• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

陕西北洛河流域地下水水化学和同位素特征及其水质评价

周殷竹, 马涛, 袁磊, 李甫成, 韩双宝, 周金龙, 李勇

周殷竹,马涛,袁磊,李甫成,韩双宝,周金龙,李勇. 2024. 陕西北洛河流域地下水水化学和同位素特征及其水质评价[J]. 中国地质, 51(2): 663−675. DOI: 10.12029/gc20220401003
引用本文: 周殷竹,马涛,袁磊,李甫成,韩双宝,周金龙,李勇. 2024. 陕西北洛河流域地下水水化学和同位素特征及其水质评价[J]. 中国地质, 51(2): 663−675. DOI: 10.12029/gc20220401003
Zhou Yinzhu, Ma Tao, Yuan Lei, Li Fucheng, Han Shuangbao, Zhou Jinlong, Li Yong. 2024. Hydrochemistry−isotope characteristics and quality assessment of groundwater in the Beiluo River Basin, Shaanxi Province[J]. Geology in China, 51(2): 663−675. DOI: 10.12029/gc20220401003
Citation: Zhou Yinzhu, Ma Tao, Yuan Lei, Li Fucheng, Han Shuangbao, Zhou Jinlong, Li Yong. 2024. Hydrochemistry−isotope characteristics and quality assessment of groundwater in the Beiluo River Basin, Shaanxi Province[J]. Geology in China, 51(2): 663−675. DOI: 10.12029/gc20220401003

陕西北洛河流域地下水水化学和同位素特征及其水质评价

基金项目: 中国地质调查局项目(DD20190333)资助。
详细信息
    作者简介:

    周殷竹,女,1990年生,高级工程师,主要从事水文地质和同位素水文地球化学研究;E-mail:zhouyinzhu@mail.cgs.gov.cn

    通讯作者:

    韩双宝,男,1983年生,正高级工程师,主要从事水文地质与水资源研究;E-mail:hanshuangbao@mail.cgs.gov.cn

  • 中图分类号: X824; P641.3

Hydrochemistry−isotope characteristics and quality assessment of groundwater in the Beiluo River Basin, Shaanxi Province

Funds: Supported by the project of China Geological Survey (No.DD20190333).
More Information
    Author Bio:

    ZHOU Yinzhu, female, born in 1990, senior engineer, engaged in the research of hydrogeological survey and isotopic hydrogeochemistry; E-mail: yinzhu_zhou@qq.com

    Corresponding author:

    HAN Shuangbao, male, born in 1983, professor level senior engineer, engaged in the research of hydrogeology and water resources; E-mail: hanshuangbao@mail.cgs.gov.cn.

  • 摘要:
    研究目的 

    北洛河是黄河的重要二级支流,研究该流域典型支流地下水的水质状况对于黄河流域生态保护和高质量发展具有重要意义。

    研究方法 

    本文以北洛河流域为主要对象,系统查明流域地下水水质现状,圈定劣质地下水分布区,为饮水安全提供保障。此外,对该区地下水水化学和D−18O同位素组成进行分析,研究地下水水化学特征及演化机制,揭示水文地质条件及人为因素对区域地下水水文地球化学特征的控制和影响作用。

    研究结果 

    区内地下水水化学成分除受岩石风化和蒸发浓缩作用的共同控制之外,部分还受到人类活动的影响。D−18O同位素组成指示了地下水整体上受蒸发浓缩作用影响。

    结论 

    上游碎屑岩中的石膏、盐岩等易溶矿物经溶滤进入地下水,下游松散孔隙水在蒸发浓缩的作用下积聚盐分导致上、下游地下水TDS较高;奥陶系岩溶含水岩组和新生界断陷盆地含水岩组地下水水化学组成主要受蒸发盐岩影响,此外还受到人类活动的影响。白垩系和石炭系—侏罗系含水岩组地下水主要分布于岩石风化区,说明该地下水水化学组分主要受岩石风化作用控制,且主要受硅酸盐岩和蒸发盐岩风化影响,人类活动影响的扰动相对较小。上、下游地区地下水受工矿活动影响较严重,中游地下水受工矿活动、农业活动、生活污水影响均较小,水质整体较好。

    创新点:

    基于多种水化学指标、D−18O同位素与组合特征参数,研究了北洛河流域地下水水化学特征及演化机制;揭示了水文地质条件及人为因素对区域地下水水文地球化学特征的控制和影响作用。

    Abstract:

    This paper is the result of hydrogeological survey engineering.

    Objective 

    The Beiluo River Basin is an important secondary tributary of the Yellow River. Research on groundwater quality in typical tributary basin of theYellow River is of significant for ecological protection and high−quality development. To ensure local drinking water safety, we systematically identified status of groundwater quality and delineated inferior groundwater region in the Beiluo River Basin.

    Methods 

    Besides, based on analysis of D−18O isotope in groundwater, characteristics and evolution mechanism of groundwater hydrochemistry were studied and effects of hydrogeological condition and anthropogenic activities on groundwater hydrochemistry were revealed.

    Results 

    Groundwater hydrochemical composition was jointly affected by rock weathering and evaporation concentration, part of which was influenced by anthropogenic activities. D−18O isotope composition suggested that evaporation concentration is the major influence factor of groundwater hydrogeochemistry.

    Conclusions 

    Leaching of soluble minerals such as gypsum halite in clasolite and evaporation concentration of pore water in Cenozoic faulted basin in the downstream caused salt accumulation and high TDS in groundwater in the upstream and downstream, respectively. Hydrochemical composition of groundwater in Ordovician karst aquifer and Cenozoic faulted basin aquifer was mainly controlled by evaporites and anthropogenic activities. While hydrochemical composition in Cretaceous aquifer and Carboniferous−Jurassic aquifer was mainly controlled by rock weathering (especially silicate rocks and evaporite) and less affected by anthropogenic activities. Moreover, groundwater in the upstream and downstream was significantly affected by industrial and mining activities. While groundwater in the midstream is of good quality due to less influence of industrial/mining activities, agricultural activities and domestic wastewater.

    Highlights:

    Based on hydrochemical indices, D−18O isotope and characteristic parameters in groundwater, characteristics and evolution mechanism of groundwater hydrochemistry were studied, and effects of hydrogeological condition and anthropogenic activities on groundwater hydrochemistry were revealed.

  • 石泉–旬阳金矿带整装勘查区7个图幅区1∶50 000水系沉积物测量始于2013年(图1),其中饶峰幅、迎丰街幅和安康幅1∶50 000水系沉积物测量由中国地质调查局发展研究中心2016—2018年组织实施;铁佛寺幅、汉阴幅、大河口幅和赵家湾幅1∶50 000水系沉积物测量由中国地质调查局西安地质调查中心2013—2015年组织实施,承担单位均为陕西地矿第一地质队有限公司。

    图  1  陕西石泉–旬阳金矿带整装勘查区1∶50 000水系沉积物测量范围

    陕西石泉–旬阳金矿带整装勘查区位于秦岭造山带中部的南秦岭构造带,在漫长地质历史演化中,该区地层经历了多期变形,构造样式以褶皱、滑脱和韧性剪切带最为典型。地层区划隶属于华南地层大区中的牛山地层小区(韩芳林等,2013)(图2)。因盖层与基底间拆离滑脱,以出露滨海环境下形成的震旦纪—早古生代黑色浅变质强变形细碎屑岩系建造最为典型(张复新等,2009唐永忠等,2012)。区内出露地层有古元古代杨坪岩组、耀岭河岩组中基性火山岩,古生代沉积—浅变质岩,中晚志留世—早泥盆世沉积地层发育不全(刘国惠和张寿广,1993)。

    图  2  陕西石泉–旬阳金矿带整装勘查区地层区划略图

    石泉–旬阳金矿带整装勘查区1∶50 000水系沉积物测量从2013年7月份编写项目设计书开始,各项工作均按相关技术要求执行。项目总体按三个阶段进行,第一阶段组织地球化学勘查技术人员进行1∶50 000水系沉积物测量采样工作;第二阶段检查、核对、整理和处理数据,圈定地球化学异常;第三阶段编制地球化学系列图件,建立完善石泉–旬阳金矿带整装勘查区的区域地球化学数据库,筛选并进行异常查证工作。

