Geochronology, geochemistry of lamprophyre and evidence of mantle fluid in the western part of Xiangshan uranium orefield
-
摘要:研究目的
幔源岩浆是探讨深部动力学演化和铀成矿的研究对象,相山铀矿田基性岩脉是探讨区域岩浆演化和铀成矿的关键所在。
研究方法本文对矿区西部煌斑岩脉进行了系统的岩石学、地质年代学和地球化学综合研究。
研究结果本区存在3期煌斑岩,分别为134 Ma、120~125 Ma和84.5 Ma。该区煌斑岩为钠质碱性煌斑岩,富集LILE和LREE,亏损HFSE,具明显的Ta−Nb−Ti负异常,具有岛弧玄武岩和大陆地壳的微量元素特征。该区煌斑岩为部分熔融和结晶分异共同作用的产物,经历了橄榄石、单斜辉石的结晶分异作用,在岩浆上侵过程中受到明显上地壳物质的混染。该区煌斑岩形成于伸展作用下的板内拉张构造环境,未受到古太平洋板块俯冲作用的影响。其源区应为软流圈亏损地幔与岩石圈富集地幔的混合,且主要体现为软流圈亏损地幔特征。
结论第一期煌斑岩矿岩时差大,仅为后期铀的沉淀富集提供有利条件;后两期煌斑岩矿岩时差小,不仅为相山矿田铀矿化提供了幔源流体(ΣCO2矿化剂和He),也为铀沉淀富集提供还原障。
创新点:(1)相山西部煌斑岩形成于134 Ma、120~125 Ma和84.5 Ma;(2)煌斑岩主要为软流圈亏损地幔特征;(3)第一期煌斑岩为铀沉淀富集提供有利条件,后两期煌斑岩为铀矿化提供幔源流体和还原障。
Abstract:This paper is the result of mineral exploration engineering.
ObjectiveMantle−derived magma generally provied an object to reveal geodynamic evolution in the depth and uranium mineralization. The mafic dikes in the west of Xiangshan uranium deposit are regarded as a key aspect to understand the regional tectono−magmatic evolution and uranium mineralization.
MethodsIn this paper, the comprehensive research of petrology, geochronology and geochemistry were carried on the lamprophyre in the west of Xiangshan uranium deposit.
ResultsThere are three stages of lamprophyre in this area, which are 134 Ma, 120–125 Ma and 84.5 Ma. The lamprophyre is sodium−alkaline lamprophyre and characterized with the enrichment of LILE and LREE, depletion of HFSE, and obvious negative anomaly of Ta–Nb–Ti. The lamprophyre is the product of partal melting from the source region and crystallisation differentiation, which experienced the crystallization differentiation of olivine and clinopyroxene as well as strong assimilation and contamination of upper crustal meterials during the magmatic intrusion. The lamprophyre was formed in the extentional entraplate tensioned tectonic environment, and was not affected by the subduction of the ancient Pacific Plate. The source region is a mixture of asthenospheric depleted mantle (main source) and lithospheric enriched mantle, which is mainly characterized by asthenospheric depleted mantle.
ConclusionsThe first period of lamprophyres is much older than the age of uranium mineralization, only providing favorable conditions for uranium accumulation. The later two periods of lamprophyres are closely associated with uranium deposits on space and time, possibly providing mantle hydrothemal fluids (∑CO2 and He) and a favorable reducing environment for uranium enrichment and deposition.
Highlights:(1) There are three stages of lamprophyre in this area, which are 134 Ma, 120–125 Ma and 84.5 Ma; (2) Lamprophyre is mainly characterized by asthenospheric depleted mantle; (3) The lamprophyre of the first stage provides favorable conditions for uranium precipitation enrichment, and the lamprophyre of the late two stages provides mantle source fluid and reduction barrier for uranium mineralization.
