 109−116.
    [62] 马勇, 钟宁宁, 黄小艳, 郭州平, 姚立鹏. 2014. 聚集离子束扫描电镜(FIB−SEM)在页岩纳米级孔隙结构研究中的应用[J]. 电子显微学报, 33(3): 251−256.
    [63] 门玉澎, 闫剑飞, 戚明辉, 熊国庆, 马龙, 杨菲, 康建威. 2020. 黔南地区下寒武统牛蹄塘组页岩气顶底板特征研究[J]. 沉积与特提斯地质, 40(1): 53−59.
    [64] 聂海宽, 边瑞康, 张培先, 高波. 2014. 川东南地区下古生界页岩储层微观类型与特征及其对含气量的影响[J]. 地学前缘, 21(4): 331−343.
    [65] 彭中勤, 田巍, 苗凤彬, 王保忠, 王传尚. 2019. 雪峰古隆起边缘下寒武统牛蹄塘组页岩气成藏地质特征及有利区预测[J]. 地球科学, 44(10): 3512−3528.
    [66] 王鹏万, 陈子炓, 贺训云, 李娴静, 马立桥, 徐政语, 董庸, 黄羚. 2011. 黔南坳陷下寒武统页岩气成藏条件与有利区带评价[J]. 天然气地球科学, 22(3): 518−524.
    [67] 王濡岳, 胡宗全, 聂海宽, 刘忠宝, 陈前, 高波, 刘光祥, 龚大建. 2018. 川东南五峰组—龙马溪组与黔东南牛蹄塘组页岩储层特征对比分析与差异性探讨[J]. 石油实验地质, 40(5): 639−649.
    [68] 王濡岳, 胡宗全, 杨滔, 龚大建, 尹帅, 刘忠宝, 高波. 2019. 黔东南岑巩地区下寒武统黑色页岩孔隙结构特征[J]. 石油实验地质, 41(2): 207−214.
    [69] 王晓琦, 金旭, 李建明, 焦航, 吴松涛, 刘晓丹. 2019. 聚焦离子束扫描电镜在石油地质研究中的综合应用[J]. 电子显微学报, 38(3): 303−319.
    [70] 吴松涛, 朱如凯, 崔景伟, 毛治国, 刘可禹, 王晓琦. 2020. 非常规储层孔隙结构表征: 思路、思考与展望[J]. 地质论评, 66(S1): 151−154.
    [71] 吴松涛, 朱如凯, 李勋, 金旭, 杨智, 毛治国. 2018. 致密储层孔隙结构表征技术有效性评价与应用[J]. 地学前缘, 25(2): 191−203.
    [72] 邢翔, 胡望水, 吉林, 李涛, 张晨露. 2013. 基于等温吸附实验的页岩吸附气含量计算新方法[J]. 科学技术与工程, 13(16): 4659−4662.
    [73] 辛云路, 葛佳, 李昭, 金春爽. 2023. 黔北宽阔—浮焉地区五峰组—龙马溪组页岩气地质条件与有利区预测[J].西北地质, 56(1): 232−244.
    [74] 杨永飞, 王晨晨, 姚军, 胡蓉蓉, 孙海, 赵建林. 2016. 页岩基质微观孔隙结构分析新方法[J]. 地球科学, 41(6): 1067−1073.
    [75] 曾宏斌, 王芙蓉, 罗京, 陶涛, 吴世强. 2021. 基于低温氮气吸附和高压压汞表征潜江凹陷盐间页岩油储层孔隙结构特征[J]. 地质科技通报, 40(5): 242−252.
    [76] 翟刚毅, 王玉芳, 刘国恒, 陆永潮, 何生, 周志, 李娟, 张云枭. 2020. 鄂西地区震旦系—寒武系页岩气成藏模式[J]. 地质力学学报, 26(5): 696−713.
    [77] 张保民, 蔡全升, 陈孝红, 王传尚, 张国涛, 陈林, 李培军, 李炎桂. 2021. 鄂西黄陵隆起东缘鄂宜页2井五峰组—龙马溪组页岩气储层特征与含气性[J]. 中国地质, 48(5): 1485−1498.
    [78] 张金川, 刘树根, 魏晓亮, 唐玄, 刘飏. 2021. 页岩含气量评价方法[J]. 石油与天然气地质, 42(1): 28−40.
    [79] 赵日新, 卢双舫, 薛海涛, 田善思. 2019. 扫描电镜分析参数对定量评价页岩微观孔隙的影响[J]. 石油与天然气地质, 40(5): 1141−1154.
    [80] 赵习, 刘波, 郭荣涛, 张单明, 李扬, 田泽普. 2017. 储层表征技术及应用进展[J]. 石油实验地质, 39(2): 287−294.
    [81] 朱汉卿, 贾爱林, 位云生, 贾成业, 金亦秋, 袁贺. 2018. 低温氩气吸附实验在页岩储层微观孔隙结构表征中的应用[J]. 石油实验地质, 40(4): 559−565.
  • 期刊类型引用(0)

    其他类型引用(1)

图(12)  /  表(4)
计量
  • 文章访问数:  1854
  • HTML全文浏览量:  1026
  • PDF下载量:  552
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2022-01-04
  • 网络出版日期:  2024-02-22
  • 刊出日期:  2024-01-24

目录

/

返回文章
返回
x 关闭 永久关闭