    陕西石泉–旬阳金矿带整装勘查区水系沉积物测量原始数据集元数据简表见表1

    表  1  数据库(集)元数据简表
    条目 描述
    数据库(集)名称 陕西石泉–旬阳金矿带整装勘查区饶峰幅等7个图幅区1∶50 000水系沉积物测量原始数据集
    数据库(集)作者 谈 乐,陕西地矿第一地质队有限公司
    张永强,陕西地矿第一地质队有限公司
    刘小朋,陕西地矿第一地质队有限公司
    李小明,陕西地矿第一地质队有限公司
    王才进,陕西地矿第一地质队有限公司
    数据时间范围 2013—2018年
    地理区域 陕西省石泉县–旬阳县地区
    数据格式 *.xlsx
    数据量 2.01MB
    数据服务系统网址 http://dcc.cgs.gov.cn
    基金项目 中国地质调查局地质调查项目(121201004000150017-53、121201004000160901-54、121201004000172201-45、12120113048100)
    语种 中文
    数据库(集)组成 数据集为Excel表格,包括7个独立的工作表(sheet),分别为“饶峰幅采样点位及元素分析结果表”、“铁佛寺幅采样点位及元素分析结果表”、“汉阴幅采样点位及元素分析结果表”、“大河口幅采样点位及元素分析结果表”、“赵家湾幅采样点位及元素分析结果表”、“迎丰街幅采样点位及元素分析结果表”、 “安康幅采样点位及元素分析结果表”
    下载: 导出CSV 
    | 显示表格

    勘查区属湿润−半湿润中低山丘陵自然景观区(樊会民和李方周,2013),湿润、多雨、强剥蚀、深切割,以物理风化为主,沟系冲、洪积物具粗岩屑性质(刘劲松等,2016),适宜开展水系沉积物测量。根据《地球化学普查规范(1∶50 000)》(DZ/T 0011−2015),结合勘查区地球化学景观特点,确定本次地球化学普查采样介质为水系沉积物,采样密度4~8点/km2,样品粒级选择−20目~+60目。

    勘查区1∶50 000水系沉积物测量采样部位均选择在河沟底部或河岸与水面接触处(张源等,2018)。在间歇性水流地区或主干河道中,主要在河床底部采样;在水流湍急的河道中选择在水流变缓处、水流停滞处、转石背后、水流由窄变宽处,以及河道转弯内侧有较多细粒物质聚集处采样。

    采样介质以代表原生地质找矿信息的基岩物质成分为原则,采样物质为水系沉积物中的淤泥、粉砂或细砂。

    勘查区水系沉积物所采集的样品为粗−细粒级混合的粒级段,有效地避开了腐植层取样,样品采集过程中,加强了对蚀变−矿化强烈或重点找矿地段的加密采样工作。采用的具体技术方法如下:

    ①采样前,先用采样勺拨去地表浮土或腐植层,再进行取样。

    ②每次装袋前,首先检查布样袋,看是否有开线或破洞。含水样品装袋时先用塑料袋分装后再装入布样带中,防止袋内水分相互淋滤造成湿样互相污染。

    ③为了提高样品的代表性,样品采集均在采样点位上下游20~30 m范围内3~5处多点采集,组合成一件样品。

    ④样品采集避开了矿山开发、村镇、水坝、淤地造田、交通要道和路口造成的污染物及岸边崩塌堆积物地段。

    陕西石泉–旬阳金矿带整装勘查区涉及1∶50 000图幅共7幅(表2),图幅坐标系采用1980西安坐标系,中央经线为111°,图幅涉及地理数据均在陕西地理信息测绘局购买。

    表  2  陕西石泉−旬阳金矿带整装勘查区涉及的7幅1∶50 000地形图
    图幅名称 图幅号
    饶峰幅 I49E17001
    迎丰街幅 I49E18002
    铁佛寺幅 I49E18003
    汉阴幅 I49E19003
    大河口幅 I49E19004
    赵家湾幅 I49E19005
    安康幅 I49E02005
    下载: 导出CSV 
    | 显示表格

    用1∶50 000标准地形图作为水系沉积物测量野外工作手图,采用手持IGS-100掌上机(李超岭等,2002)结合地形图进行野外定点。定点实际距离误差均小于30 m,即在手图上均小于1 mm。

    本次共采集水系沉积物样品13 169件。根据勘查区地形地貌特点、景观条件、地质特征,本次1∶50 000水系沉积物测量分别采用了不同的采样布局和采样密度:加密区(即指1∶200 000化探异常明显、矿化信息相对较多、基岩面积大、第四系分布面积较少的地区,除正常布点外,成矿有利地段适当加密)采样密度为5.18~5.46点/km2;一般工作区(即指第四系分布面积相对较多,基岩出露面积小或零星,1∶200 000化探异常弱的地区)采样密度为:4.1~4.3点/km2;放稀区(即山间盆地)采样密度为3.13~3.52点/km2。该采样密度组合可有效地控制工作区内绝大多数汇水面积,经济实用,可有效地达到地球化学普查的目的。

    样品加工基本流程为:自然干燥→揉碎→过筛→混匀→称量缩分→填写标签→装袋→填写送样单→装箱(陈玉明和陈秀法,2018)。

    样品干燥方式采取日晒风干。干燥过程中及时揉搓样品,防止结块,并用木槌适当敲打。

    ② 样品干燥后过−20目~+60目尼龙筛,对筛下样品用对角线折叠法混匀,缩分后装入纸样袋中,其重量均≥310 g。

    ③按样品缩分法将加工好的样品缩分成两份各≥150 g,一份装牛皮纸袋送检,另一份装塑料瓶封装当副样留存。

    样品分析测试工作先后由具备岩矿测试甲级资质的自然资源部西安矿产资源监督检测中心和陕西地矿局汉中地质大队有限公司实验室承担,严格执行《地球化学普查(比例尺1∶50 000)规范样品分析技术的补充规定》。

    实验室配备有专职样品管理人员,负责样品的验收和保管,并严格按照规范要求办理样品交接手续。

    以50件样品为一个分析批次进行编码和样品加工,每一个分析批次中随机插入4个国家一级标准物质,然后进入计算机,打印出分析号与送样号的对照表,以供样品管理人员在管理样品、填写汇总表等准备工作中使用,样品随后由样品管理人员下达至碎矿间进行无污染碎样。

    化探样品在加工前均在60℃以下充分烘干。在大批量样品加工前,先对岩屑样分别进行玛瑙球数量、球磨时间的最佳条件试验,使其细磨后样品粒度满足1∶50 000区域地球化学调查的要求为原则。要求细磨加工后样品粒度达到−0.074 mm(−200目)占90%以上。

    样品管理人员对每批样品的加工粒度是否达到规定要求进行检查;检查合格后,按规定插入指定的监控样及国家一级标样,同时依照密码编号分出内检样,随后交由质量管理人员下达分析任务。

    根据项目任务书、合同书及总体设计要求,2013—2015年度 1∶50 000水系沉积物测量分析项目为:Au、Ag、Cu、Pb、Zn、As、Sb、Hg、V、Mo、Ti、W共12种元素。2016—2018年度1∶50 000水系沉积物测量分析项目为Au、Ag、Cu、Pb、Zn、As、Sb、Hg、Bi、Sn、W、Mo、Cd、Co、Cr、Ni共计16种元素。

    采用光栅光谱仪(OES)、原子荧光仪(AFS)、等离子质谱仪法(ICP-MS)、发射光谱法(GF-AAS)等仪器进行分析测试,所有元素报出率均为100%。勘查区18种元素分析测试方法配套方案见表3

    表  3  勘查区18种元素分析方法、检出限及报出率统计表
    分析方法 元素含量 1∶50 000地球化学测量规定检出限 所用方法检出限 报出率(%)
    GF-AAS w(Au)/10−9 0.3~1 0.23 100
    F-AAS w(Cu)/10−6 2 1.00 100
    w(Zn)/10−6 20 5.00 100
    HG-AFS w(As)/10−6 0.5~1 0.20 100
    w(Sb)/10−6 0.3 0.05 100
    CV-AFS w(Hg)/10−9 10~50 2.00 100
    w(Bi)/10−6 0.3 0.1 100
    ICP-OES w(Ti)/10−6 100 9.3 100
    w(V)/10−6 20 5 100
    OES w(Ag)/10−6 0.050 0.019 100
    w(Sn)/10−6 2 0.5 100
    ICP-MS w(Pb)/10−6 5~10 0.91 100
    w(W)/10−6 1 0.048 100
    w(Mo)/10−6 1 0.056 100
    w(Ni)/10−6 1 0.21 100
    w(Co)/10−6 1 0.10 100
    w(Cr)/10−6 10 1.00 100
    w(Cd)/10−6 0.2 0.02 100
    下载: 导出CSV 
    | 显示表格