-
1. 引 言
基性岩脉是源于地幔的基性熔融岩浆侵位至地壳浅部冷却形成的一类岩石,对于岩石圈地幔性质和地球动力学演化具有重要意义(吴浩等, 2023)。基性岩脉在时空上与铀矿床关系密切,不仅可以为铀的运移提供矿化剂,也可以为铀的沉淀提供场所(骆金诚等, 2019)。华南是中国重要的铀产区,华南铀成矿动力学模型表明,区内铀矿床形成包括4个条件:(1)华南铀矿区或邻区在铀成矿前形成富铀岩石;(2)铀成矿时代与岩石圈伸展时代一致;(3)铀成矿热液的形成需要CO2;(4)受岩石圈伸展控制的幔源CO2驱动铀成矿(胡瑞忠等, 2019)。
相山铀矿田是中国最大的火山岩型铀矿田,大地构造位于华夏板块与杨子板块接触带的赣杭构造带内。已有研究表明,相山矿田成矿流体存在部分幔源物质的参与(范洪海等, 2001; 胡瑞忠等, 2004; 杨庆坤, 2015),而且铀以碳酸铀酰络合物形式迁移(Hu et al., 2009),但是相山铀矿田缺乏幔源物质的直接证据。最近的钻孔资料显示,矿田中西部赋矿地区深部普遍见有花岗斑岩脉,同时也见有煌斑岩脉、辉绿岩脉等基性岩脉,且与矿体空间关系密切(曾文乐等, 2019),但是对基性岩脉的成因、源区性质以及与铀矿的关系,目前仍不太清楚。因此,本文分析相山矿田西部钻孔中10个煌斑岩样品,利用全岩K–Ar法、主微量元素和Sr–Nd–Pb同位素组成特征,试图解决上述地质问题,初步揭示相山地区地幔属性及其深部地质过程,并在此基础上,探讨煌斑岩与铀矿的关系。
2. 区域地质背景
相山矿田赋存于相山火山盆地侵入杂岩体内,大地构造位置位于赣杭构造火山岩铀成矿带西南段。相山火山盆地包括变质基底和火山−侵入杂岩两部分。变质基底主要为青白口系低绿片岩相变质岩系,次为中泥盆统云山组石英砂岩、粉砂岩及上三叠统紫家冲组砂砾岩、砂岩夹炭质页岩等。相山火山活动具有明显的两个旋回:第一旋回为火山活动初始期的产物,属喷发−沉积相组合,岩相以粉砂岩、灰质砂岩为主,夹英安岩、凝灰岩;第二旋回为火山活动强烈期的产物,属喷发−侵出相组合,岩相以碎斑熔岩为主,夹凝灰岩(图1)(巫建华等, 2017)。相山地区煌斑岩地表出露较少且风化强烈,仅在相山西部湖溪地区少量分布。
图 1 相山火山−侵入杂岩地质略图(据张万良, 2015)1—第四系黏土;2—上白垩统砂岩、砂砾岩;3—下白垩统鹅湖岭组碎斑熔岩;4—下白垩统鹅湖岭组晶屑凝灰岩、砂砾岩;5—下白垩统打鼓顶组流纹英安岩;6—下白垩统打鼓顶组砂岩、熔结凝灰岩;7—上三叠统石英砂岩、页岩;8—中元古界片岩、千枚岩;9—加里东期花岗岩;10—花岗斑岩;11—断裂;12—矿床;13—取样位置Figure 1. Geological sketch map of Xiangshan volcanic-intrusive complex (after Zhang Wanliang, 2015)1–Quarternary clay; 2–Upper Cretaceous sandstone and glutenite; 3–Porphyroclastic lava in Ehuling Formation of Lower Cretaceous; 4–Crystal tuff and glutenite in Ehuling Formation of Lower Cretaceous; 5–Rhyodacite in Daguding Formation of Lower Cretaceous; 6–Ignimbrite and sandstone in Daguding Formation of Lower Cretaceous; 7–Upper Triassic sandstone and shale; 8–Mesoproterozoic schist and phyllite; 9–Caledonian granite; 10–Granite−porphyry; 11–Fractures; 12–Deposits; 13–Sampling locations3. 样品及分析方法