    石泉–旬阳金矿带整装勘查区饶峰幅等7个图幅1∶50 000水系沉积物测量原始数据集为Excel表格型数据,包括7个独立的工作表(sheet),分别为“饶峰幅水系沉积物测量采样点位及元素分析结果表”、“迎丰街幅水系沉积物测量采样点位及元素分析结果表”、“铁佛寺幅水系沉积物测量采样点位及元素分析结果表”、“汉阴幅水系沉积物测量采样点位及元素分析结果表”、“大河口幅水系沉积物测量采样点位及元素分析结果表”、“赵家湾幅水系沉积物测量采样点位及元素分析结果表”、“安康幅水系沉积物测量采样点位及元素分析结果表”(宋相龙等,2017)。每个工作表(sheet)包含如下内容:样品编号、高斯坐标、图幅号、地层、分析结果(铁佛寺幅、大河口幅、汉阴幅、赵家湾幅分析元素为Au、Hg、Ag、Cu、Pb、Zn、Mo、As、Sb、Ti、V、W;迎丰街幅、饶峰幅、安康幅分析元素为Au、Ag、Cu、Pb、Zn、As、Sb、Hg、Bi、Sn、W、Mo、Cd、Co、Cr、Ni)、备注。数据结构见表4

    表  4  陕西石泉−旬阳金矿带整装勘查区水系沉积物测量数据结构表
    序号 数据项名称 量纲 数据类型 字段长度 实例
    1 样品编号 字符型 20 57C2
    2 图幅号 字符型 20 I49E018002
    3 地层 字符型 20 O3-S1b
    4 高斯横坐标 字符型 20 255460
    5 高斯纵坐标 字符型 20 3672075
    6 经度 字符型 20 108°22′45″
    7 纬度 字浮型 20 33°08′48″
    8 Au 10−9 浮点型 20 1.03
    9 Ag 10−6 浮点型 20 42
    10 Cu 10−6 浮点型 20 35.9
    11 Pb 10−6 浮点型 20 35.9
    12 Zn 10−6 浮点型 20 83.7
    13 As 10−6 浮点型 20 3.88
    14 Sb 10−6 浮点型 20 2.13
    15 Hg 10−9 浮点型 20 49
    16 Bi 10−6 浮点型 20 0.85
    17 Sn 10−6 浮点型 20 3
    18 W 10−6 浮点型 20 2.14
    19 Mo 10−6 浮点型 20 0.93
    20 Cd 10−6 浮点型 20 0.1
    21 Co 10−6 浮点型 20 22.3
    22 Cr 10−6 浮点型 20 94.6
    23 Ni 10−6 浮点型 20 41.9
    24 Ti 10−6 浮点型 20
    25 V 10−6 浮点型 20
    下载: 导出CSV 
    | 显示表格

    铁佛寺幅、汉阴幅、大河口幅和赵家湾幅地球化学测量样品测试过程中以50件样品为一个分析批次进行编码和样品加工,每一个分析批次中随机插入4个国家一级标准物质,分别为GBW07302a、GBW07304a、GBW07309、GBW07318,对分析过程的精密度进行监控。另外随机分段加入12件国家一级标准物(每500件样品插入一次),共插入15次,对分析过程的准确度进行监控,并对样品中部分高值和低值进行了抽查分析,抽查样品数量比例为2.6%。

    饶峰幅、迎丰街幅和安康幅地球化学测量样品测试过程中以50件样品为一个分析批进行编码和样品加工,共分为243批。每一个分析批次中随机插入购买于中国地质科学院地球物理地球化学勘查研究所的4个国家一级标准物质对分析过程的准确度进行监控。其中Au、Ag、Hg、Pb、Sn、As、Sb和Bi共8种元素插入GSD-10、GSD-14、GSD-18、GSD-20控制分析过程精密度;Cr、Co、Ni、Cu、Zn、Mo、Cd和W共8种元素插入GSD-8a、GSD-9、GSD-10、GSD-14控制分析过程精密度,并对样品中部分高值和低值进行了抽查分析,抽查样品数量比例为4.1%。

    本次检测工作中,分析元素内检(重复样)合格率均在95.00%以上;元素报出率均达到100%;元素异常复查合格率均为97.5%以上;所选用分析方法的检出限均满足DZ/T0130.4−2006中1∶50 000化探样品标准要求。方法的精密度:对所选一级标准物质检测的△lgC平均值在(−0.099~0.099)以内。方法准确度:对所选一级标准物质检测的△lgC平均值在(−0.099~0.099)以内。所选分析方法的检出限、精密度和准确度均满足《地球化学普查(比例尺1∶50 000)规范样品分析技术的补充规定》的质量要求。

    上述质量参数数据表明,本次检测的分析质量完全符合《地球化学普查(比例尺1∶50 000)规范样品分析技术的补充规定》及DZ0130.4−2006的质量要求。

    陕西石泉–旬阳金矿带整装勘查区饶峰幅等7个图幅区1∶50 000水系沉积物测量成果数据库建设(万常选等,2009)均按照化探数据模型采用DGSS软件平台实现(庞健峰等,2017),样品中各分析元素属性结构均参照中国地质调查局固体矿产勘查数据库内容与结构(左群超等,2018李超岭等,2013)填写,数据结构内容完整齐全。所形成的7幅1∶50 000水系沉积物测量数据库已由中国地质调查局西安地质调查中心及中国地质调查局发展研究中心专家评审验收,评分93分,评为“优秀级”,已完成相关数据库汇交。

    本次数据集工作区范围是由中国地质调查局西安地质调查中心与中国地质调查局发展研究中心组织实施的陕西石泉–旬阳金矿带整装勘查区内饶峰幅等7幅图3 010 km2 1∶50 000水系沉积物测量工作,是陕西石泉–旬阳金矿带整装勘查区内首次系统性的采用统一采样方法、分析测试方法、统一分析元素,也是本整装勘查区内首次规范化建立地球化学数据库,获得了珍贵的第一手地球化学测量资料。

    本数据集成果指导在整装勘查区内圈定金找矿靶区10处,金成矿远景区12处,其中在圈定的陕西省汉阴县双河口一带金找矿靶区内新发现坝王沟金矿点,通过后期省地勘基金投入,金(333+334)资源量30吨;在圈定的陕西省安康市汉滨区将军山一带金找矿靶区内新发现早阳金矿点,通过后期省地勘基金投入,金(333+334)资源量20吨。另外运用本数据集成果新发现4处金矿点,分别为陕西省宁陕县堰沟金矿点、陕西省安康市汉滨区柳坑金矿点、陕西省石泉县石桥金矿点、陕西省石泉县栈房金矿点,均有一定的找矿潜力。另外,本数据集成果指导我省找到2~4处新的大型金矿产资源开发基地。

    注释:

    ❶张永强, 孙健, 谈乐. 2018. 陕西石泉−旬阳金矿带整装勘查区矿产调查与找矿预测2016—2018年子项目总成果报告[R]. 安康:陕西地矿第一地质队有限公司, 1−260.

    The measurement of 1∶50 000 stream sediments across 7 map sheets of the integrated survey area of the Shiquan-Xunyang gold zone began in 2013 (Fig. 1), of which those in the Raofeng, Yingfengjie and Ankang map sheets were organized by the Development and Research Center of China Geological Survey in 2016—2018; those in the Tiefosi, Hanyin, Dahekou and Zhaojiawan map sheets were organized by the Xi’an Center of China Geological Survey in 2013—2015, and both were conducted by the Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd..

    图  1  Range for measurement of the 1∶50 000 stream sediments of the 7 Map Sheets in the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, Shaanxi.

    The integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, located at the South Qinling tectonic zone in the midst of the Qinling orogeny, has experienced multi-stage deformations in its long history of geological evolution, where the typical tectonic patterns are folding, detachment and ductile shearing zones. In terms of stratigraphic regionalization, it belongs to the Niushan stratigraphic sub-region of the South China stratigraphic super-region (Han FL et al., 2013) (Fig. 2). Due to decoupling detachment between the overlying strata and basement, the outcrop in the area is characterized by the formation of Sinian−early-Paleozoic, black, low-metamorphic, strongly-deformed fine clastic rock series, which were formed in the coastal sea environment (Zhang FX et al., 2009; Tang YZ et al., 2012). The outcropped strata within the area include the Paleoproterozoic Yangpingyan Formation, the basic volcanic rock of the Yaolinghe Formation and Paleozoic sedimentary−low-metamorphic rocks, where mid- and late-Silurian−early-Devonian sedimentary strata are poorly developed (Liu GH and Zhang SG, 1993).