相山矿田西部王家边地区深部见有煌斑岩脉,本次研究采集的煌斑岩脉样品来自相山西部王家边地区钻孔中,具体位置及岩性见表1。相山地区煌斑岩具有相似的岩石矿物学特征(图2),其总体特征为:浅灰绿色—灰绿色,具轻度风化,斑状结构,块状构造(图2a、b),斑晶为辉石(±15%)和斜长石(±25%)为主,可见橄榄石(±2%)。辉石为短柱状,横断面近八边形,自形半自形(图2c、d、e、f);橄榄石自形柱状(图2e、f)。基质主要为斜长石(±35%)、辉石(±10%)。斜长石有轻微的绿泥石化(图2e、f),从而导致煌斑岩手标本为灰绿色。浅色矿物主要出现在基质中,自形程度较差,具典型煌斑结构,为煌斑岩,均有不同程度的蚀变。副矿物主要有磁铁矿、磷灰石及锆石等。
表 1 煌斑岩取样位置Table 1. Sampling locations of larmprophyre序号 样品编号 样品位置 孔号 孔深/m 1 ZK1−2−301 ZK56-102 477.50~478.30 2 ZK1−2−303 479.05~479.80 3 ZK1−2−301 ZK52-23 483.85~484.75 4 ZK1−2−303 485.70~486.65 5 ZK1−2−307 287.25~288.15 6 ZK1−2−311 291.00~291.90 7 ZK1−2−301 ZK56-101 298.00~298.30 8 ZK1−2−303 298.60~299.00 9 ZK1−2−301 ZK84-102 448.20~448.40 10 ZK1−2−303 448.60~448.80 同位素测年采用的是全岩K–Ar稀释法,样品测试由中国地质调查局宜昌地质调查中心同位素测试室完成,共测试了3件样品。全岩分析的10件样品,均采自钻孔中。样品的主量、微量和稀土元素在北京核工业地质研究所完成。主量元素采用X射线荧光光谱法,测试仪器为飞利浦PW2404射线荧光光谱仪,测试标准为GB/T 14506.28–93;微量元素和稀土元素采用电感耦合等离子质谱法,测试仪器为Finnigan MAT制造的HR–ICP–MS,测试标准为DZ/T 0223–2001,测试温度20℃,相对湿度30%;同位素样品的测试由核工业北京地质研究院分析测试研究中心同位素室完成,铅、锶、钕同位素测试标准为《岩石中铅锶钕同位素测定方法》(GB/T17672–1999),仪器采用ISOPROBE–T热电离质谱仪,测试温度20℃,相对湿度20%。具体的测试数据见表2和表3。
表 2 相山矿田煌斑岩全岩K−Ar稀释法年龄测试结果Table 2. Results of whole−rock K−Ar ages of lamprophyres with the dilutional method in Xiangshan orefield序号 样品编号 岩性 40K/10−2 40Ar/10−6 40Ar/40K 空氩/10−2 年龄/Ma 活动期次 1 ZK1−2−303 煌斑岩 2.310 0.013860 0.005028 13.0 84.5 第三期 2 ZK1−2−303 煌斑岩 1.120 0.009601 0.007185 13.7 120 第二期 3 ZK1−2−303 煌斑岩 2.053 0.018350 0.007490 6.00 125 4 ZK1−2−303 煌斑岩 2.247 0.021570 0.008047 11.2 134 第一期 表 3 相山矿田煌斑岩主量元素(%)、微量(10−6)元素测试结果Table 3. Analytical results of major element (%) and trace element (10−6) of lamprohyres in Xiangshan orefieldZK1−2−301 ZK1−2−303 ZK1−2−301 ZK1−2−303 ZK1−2−307 ZK1−2−311 ZK1−2−301 ZK1−2−303 ZK1−2−301 ZK1−2−303 SiO2 51.00 44.90 44.30 42.40 42.20 53.12 47.90 54.40 51.10 49.30 TiO2 1.22 1.36 1.36 1.34 1.24 0.91 1.48 1.08 1.01 1.00 Al2O3 14.70 13.40 12.30 12.20 12.10 20.27 14.70 12.50 13.52 11.70 Fe2O3 6.95 5.80 4.25 4.85 4.90 6.00 5.20 5.25 6.45 4.50 FeO 10.40 8.81 10.40 11.60 10.00 8.79 9.23 9.15 9.03 7.13 MnO 0.12 0.17 0.19 0.19 