    图  2  Schematic diagram of the stratigraphic regionalization of the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, Shaanxi

    The measurement of the 1∶50 000 stream sediments in the integrated survey area of the Shiquan-Xunyang gold ore zone began with preparation of the project design in July 2013, all works being done in accordance with the relevant technical specifications. The project was completed in three stages: Stage 1, organization of the geochemical staff to take samples for the measurement of the 1∶50 000 stream sediments; Stage 2, checking, verifying, collating and processing data, and delineation of geochemical anomalies; Stage 3, plotting a series of geochemical maps, establishing and improving the regional geochemical database for the integrated survey area of the Shiquan-Xunyang gold ore zone, and screening and verifying anomalies.

    Metadata for the measured original dataset of the stream sediments in the 7 map sheets of the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, are shown in Table 1.

    表  1  Metadata Table of Database (Dataset)
    Items Description
    Database (dataset) name The 1∶50 000 Original Measurement Dataset on Stream Sediments for 7 Map Sheets including the Raofeng Map in the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, Shaanxi
    Database (dataset) authors Tan Le, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
    Zhang Yongqiang, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
    Liu Xiaopeng, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
    Li Xiaoming, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
    Wang Caijin, Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co. Ltd.
    Data acquision time 2013—2018
    Geographic area Shiquan-Xunyang, Shaanxi
    Data format *.xlsx
    Data size 2.01MB
    Data service system URL http://dcc.cgs.gov.cn
    Fund project China Geological Survey Project (121201004000150017-53, 121201004000160901-54, 121201004000172201-45, 12120113048100).
    Language Chinese
    Database(dataset) composition The dataset consists of 7 separate Excel sheets: Raofeng Sampling Points and Element Analytical Result Sheet, Tiefosi Sampling Points and Element Analytical Result Sheet, Hanyin Sampling Points and Element Analytical Result Sheet, Dahekou Sampling Points and Element Analytical Result Sheet, Zhaojiawan Sampling Points and Element Analytical Result Sheet, Yingfengjie Sampling Points and Element Analytical Result Sheet and Ankang Sampling Points and Element Analytical Result Sheet.
    下载: 导出CSV 
    | 显示表格

    The survey area is a humid−semihumid mid-and-low hilly natural landscape area (Fan HM and Li FZ, 2013), humid, rainy, strongly denuded, deeply cut, mainly physically-weathered, where channel-system alluvium and diluvium have the properties of coarse debris, suitable for the measurement of the stream sediments (Liu JS et al., 2016). In accordance with the Specifications of the Geochemical Reconnaissance Survey (150 000)(DZ/T 0011−2015), considering the geochemical landscape features of the survey area, it was decided to use stream sediment as the medium to be sampled for this geochemical reconnaissance survey, at a sampling density of 4~8 points/km2, and –20 meshes ~ +60 meshes are selected for the sample’s grain size.

    In the survey area, samples for measurement of 1∶50 000 stream sediments are all taken from the river bottom or the contact between the riverbank and the water surface (Zhang Y et al., 2018). In intermittent or trunk river channels, samples are mainly taken from the bottom of the riverbed; in rivers with rapid flow, samples are taken at places where water flows slowly or stops, or behind a boulder, or where water flow widens, or at the inner side of the turn of the river channel, where much more fine-grained materials concentrate.

    Following the principle that sampled media shall represent material components of bedrocks containing original geological prospecting information, sampling materials are sludge, silt or fine sand in stream sediments.

    Samples taken from the stream sediments in the survey area are graded sections, mixing coarse−fine-grain sizes, care being taken to avoid sampling from the humus layer. During sampling, an emphasis was placed on taking more samples at places where alteration−mineralization is strong, or which are priorities for prospecting. Samples are taken using the specific technique below:

    ① Prior to sampling, the topsoil or humus layer is removed with a sampling spoon.

    ② The cloth bag used for housing samples is checked to ensure that it does not have split seams or broken holes before placing samples within it. Before putting moist samples in the bag, they were placed in a plastic bag and then in the cloth bag, to prevent samples from becoming wet and contaminated, due to mutual leaching.

    ③ To make samples more representative, samples were taken at multiple points of 3~5 places 20~30 m within upstream and downstream of the sampling points and then combined into one sample.

    ④ Sampling avoids locations where there are pollutants and accumulated collapses at the bank due to mine development, villages and towns, dams, field-making from silty land, traffic route or road junctions.

    The integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, involves seven 1∶50 000 map sheets (Table 2) in which the 1980 Xi’an coordinate system is used and the central meridian is 111°, and geological data involved in the map sheets were purchased from the Shaanxi Geographic Information Survey Bureau.

    表  2  Topographic map of seven 1∶50 000 Map Sheets involved in the Integrated Survey Area of the Shiquan-Xunyang Gold Ore Zone, Shaanxi
    Map sheet name Map sheet number
    Raofeng I49E17001
    Yingfengjie I49E18002
    Tiefosi I49E18003
    Hanyin I49E19003
    Dahekou I49E19004
    Zhaojiawan I49E19005
    Ankang I49E02005
    下载: 导出CSV 
    | 显示表格

    The 1∶50 000 standard topographic map is used as a base map for field measurement of the stream sediments to determine the sampling points in the field with a hand-held IGS-100 device (Li CL et al., 2002). Errors in point localization were less than 30 m from their actual locations, i.e. less than 1 mm on the base map.

    During the project there were 13 169 samples in total taken from stream sediments. Based on topographic and landform characteristics, landscape conditions and geological features, for the measurement of these 1∶50 000 stream sediments, different sampling layouts and densities were used: at the densest area (i.e. referring to areas where at 1∶200 000 a geochemical anomaly is obvious, there was more information on mineralization, larger in the bedrock area and distributed with less Quaternary strata, and in addition to normal point arrangements, sampling in sections favoring metallogenesis are undertaken to the standard density), the sampling density was 5.18~5.46 points/km2; at the ordinal work area (i.e. referring to areas where there are more Quaternary strata, smaller or sporadic outcropped bedrocks, and the 1∶200 000 geochemical anomaly is weak), the sampling density was 4.1~4.3 points/km2; at the scattered area (i.e. intermountain basin), the sampling density was 3.13~3.52 points/km2. The combination of these sampling densities allows the effective control of the vast majority of water catchment within the area, which is cost-effective and enables the effective meeting of the goal of the geochemical reconnaissance survey.

    The basic procedure to process samples: natural drying → trituration →sieving →mixing evenly → weighing and splitting samples →fillling in the label → placing samples into bags → completing the sample delivery order → placing sampled bags into boxes (Chen YM and Chen XF, 2018).

    Sample drying method: dried under sunlight and air. During drying, rub and knead samples regularly to prevent caking, and use a mallet to strike them properly,

    ② Dried samples were sieved with a −20~+60 mesh nylon sieve, samples under the sieve are mixed evenly through diagonal folding, split and then put into paper bags, their weight being ≥ 310 g.

    ③ Samples processed by sample splitting were divided into two parts, each part ≥ 150 g, one put into a kraft paper bag and sent for testing, and the other placed into plastic bottles, which were then sealed and kept as duplicate samples.

    Samples were analyzed and tested by the Xi’an Center for Mineral Resource Supervision and Testing under the Ministry of Natural Resources and a laboratory of the Hanzhong Geological-Battalion Co., Ltd. under the Shaanxi Bureau of Geology and Mineral Resource, both of which possess Qualification A for rock and mineral testing, in strict accordance with the Additional Rules for Regulating Sample Analysis Technologies of Geochemical Reconnaissance Surveys (Scale: 150 000).

    Labs are provided with full-time staff to manage samples, receive, inspect and care for samples, as well as handle sample handover procedures strictly in accordance with requirements in the specifications.

    The samples were coded and processed as an analytical batch of 50, each analytical batch also containing 4 randomly inserted level-1 national standard substances, the data sent to a computer to print out a comparison table showing the respective numbers of samples analyzed and those delivered, which was then used by sample management staff in tasks such as managing samples and filling in the summary tables, and samples were subsequently sent by the sample management staff to the ore-crushing room where they were crushed without contamination.