0.24 0.19 0.18 0.14 0.13 0.18 MgO 7.22 7.50 11.20 13.60 12.60 3.50 6.35 5.66 6.89 4.85 CaO 3.82 9.51 7.14 7.64 9.05 1.09 6.68 5.27 5.48 10.20 Na2O 1.24 2.08 2.44 1.78 1.58 0.16 3.94 1.70 2.16 1.72 K2O 3.22 1.83 1.96 1.60 1.21 5.56 1.60 2.39 1.99 2.92 P2O5 0.27 0.30 0.54 0.50 0.49 0.19 0.29 0.23 0.28 0.22 LOI 6.73 9.96 7.96 7.35 9.34 3.22 7.29 7.27 2.85 10.27 Cr 256 411 341 354 359 95.40 283 179 26.30 245 Ni 128 149 172 193 166 38.20 116 93.30 11.60 96.60 Rb 154 148 124 104 39.3 125 93.10 105 145 132 Ba 603 60.70 527 706 1083 605 138 303 234 568 Th 15.30 8.53 9.76 8.68 8.62 9.34 9.18 13.70 22.40 10.70 U 5.620 5.400 2.730 1.990 2.160 2.750 9.460 3.440 7.410 3.260 Nb 22.20 21.10 16.70 13.90 14.50 12.40 19.70 18.40 15.60 16.70 Ta 1.620 1.160 0.920 0.770 0.810 0.870 1.350 1.290 1.600 1.090 Sr 142 299 480 598 744 91.50 145 174 73.40 258 Zr 239 175 252 226 226 251 197 183 127 177 Hf 6.390 4.230 5.800 5.120 5.420 6.430 5.560 4.920 4.130 4.410 Tl 1.010 0.710 0.810 0.590 0.350 0.100 0.720 0.580 0.830 0.840 Y 27.00 23.20 26.50 23.90 22.00 26.60 30.30 24.10 24.40 23.90 Li 229 165 148 154 169 82.60 154 234 64.9 145 Be 4.580 3.510 2.380 2.160 1.410 2.130 4.880 4.360 2.500 3.910 Sc 22.90 25.50 26.80 29.60 27.40 14.00 24.00 18.40 5.910 21.30 V 141 162 197 193 188 106 164 120 30.00 126 Co 34.80 33.70 42.50 46.30 37.30 16.80 34.70 28.40 5.110 27.00 Cu 72.30 37.60 50.10 46.80 38.10 65.90 95.00 59.60 12.20 62.50 Zn 104 90.0 90.20 86.60 86.40 102 86.50 87.60 43.00 68.70 Ga 19.80 21.20 16.30 17.50 15.90 17.30 25.20 16.70 17.10 14.80 Mo 1.780 1.020 0.235 0.156 0.499 0.419 2.850 2.470 2.800 1.030 Cd 0.080 0.130 0.100 0.130 0.120 0.050 0.090 0.080 0.070 0.140 In 0.080 0.060 0.060 0.050 0.060 0.050 0.060 0.050 0.060 0.050 Sb 0.400 0.690 0.190 0.170 0.480 0.300 1.270 0.610 0.510 0.830 Cs 9.530 36.70 27.50 33.20 31.10 15.00 7.190 9.490 14.00 9.040 W 6.270 4.130 2.530 1.620 0.970 