    Geochemical samples must be fully dried at a temperature below 60℃ prior to processing. Before massive sample processing, debris samples should be tested for the best conditions for agate ball numbers and ball-milling time so that the particle size of the finely-ground samples meets the requirement for the 1∶50 000 regional geochemical survey, that finely-ground samples with particle size reaching –0.074 mm (–200 mesh) accounted for at least 90% of the sample.

    The sample management staff checked whether each processed batch of samples met the requirement for particle size; inserted designated control samples and Level-1 national standard samples into acceptable batches as required, whilst separating inner inspection samples based on their codes and numbers, and then delivering them to quality management staff to assign analysis tasks.

    According to the Project Task, Contract and General Design Specification, in 2013—2015, the items to be analyzed during the measurement of the 1∶50 000 stream sediments were the 12 elements: Au, Ag, Cu, Pb, Zn, As, Sb, Hg, V, Mo, Ti and W. In 2016—2018, the items to be analyzed for measurement of the 1∶50 000 stream sediments totalled 16 elements: Au, Ag, Cu, Pb, Zn, As, Sb, Hg, Bi, Sn, W, Mo, Cd, Co, Cr and Ni.

    Instruments such as Optical Emission Spectrometer (OES), Atomic Fluorescence Spectrometer (AFS), Inductive Coupling Plasma-Mass Spectrometer (ICP-MS) and Graphite Furnace-Atomic Absorption Spectrometer (GF-AAS) were used in analysis and testing, and all elements reported percentages were 100%. Schemes for testing and analysis of the 18 elements in the survey area are shown in Table 3.

    表  3  Analytical methods, detection limits and report percentages of the 18 elements in the survey area
    Analytical method Element content Specified detection limit for the 1∶50 000 geochemical measurement Detection limit of the method used Report percentage (%)
    GF-AAS w(Au)/10−9 0.3~1 0.23 100
    F-AAS w(Cu)/10−6 2 1.00 100
    w(Zn)/10−6 20 5.00 100
    HG-AFS w(As)/10−6 0.5~1 0.20 100
    w(Sb)/10−6 0.3 0.05 100
    CV-AFS w(Hg)/10−9 10~50 2.00 100
    w(Bi)/10−6 0.3 0.1 100
    ICP-OES w(Ti)/10−6 100 9.3 100
    w(V)/10−6 20 5 100
    OES w(Ag)/10−6 0.050 0.019 100
    w(Sn)/10−6 2 0.5 100
    ICP-MS w(Pb)/10−6 5~10 0.91 100
    w(W)/10−6 1 0.048 100
    w(Mo)/10−6 1 0.056 100
    w(Ni)/10−6 1 0.21 100
    w(Co)/10−6 1 0.10 100
    w(Cr)/10−6 10 1.00 100
    w(Cd)/10−6 0.2 0.02 100
    下载: 导出CSV 
    | 显示表格

    The measured original dataset on the 1∶50 000 stream sediments in the 7 map sheets of the integrated survey area of the Shiquan-Xunyang gold ore zone contains data in Excel form, including 7 separate sheets: Raofeng Sampling Points and Element Analytical Result Sheet, Tiefosi Sampling Points and Element Analytical Result Sheet, Hanyin Sampling Points and Element Analytical Result Sheet, Dahekou Sampling Points and Element Analytical Result Sheet, Zhaojiawan Sampling Points and Element Analytical Result Sheet, Yingfengjie Sampling Points and Element Analytical Result Sheet, and Ankang Sampling Points and Element Analytical Result Sheet (Song XL et al., 2017). Each sheet contains the following: sample No., Gaussian coordinates, map sheet No., stratigraphy, analyzed result (elements analyzed in Tiefosi, Dahekou, Hanyin and Zhaojiawan map sheets are Au, Hg, Ag, Cu, Pb, Zn, Mo, As, Sb, Ti, V and W; elements analyzed in Yingfengjie, Raofeng and Ankang map sheets are Au, Ag, Cu, Pb, Zn, As, Sb, Hg, Bi, Sn, W, Mo, Cd, Co, Cr and Ni) and remarks. Dataset structure could be seen in Table 4.

    表  4  Dataset structure of the measured original data of the stream sediments in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi
    No. Name of data item Dimension Data category Field length Real example
    1 Sample No. Character type 20 57C2
    2 Map sheet No. Character type 20 I49E018002
    3 Stratigraphy Character type 20 O3−S1b
    4 Gauss horizontal coordinate Character type 20 255460
    5 Gauss vertical coordinate Character type 20 3672075
    6 Longitude Character type 20 108°22′45″
    7 Latitude Character type 20 33°08′48″
    8 Au 10−9 Floating-point type 20 1.03
    9 Ag 10−6 Floating-point type 20 42
    10 Cu 10−6 Floating-point type 20 35.9
    11 Pb 10−6 Floating-point type 20 35.9
    12 Zn 10−6 Floating-point type 20 83.7
    13 As 10−6 Floating-point type 20 3.88
    14 Sb 10−6 Floating-point type 20 2.13
    15 Hg 10−9 Floating-point type 20 49
    16 Bi 10−6 Floating-point type 20 0.85
    17 Sn 10−6 Floating-point type 20 3
    18 W 10−6 Floating-point type 20 2.14
    19 Mo 10−6 Floating-point type 20 0.93
    20 Cd 10−6 Floating-point type 20 0.1
    21 Co 10−6 Floating-point type 20 22.3
    22 Cr 10−6 Floating-point type 20 94.6
    23 Ni 10−6 Floating-point type 20 41.9
    24 Ti 10−6 Floating-point type 20
    25 V 10−6 Floating-point type 20
    下载: 导出CSV 
    | 显示表格

    In the process of analyzing and testing geochemical samples in the Tiefosi, Hanyin, Dahekou and Zhaojiawan map sheets, every 50 samples were grouped to be coded and processed as one analytical batch, each analytical batch being randomly inserted with 4 Level-1 national standard substances which were GBW07302a, GBW07304a, GBW07309 and GBW07318, in order to monitor and control the precision of the analytical process. In addition, 12 Level-1 national standard substances are added randomly in sections (once for every 500 samples) for 15 times in total, to monitor the accuracy of the analytical process, and some high and low values of samples were randomly inspected and analyzed, with 2.6% of samples receiving random inspection.

    In the process of analyzing and testing geochemical samples in the Raofeng, Yingfengjie and Ankang map sheets, every 50 samples were grouped to be coded and processed as one analytical batch, 243 batches in total. Each analytical batch is randomly inserted with 4 Level-1 national standard substances purchased from the CAGS Geophysical & Geochemical Exploration Institute, in order to monitor and control the accuracy of the analytical process. Of these, to analyze the 8 elements Au, Ag, Hg, Pb, Sn, As, Sb and Bi, GSD-10, GSD-14, GSD-18 and GSD-20 were inserted to control the precision of the analytical process; to analyze the other 8 elements Cr, Co, Ni, Cu, Zn, Mo, Cd and W, GSD-8a, GSD-9, GSD-10 and GSD-14 were inserted to control the precision of the analytical process, and some high and low values of samples were randomly inspected and analyzed, with 1.4 % of samples receiving random inspection.

    During this detection, the qualifying rate of element inner examination (duplicate sample) was more than 95.00%; all elements’ report percentages were 100%; the qualifying rate of element anomaly re-examination was at least 97.5%; the detection limits of analytical methods used all met the standard requirement on 1∶50 000 geochemical samples in DZ/T0130.4−2006. Precision of methods: the mean ΔlgC detected with Level-1 national standard substance was within –0.099~+0.099. Accuracy of methods: the mean ΔlgC detected with Level-1 national standard substance was within –0.099~+0.099. The detection limit, precision and accuracy of the analytical methods selected met the quality-related requirements in the Additional Rules for Regulating Sample Analysis Technologies of Geochemical Reconnaissance Surveys (Scale 150 000).

    Above-mentioned figures concerning quality-related parameters indicate that this examination fully complied with the quality-related requirements in the Additional Rules for Regulating Sample Analysis Technologies of Geochemical Reconnaissance Surveys (Scale 150 000) and DZ0130.4−2006.

    The measured results database of the 1∶50 000 stream sediments in the 7 map sheets including Raofeng on the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi (Wan CX et al., 2009), was set up in accordance with the geochemical data model by using the software platform DGSS (Pang JF et al., 2017), properties and structures of all the elements analysed were completed by referring to the content and structure of the CGS’s solid mineral survey database (Zuo QC et al., 2018; Li CL et al., 2013), to ensure that the data structure and content were complete and sound. The generated measurement databases of 1∶50 000 stream sediments in the 7 map sheets have been reviewed and accepted by the experts from the Xi'an Center of China Geological Survey and the Development and Research Center of China Geological Survey, scoring 93, awarded “Excellence”, and have thus been handed over.