2.230 6.100 4.980 4.660 4.470 Re 0.004 0.001 0.002 0.002 — 0.001 0.001 0.004 0.004 0.002 Pb 7.990 13.60 8.290 7.940 9.700 7.920 15.80 15.90 18.20 19.60 Bi 0.280 0.150 0.080 0.080 0.040 0.150 0.250 0.310 0.500 0.150 La 43.90 35.10 51.40 41.30 43.50 35.60 37.80 42.70 63.30 33.90 Ce 83.90 67.10 92.20 80.00 80.60 66.80 72.10 77.80 114.0 64.80 Pr 10.30 8.240 11.40 10.30 10.10 8.060 8.830 9.490 13.30 7.680 Nd 39.60 32.50 46.30 42.40 39.40 32.20 34.30 35.80 48.80 29.90 Sm 6.960 5.780 8.180 7.660 6.980 5.980 6.360 6.250 8.300 5.600 Eu 1.390 1.560 2.490 2.220 2.250 1.470 1.750 1.310 0.900 1.310 Gd 6.130 5.130 7.060 6.630 6.210 5.410 5.810 5.270 6.570 5.360 Tb 1.030 0.860 1.100 1.030 0.960 0.980 1.070 0.890 1.050 0.880 Dy 5.530 4.620 5.640 5.120 4.720 5.510 6.010 4.730 5.350 4.750 Er 3.180 2.540 2.860 2.550 2.530 2.920 3.590 2.640 2.690 2.520 Tm 0.490 0.390 0.440 0.380 0.360 0.480 0.540 0.400 0.440 0.400 Yb 3.070 2.560 2.900 2.340 2.460 2.950 3.530 2.570 2.650 2.440 Lu 0.630 0.610 0.630 0.540 0.620 0.600 0.590 0.680 0.760 0.610 REE 206.11 166.99 232.60 202.47 200.70 168.96 182.29 190.53 268.12 160.14 (La/Yb)N 9.64 9.24 11.95 11.90 11.92 8.14 7.22 11.20 16.10 9.37 (Gd/Yb)N 1.61 1.62 1.96 2.29 2.04 1.48 1.33 1.65 2.00 1.77 (La/Sm)N 3.97 3.82 3.95 3.39 3.92 3.74 3.74 4.30 4.80 3.81 δEu 0.65 0.88 1.00 0.95 1.04 0.79 0.88 0.70 0.37 0.73 δCe 0.95 0.95 0.92 0.93 0.93 0.95 0.95 0.93 0.95 0.97 4. 分析结果
4.1 年代学
从表2可以看出,相山矿田内部钻孔中的产于碎斑熔岩中的煌斑岩可分为3期,其年龄区间分别是:第一期134 Ma、第二期120~125 Ma、第三期为84.5 Ma。
4.2 主量元素
主量元素分析结果(表2)表明,对样品去掉烧失量后折合100%后,相山矿田西部煌斑岩SiO2含量为42.48%~54.54%,平均48.24%,属超基性—基性岩类;TiO2含量为0.93%~1.73%,平均1.44%;Na2O+K2O为3.51%~5.95%,平均4.78%;LOI为2.85%~10.27%。表2可知,样品ZK1−2−311和ZK1−2−301样品受蚀变影响较大,导致K2O和Na2O含量出现明显异常,应予以剔除;此外,煌斑岩受地壳混染严重(后文讨论),会导致SiO2含量升高,因此样品ZK1−2−301、ZK1−2−303、ZK1−2−301和ZK1−2−303样品参考性也不大,也予以剔除。SiO2–(Na2O+K2O)图解上(图3a),相山矿田煌斑岩位于碱性、钙碱性交汇区域;K/Al–K/(K+Na)图解上(图3b),主要分布在钠质煌斑岩。因此,相山矿田煌斑岩属于钠质碱性煌斑岩。
CAL—钙碱性煌斑岩;UML—超基性煌斑岩;AL—碱性煌斑岩;LL—钾镁煌斑岩Figure 3. SiO2–(Na2O+K2O) (a, after Rock, 1991) and K/(K+Na)–K/Al (b, after Lu Fengxiang et al., 1991) diagrams of lamprophyres in Xiangshan orefieldCAL–Calc–alkaline lamprophyre; UML–Ultramafic lamprophyre; AL–Alkaline lamprophyre; LL–Lamproite因样品受到蚀变作用影响,存在活泼元素(Na、K、Ca、Mg等元素)的带入与带出,因此本文着重讨论受蚀变作用影响较小的微量元素与稀土元素。
4.3 微量元素
从表2可知,相山矿田煌斑岩的过渡元素含量具有较宽的变化范围,其中Ti(5455.45×10−6~8153.20×10−6)、Cu(12.20×10−6 ~ 95.00×10−6)和Zn(43.00×10−6~104.00×10−6)的含量略高于原始地幔值,而Cr(26.30×10−6~411.00×10−6)和Ni(11.60×10−6~193.00×10−6)的含量则远低于原始地幔值(Taylor and McLennan, 1985),该特征与幔源超基性岩、基性岩的过渡元素含量特征一致。
相山矿田煌斑岩微量元素含量见表3,相山矿田煌斑岩大离子亲石元素含量明显高于原始地幔相应值(Sun and McDonough, 1989)。在原始地幔标准化蛛网图(图4a)中,相山矿田煌斑岩总体上具有相似的右倾特点,并表现为大离子亲石元素的相对富集和高场强元素的相对亏损,显示Nb、Ta、Ti等高场强元素负异常,与岛弧火山岩和陆壳岩石的微量元素特征类似。Ba和Sr负异常可能是强烈地壳混染的结果。相山矿田煌斑岩稀土元素总量(不含Y)ΣREE为160.14×10−6~268.12×10−6;轻重稀土比值LREE/HREE为7.62~12.74,平均11.35,表现为轻稀土富集的特征。球粒陨石标准化稀土配分模式图(图4b)可以看出,相山地区煌斑岩表现为相似的LREE相对富集、HREE相对亏损的右倾型稀土配分模式;(La/Yb)N为7.22~16.10,平均10.67,表明该煌斑岩轻度分异;(La/Sm)N和(Gd/Yb)N分别为3.39~4.80和1.33~2.29,反映轻稀土相对于重稀土有较大的分馏。δEu为0.65~1.04(除一个样品为0.37),平均0.85,反映岩浆演化过程中发生过斜长石分离结晶作用或源区存在斜长石的残留。δCe为0.93~0.97,平均0.94,说明后期的蚀变作用对稀土元素的影响较弱。
Figure 4. Primitive mantle−normalized spider diagrams of trace elements (a, normalization values after Sun and McDonough, 1989) and chondrite−normalized REE patterns of the lamprophyres (b, normalization values after Boynton, 1984)4.4 Sr−Nd−Pb同位素
本文测试了3个煌斑岩样品的Sr–Nd–Pb同位素,测试数据见表4。煌斑岩87Rb/86Sr和87Sr/86Sr分别为1.4333~1.7474和0.7135~0.7155,147Sm/144Nd和147Nd/144Nd分别为0.1055~0.1232和0.5123~0.5124。煌斑岩样品富集放射性成因Pb同位素,208Pb/204Pb=38.7810~38.8940、207Pb/204Pb=15.6180~15.8150、206Pb/204Pb=18.6120~18.8270。根据本文测定的煌斑岩K−Ar同位素年龄,可计算出该煌斑岩的(87Sr/86Sr)i为0.7113~0.7128,εNd(t)为−3.25~−5.37,具有高(87Sr/86Sr)i、低εNd(t)特征。