    The scope of the work area involved in this database was the measurement of the 1∶50 000 stream sediments in the 7 map sheets including Raofeng in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi, organized and implemented by the Xi'an Center and the Development and Research Center of China Geological Survey, covering 3 010 km2. It is the first time that unified sampling, analytical and testing methods have been used to analyze elements in a systematic way in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi. It is also the first time that a geochemical databases have been established in a standardized way in the integrated survey area, so as to obtain valuable first-hand geochemical measurement information.

    With the results from the database, 10 Au prospecting target areas and 12 Au prospective areas were delineated in the integrated survey area, and at the newly-discovered Bawanggou Au deposit from the Au-delineated prospecting target area at and around Shuanghekou, Hanyin County, Shaanxi, with a subsequent provincial fund for geological exploration, it was found that the Au resource (333+334) was 30 tons; in the Au-prospecting target area at and around Jiangjunshan, Ankang city, Shaanxi, the Zaoyang Au deposit was recently found, and a subsequent provincial fund created for geological exploration, the Au (333+334) resource is 20 tons. In addition, 4 new gold ore occurrences were discovered in Shaanxi by using the results from this database, and they are located in Yangou, Ningshan County; Liukeng, Hanbin District, Ankang City; Shiqiao and Zhanfang, Shiquan County, all of which have a certain prospecting potential. Furthermore, the results from the database have guided Shaanxi to find 2–4 new large-scale Au resource development bases.

    Notes:

    Zhang Yongqiang, Sun Jian, Tan Le. 2018. Comprehensive result report of sub-projects from 2016 to 2018 on mineral investigation and prospecting prediction in the integrated survey area of the Shiquan-Xunyang gold ore zone, Shaanxi[R]. Ankang: Team No.1, Shaanxi Bureau of Geology and Mineral Resources Co.Ltd., Ankang, Shaanxi, 1−260 (in Chinese).

  • 图  1   研究区位置及采样点分布图

    Figure  1.   Location of the study area and distribution of sampling points

    图  2   水文地质剖面图

    Figure  2.   Hydrogeological profile of the study area

    图  3   不同含水岩组地下水Piper三线图

    Figure  3.   Piper trilinear diagram of groundwater in different aquifer groups

    图  4   沿水文地质剖面代表性地下水Piper三线图

    Figure  4.   Piper trilinear diagram of typical ground water samples along the hydrogeological profile

    图  5   沿水文地质剖面代表性地下水TDS(a)、pH(b)、Fe(c)、γNa/γCl(d)、100×γSO4/γCl(e)和γ(Cl−Na)/γMg(f)箱型图

    Figure  5.   Box plot of TDS(a), pH (b), Fe (c), γNa/γCl(d), 100×γSO4/γCl(e) and γ(Cl−Na)/γMg(f) of typical groundwater samples along the hydrogeological profile

    图  6   地表水、泉水和不同含水岩组地下水氘氧同位素组成

    (GMWL为全球大气降水线,LMWL为当地大气降水线)

    Figure  6.   Isotope composition of D and18O of surface water, spring water and groundwater in different aquifer groups

    (GMWL is short for Global Meteoric Water Line, LMWL is short for Local Meteoric Water Line)

    图  7   北洛河流域浅层地下水(a)和深层地下水(b)水质评价结果

    Figure  7.   Quality evaluation of shallow (a) and deep (b) groundwater in the Beiluo River Basin

    图  8   不同含水岩组地下水Gibbs图

    Figure  8.   Gibbs diagram of groundwater in different aquifer groups

    图  9   不同含水岩组地下水γCa2+/γNa+γMg2+/γNa+γHCO3/γNa+关系

    Figure  9.   Correlation between γCa2+/γNa+,γMg2+/γNa+ and γHCO3/γNa+of groundwater in different aquifer groups

    图  10   不同含水岩组地下水γSO42−/γCa2+γNO3/γCa2+关系

    Figure  10.   Correlation between γSO42−/γCa2+ and γNO3/γCa2+of groundwater in different aquifer groups

    表  1   水质单项分析指标检测方法及检出限

    Table  1   Detection methods and detection limitsof water quality indices

    检测指标检出限测试手段检测指标检出限测试手段检测指标检出限测试手段
    pH值0.10电感耦合等离子体发生光谱NO3/(mg/L)0.02离子色谱Mn/(mg/L)0.0002电感耦合等离子体发生光谱
    K+/(mg/L)0.01电感耦合等离子体发生光谱Br/(mg/L)0.30离子色谱Sr/(mg/L)0.001电感耦合等离子体发生光谱
    Na+/(mg/L)0.01电感耦合等离子体发生光谱Cr6+/(mg/L)0.04紫外可见分光光度计Li/(μg/L)5.00电感耦合等离子体质谱
    Ca2+/(mg/L)0.004电感耦合等离子体发生光谱H2SiO3/(mg/L)0.06紫外可见分光光度计Cr/(μg/L)1.00电感耦合等离子体质谱
    Mg2+/(mg/L)0.01电感耦合等离子体发生光谱NH4+/(mg/L)0.04紫外可见分光光度计Cu/(μg/L)0.50电感耦合等离子体质谱
    HCO3/(mg/L)5.00酸式滴定NO2/(mg/L)0.00紫外可见分光光度计Zn/(μg/L)1.00电感耦合等离子体质谱
    CO32−/(mg/L)5.00酸式滴定PO43−/(mg/L)0.10紫外可见分光光度计As/(μg/L)1.00电感耦合等离子体质谱
    OH/(mg/L)2.00酸式滴定TH/(mg/L)10.00酸式滴定Se/(μg/L)1.00电感耦合等离子体质谱
    Cl/(mg/L)0.10离子色谱COD/(mg/L)0.04滴定Cd/(μg/L)0.02电感耦合等离子体质谱
    SO42−/(mg/L)0.20离子色谱TDS/(mg/L)4.00万分之一天平Hg/(μg/L)0.55电感耦合等离子体质谱
    F/(mg/L)0.006离子色谱Fe/(mg/L)0.002电感耦合等离子体发生光谱Pb/(μg/L)0.05电感耦合等离子体质谱
    下载: 导出CSV

    表  2   北洛河流域不同含水岩组地下水水化学指标与组合特征参数统计值

    Table  2   Statistics of hydrochemical indices and characteristic parameters of groundwater in different aquifer groups in Beiluo River Basin

    水化学指标 白垩系含水岩组
    地下水 (n=42)
    石炭系—侏罗系含水岩组
    地下水 (n=46)
    奥陶系岩溶含水岩组
    地下水 (n=131)
    新生界断陷盆地含水岩组
    地下水 (n=59)
    pH 7.40~9.90/8.07 7.35~8.51/7.94 7.18~8.73/7.83 7.26~9.40/7.98
    TDS/(mg/L) 230.0~5883.00/869.00 218.00~1815.00/525.00 242.00~11819.00/1295.0 290.00~7910.00/2774.00
    TH/(mg/L) 11.60~3125.0/437.00 108.00~1031.00/270.00 82.10~5240.00/516.00 107.00~3815.00/856.00
    K+ /(mg/L) 0.62~13.05/2.87 0.58~16.47/1.73 0.56~22.86/5.64 1.22~40.73/5.86
    Na+/(mg/L) 23.60~962.00/156 9.90~234.00/67.80 22.50~2729.00/301.00 21.44~2324.00/709.00
    Ca2+ /(mg/L) 18.36~270.00/60.30 13.55~321.00/61.20 4.57~908.00/84.30 6.33~677.00/94.52
    Mg2+/(mg/L) 16.58~601.00/69.28 12.11~114.00/29.90 12.60~664.00/71.50 10.36~507.00/138.00
    Cl/(mg/L) 6.13~2255.22/183.00 4.48~87.60/21.50 3.55~5620.00/266.00 8.98~2581.00/602.00
    SO42−/(mg/L) 6.64~1401.00/189.00 4.09~195.00/47.52 3.00~2016.00/360.00 26.95~2976.00/858.00
    HCO3/(mg/L) 83.45~618.00/321.00 204.00~491.00/331.00 193.00~886.00/408.00 11.13~1060.00/504.00
    CO32−/(mg/L) <5.00~45.60/16.47 <5.00~33.44/13.59 <5.00~125.00/28.56 <5.00~140.00/34.99
    NO3/(mg/L) 1.28~375.50/42.33 0.30~251.80/22.68 0.46~736.60/37.55 0.19~1162.00/102.00
    F/(mg/L) 0.092~2.65/0.78 0.198~2.30/0.785 0.183~6.300/1.498 <0.006~6.300/2.021
    Cd /(mg/L) 0.003~0.15/0.036 0.003~0.046/0.020 0.001~0.373/0.054 0.001~0.328/0.057
    Cr6+/(mg/L) 0.005~0.19/0.037 0.005~0.030/0.015 0.004~0.556/0.071 0.004~0.334/0.082
    As/(mg/L) <0.001~0.009/0.004 <0.001~0.013/0.003 <0.001~0.267/0.017 <0.001~0.023/0.007
    δD/‰ −98.00~−62.34/−82.60 −67.19~−61.13/−64.44 −83.80~−65.60/−72.61 −79.90~−54.97/−66.30
    δ18O/‰ −12.40~−7.94/−10.57 −8.9~−8.08/−8.61 −10.5~−8.60/−9.54 −10.7~−7.30/−8.80
    γNa/γCl 0.66~14.23/3.99 0.81~20.14/6.18 0.60~35.71/4.80 0.90~27.18/3.14
    (100×γSO4)/γCl 27.00~792.00/142.00 35.00~472.00/155.00 15.00~1537.00/211.00 34.00~1060.00/141.00
    γ(Cl−Na)/γMg −2.93~0.43/−0.74 −3.00~0.07/−1.02 −9.64~0.93/−1.61 −19.92~0.16/−2.21
      注:“/”左侧数值为“最小值~最大值”,“/”右侧数值为“平均值”。
    下载: 导出CSV

    表  3   北洛河流域不同含水岩组地下水同位素组成

    Table  3   Isotope composition of groundwater in different aquifer groups in the Beiluo River Basin

    同位素指标 白垩系含水岩组
    地下水 (n=11)
    石炭系—侏罗系含水岩组
    地下水 (n=0)
    奥陶系岩溶含水岩组
    地下水 (n=12)
    新生界断陷盆地含水岩组
    地下水 (n=19)
    δD/‰ −98.00~−62.34/−83.18 / −83.80~−65.60/−72.61 −79.90~−54.97/−66.30
    δ18O/‰ −12.40~−7.94/−10.69 / −10.5~−8.60/−9.54 −10.7~−7.30/−8.80
      注:“/”左侧数值为“最小值~最大值”,“/”右侧数值为“平均值”。
    下载: 导出CSV
  • [1]

    Abhijit M, Alan E F. 2008. Deeper groundwater chemistryand geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India[J]. Applied Geochemistry, 23(4): 863−894. doi: 10.1016/j.apgeochem.2007.07.011

    [2]

    Dong Ying, Song Yougui, Zhang Maosheng, Lan Minwen, Fu Xiaofen, Liu Huifang, Ning Qiangqiang. 2019. Several key basic geological problems on the development of the Guanzhongurban agglomeration[J]. Northwestern Geology, 52(2): 12−26 (in Chinese with English abstract).

    [3]

    Gaillardet J, Dupré B, Louvat P, Allègre C. J. 1999. Global silicateweathering and CO2 consumption rates deduced from thechemistry of large rivers[J]. Chemical Geology, 159(1/4): 3−30. doi: 10.1016/S0009-2541(99)00031-5

    [4]

    Ge Fenli. 2013. Analysis of feature variation of water sediment and probing of reasons in upstream area of Beiluo River[J]. Journal of Water Resources and Water Engineering, 4: 145−150 (in Chinese with English abstract).

    [5]

    Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088−1090. doi: 10.1126/science.170.3962.1088

    [6]

    Han Shuangbao. 2021. Introduction of China Geological Survey project ‘Hydrogeological Survey of the Yellow River Basin’[J]. Geology in China, 48(6): 1664 (in Chinese).

    [7]

    Han Shuangbao, Li Fucheng, Wang Sai1, LiHaixue, Yuan Lei, Liu Jingtao, Shen Haoyong, Zhang Xueqing, Li Changqing, Wu Xi, Ma Tao, Wei Shibo, Zhao Minmin. 2021. Groundwater resource and eco−environmental problem of the Yellow River Basin[J]. Geology in China, 48(4): 1001−1019 (in Chinese with English abstract).

    [8]

    Han Shuangbao, Wang Sai, Zhao Minmin, Wu Xi, Yuan Lei, Li Haixue, Li Fucheng, Ma Tao, Li Wenpeng, Zheng Yan. 2023. Ecological environmental changes and its impact on water resources and water–sediments relationship in Beiluo River Basin[J]. Hydrogeology & Engineering Geology, 50(6): 14–24 (in Chinese with English abstract).

    [9]

    Jiang Guantao. 2016. Responses of Runoff and Sediment to Land Use Cover Changes in the Upper Reaches of Beiluo River Based on SWAT Model [D]. Yangling: Northwest Agriculture and Forestry University, 1−82(in Chinese with English abstract).

    [10]

    Jing Yong, Chen Fangli, Ge Fenli, Gu Mingxing. 2010. Characteristics of water and sediment in source area of Beiluohe River[J]. Hydrology, 4: 92−96 (in Chinese with English abstract).

    [11]

    Kang Yuan. 2008. Environmental Issue and Information System Construction of Oil Exploration and Exploitation in the Upper Stream of Beiluohe River in Northern Shaanxi Province [D]. Xi'an: Northwest University, 1−76 (in Chinese with English abstract).

    [12]

    Liang Xing, Zhang Jingwei, Lan Kun, Shen Shuai, Ma Teng. 2020. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Geological Science and Technology Information, 39(1): 21−33 (in Chinese with English abstract).

    [13]

    Luo Xinyan. 2021. Analysis on the transformation relationship between surface water and groundwater in the Yellow River Basin[J]. Mineral Resources and Geology, 35(3): 517−522 (in Chinese with English abstract).

    [14]

    Ma Tao, Li Wenli, Han Shuangbao, Zhang Hongqiang, Wang Wenke, Li Fucheng, Li Haixue, He Xubo, Zhao Meimei. 2023. Distribution characteristics, influencing factors and development potential of groundwater resources in Shaanxi Province of the Yellow River Basin[J]. Geology in China, 50(5): 1432−1445 (in Chinese with English abstract).

    [15]

    Ma Yukun. 2017. Analysis of water resources situation in the lower reaches of Beiluo River [J]. Shaanxi Water Resources, 6: 3, 15 (in Chinese with English abstract).

    [16]

    Pu Junbing, Yuan Daoxian, Jiang Yongjun, Gou Pengfei, Yin Jianjun. 2010. Hydrogeochemistry and environmental meaning of Chongqing subterranean karst streams in China[J]. Advances in Water Science, 21(5): 628−636 (in Chinese with English abstract).

    [17]

    Qiao Wen, Cao Wengeng, Gao Zhipeng, PanDeng, Ren Yu, Li Zeyan, Zhang Zhuo. 2022. Contrasting behaviors of groundwater arsenic and fluoride in the lower reaches of the Yellow River basin, China: Geochemical and modeling evidences [J]. Science of the Total Environment, 851(Pt 1): 158134.

    [18]

    Qin Pengyi, Xu Xianfeng, Cai Wutian, Li Guiheng, Wei Shenghui. 2020. Analysis on aquifers hydrochemical distribution characteristics and genesis of the alluvial fan in Anyang, Henan Province[J]. Hydrology, 40(6): 89−96 (in Chinese with English abstract).

    [19]

    Qin Wei, Zhu Qingke, Liu Guangquan, Zhang Yan. 2010. Regulation effects of runoff and sediment of ecological conservation in the upper reaches of Beiluo River[J]. Journal of Hydraulic Engineering, 11: 1325−1332 (in Chinese with English abstract).

    [20]

    Tan Kaijun, Zhang Fan, Yin Lu, Dai Dongdong, Qi Wen. 2012. Preservation conditions for formation water and hydrocarbon in Wuxia area, Junggar Basin[J]. Petroleum Geology & Experiment, 1: 36−39.

    [21]

    Tong Xiaoxia, Tang Hui, Gan Rong, Li Zitao, He Xinlin, Gu Shuqian. 2022. Characteristics and causes of changing groundwater quality in the boundary line of the middle and lower Yellow River (right bank)[J]. Water, 14(12): 1846. doi: 10.3390/w14121846

    [22]

    Wang Xueping, Li Wenzhe. 2010. Geological tectonics control on the karstic water in the south margin of the Ordos Basin[J]. Northwestern Geology, 43(3): 106−112 (in Chinese with English abstract).

    [23]

    Xing Lina, Guo Huaming, Zhan Yanhong. 2013. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 70−71: 250−264. doi: 10.1016/j.jseaes.2013.03.017

    [24]

    Xu Wenmei, Lian Zhenmin. 2007. Factors of vegetation change in Beiluo River Valley[J]. Journal of Yanan University (Social Science), 29(2): 79−81 (in Chinese with English abstract).

    [25]

    Yu Songyan, Xu Zongxue, Wu Wei, Li yanli. 2014. Spatial variation of water quality and its response to landuse in the Beiluo River Basin[J]. Acta Scientiae Circumstantiae, 34(5): 1309−1315 (in Chinese with English abstract).

    [26]

    Zhang Fan, Wang Guangcai, Zhang Maosheng, Sun Pingping, Han Xu, Guo Jiangbo. 2023. Identification of produced water and characteristics of hydrochemistry and stable hydrogen−oxygen isotopes of contaminated groundwater[J]. Northwestern Geology, 56(3): 98–108 (in Chinese with English abstract).

    [27]

    Zhao Ming, Huang Chunchang, Pang Jiangli, ZhaXiaochun, Yao Ping. 2011. Palaeo−flood hydrological studies in the middle reaches of Beiluo River[J]. Journal of Natural Disasters, 20(5): 155−161 (in Chinese with English abstract).

    [28]

    Zhi Chuanshun, Cao Wengeng, Wang Zhen, Li Zeyan. 2021. High−arsenic groundwater in paleochannels of the lower Yellow River, China: Distribution and genesis mechanisms[J]. Water, 13(3): 338. doi: 10.3390/w13030338

    [29]

    Zhou Qiaoli, Song Yumei, Zhou Yibo, Zhang Tuxiu, SuLiukun. 2019. Analysis of air and groundwater pollution in a municipal solid waste landfill site in Guangzhou[J]. Environmental Chemistry, 38(4): 761−767 (in Chinese with English abstract).

    [30]

    Zhu B Q, Yang X P, Rioual P, Qin X G, Liu Z T, Xiong Heigang, Yu Jingjie. 2011. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry, 26(8): 1535−1548. doi: 10.1016/j.apgeochem.2011.06.018

    [31] 董英, 宋友桂, 张茂省, 兰敏文, 付晓芬, 刘慧芳, 宁强强. 2019. 关中盆地城市群发展中几个关键基础地质问题[J]. 西北地质, 52(2): 12−26.
    [32] 葛芬莉. 2013. 北洛河上游区水沙特性变化分析研究[J]. 水资源与水工程学报, 4: 145−150.
    [33] 韩双宝. 2021. 中国地质调查局黄河流域水文地质调查工程简介[J]. 中国地质, 48(6): 1664.
    [34] 韩双宝, 李甫成, 王赛, 李海学, 袁磊, 刘景涛, 申豪勇, 张学庆, 李长青, 吴玺, 马涛, 魏世博, 赵敏敏. 2021. 黄河流域地下水资源状况及其生态环境问题[J]. 中国地质, 48(4): 1001−1019.
    [35] 韩双宝, 王赛, 赵敏敏, 吴玺, 袁磊, 李海学, 李甫成, 马涛, 李文鹏, 郑焰. 2023. 北洛河流域生态环境变迁及对水资源和水沙关系的影响[J]. 水文地质工程地质, 50(6): 14–24.
    [36] 蒋观滔. 2016. 基于SWAT模型的北洛河上游土地利用/覆被变化水沙响应研究 [D]. 杨凌: 西北农林科技大学, 1−82.
    [37] 井涌, 陈芳莉, 葛芬莉, 古明兴. 2010. 北洛河源头区水沙特性变化分析[J]. 水文, 4: 92−96.
    [38] 康媛. 2008. 陕北北洛河上游石油勘探开发的环境问题及信息系统建设[D]. 西安: 西北大学, 1−76.
    [39] 梁杏, 张婧玮, 蓝坤, 沈帅, 马腾. 2020. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技情报, 39(1): 21−33.
    [40] 罗新燕. 2021. 黄河流域内地表水与地下水转化关系分析[J]. 矿产与地质, 35(3): 517−522.
    [41] 马涛, 李文莉, 韩双宝, 张红强, 王文科, 李甫成, 李海学, 贺旭波, 赵梅梅. 2023. 黄河流域陕西省地下水资源分布特征、影响因素及开发潜力[J]. 中国地质, 50(5): 1432−1445.
    [42] 马禹锟. 2017. 北洛河下游水资源情况及分析[J]. 陕西水利, 6: 3, 15.
    [43] 蒲俊兵, 袁道先, 蒋勇军, 苟鹏飞, 殷建军. 2010. 重庆岩溶地下河水文地球化学特征及环境意义[J]. 水科学进展, 21(5): 628−636.
    [44] 秦鹏一, 徐先锋, 蔡五田, 李贵恒, 魏盛辉. 2020. 河南安阳冲洪积扇含水层水化学分布特征及成因分析[J]. 水文, 40(6): 89−96.
    [45] 秦伟, 朱清科, 刘广全, 张岩. 2010. 北洛河上游生态建设的水沙调控效应[J]. 水利学报, 11: 1325−1332.
    [46] 谭开俊, 张帆, 尹路, 代冬冬, 齐雯. 2012. 准噶尔盆地乌夏地区地层水与油气保存条件[J]. 石油实验地质, 1: 36−39.
    [47] 王学平, 李稳哲. 2010. 地质构造对鄂尔多斯盆地南缘岩溶地下水的控制作用[J]. 西北地质, 43(3): 106−112.
    [48] 徐文梅, 廉振民. 2007. 试析北洛河流域植被变迁的原因[J]. 延安大学学报, 29(2): 79−81.
    [49] 于松延, 徐宗学, 武玮, 李艳利. 2014. 北洛河流域水质空间异质性及其对土地利用结构的响应[J]. 环境科学学报, 34(5): 1309−1315.
    [50] 张帆, 王广才, 张茂省, 孙萍萍, 韩绪, 郭江波. 2023. 产出水识别及受污染地下水水化学和氢氧稳定同位素特征[J]. 西北地质, 56(3): 98–108.
    [51] 赵明, 黄春长, 庞奖励, 查小春, 姚平. 2011. 北洛河中游白水段峡谷全新世特大洪水水文学研究[J]. 自然灾害学报, 20(5): 155−161.
    [52] 周巧丽, 宋玉梅, 周漪波, 张土秀, 苏流坤. 2019. 广州市某生活垃圾填埋场空气及地下水污染状况分析[J]. 环境化学, 38(4): 761−767.
  • 期刊类型引用(6)

    1. 韩双宝,周殷竹,郑焰,周金龙,李长青,韩强强,李甫成. 银川平原地下水化学成因机制与组分来源解析. 环境科学. 2024(08): 4577-4588 . 百度学术
    2. 张卓,郭华明,韩双宝,牛笑童. 沉积物中砷的赋存特征及对地下水砷富集的控制:以内蒙古河套盆地为例. 中国地质. 2024(04): 1331-1341 . 本站查看
    3. 吴光伟,李浩林,王庆兵,顾莎,郭梓烽,刘中业. 鲁西北平原地下水高氟与高碘成因分析. 岩矿测试. 2023(04): 793-808 . 百度学术
    4. 张卓,柳富田,陈社明. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用. 华北地质. 2023(03): 49-56 . 百度学术
    5. 李红超,单强,马丙太,赵德刚. 基于逻辑回归分析的焦化行业地下水有机污染物分布特征及影响因素研究. 华北地质. 2023(04): 47-54 . 百度学术
    6. 邢世平,郭华明,吴萍,胡学达,赵振,袁有靖. 化隆—循化盆地不同类型含水层组高氟地下水的分布及形成过程. 地学前缘. 2022(03): 115-128 . 百度学术

    其他类型引用(2)

图(10)  /  表(3)
计量
  • 文章访问数:  2726
  • HTML全文浏览量:  1181
  • PDF下载量:  447
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2023-01-16
  • 网络出版日期:  2024-02-03
  • 刊出日期:  2024-03-24

目录

/

返回文章
返回
x 关闭 永久关闭