表 4 相山矿田煌斑岩Sr–Nd–Pb同位素组成Table 4. Sr–Nd–Pb isotopic composition of lamprophyres in the Xiangshan orefieldZK1−2−303 ZK1−2−303 ZK1−2−303 147Sm/144Nd 0.1075 0.1055 0.1232 143Nd/144Nd 0.5124 0.5123 0.5123 (143Nd/144Nd)i 0.5123 0.5122 0.5123 87Rb/86Sr 1.4333 1.7474 1.4815 87Sr/86Sr 0.7155 0.7144 0.7135 (87Sr/86Sr)i 0.7128 0.7113 0.7117 208Pb/204Pb 38.8060 38.8940 38.7810 207Pb/204Pb 15.6270 15.6180 15.8150 206Pb/204Pb 18.8270 18.6120 18.6270 (208Pb/204Pb)i 38.5190 38.5400 38.6300 (207Pb/204Pb)i 15.6010 15.6050 15.6050 (206Pb/204Pb)i 18.2920 18.3410 18.5320 εNd(t) −3.25 −4.76 −5.37 注:样品87Rb/86Sr比值根据微量元素含量(表2)和87Sr/86Sr测量值计算得到;样品147Sm/144Nd比值根据微量元素含量(表2)和143Nd/144Nd测量值计算得到。 5. 讨 论
5.1 形成时代
范洪海等(2001)用单颗粒锆石稀释法对该区煌斑岩脉进行测定,获得年龄为(125.5±3.1)Ma。王勇剑(2015)对居隆庵矿区一个煌斑岩样品采用Ar–Ar法测得该期煌斑岩形成时间为87 Ma。本文使用K–Ar法对相山矿田西部钻孔中煌斑岩进行定年,获得该区煌斑岩形成年龄为134 Ma、120~125 Ma和84.5 Ma。该结果与前人结论一致,能够代表相山矿田具有3期煌斑岩。
5.2 地壳混染
地幔岩浆侵位过程中,地壳物质的影响往往不可忽视。高(87Sr/86Sr)i低εNd(t)、Pb正异常,暗示可能受到地壳混染作用的影响;206Pb/204Pb–207Pb/204Pb与206Pb/204Pb–208Pb/204Pb图解中(图5a, b),投影点均落在地幔与造山带之间。相山矿田煌斑岩,Nb/Ta和Zr/Hf平均值分别为16.05和39.06,均远高于大陆地壳值(12~13和11,Sun and McDonough, 1989),而接近原始地幔值(17.5和36.27,Sun and McDonough, 1989)。相山矿田煌斑岩Nb/Ta值位于原始地幔和大陆地壳值之间,表明在岩浆上升过程中受地壳混染作用的影响,导致一定程度的Nb亏损。此外,一系列微量元素比值也表明其受到地壳的混染作用影响(表5)。
图 5 相山矿田煌斑岩同化混染判别图解207Pb/204Pb–206Pb/204Pb图解(a)和208Pb/204Pb–206Pb/204Pb图解(b)(据Zartman and Doe, 1981)DMM—亏损型地幔;EMI—I型富集地幔;EMII—II型富集地幔;NHRL—北半球参考线;Geochron—地球等时线Figure 5. 207Pb/204Pb–206Pb/204Pb (a) and 208Pb/204Pb–206Pb/204Pb (b) diagrams of lamprophyres in Xiangshan orefield (after Zartman and Doe, 1981)DMM–Depleted mantle; EMI−Enriched mantle I; EMII–Enriched mantle II; NHRL–Northern hemisphere reference line; Geochron–Geochronology line表 5 相山矿田煌斑岩同化混染微量元素比值Table 5. Ratios of trace elements of lamprophyres assimilation and contamination in the Xiangshan orefield相山矿田 同化混染 未同化混染 备注 Yi/Yb 1849~3488 <5000 >5000 Hart et al., 1989 Ba/Nb 15.00~74.69 >10 <10 Furman et al., 2006 La/Nb 1.92~4.06 >1 <1 (Th/Nb)N 3.39~12.05 >1 <1 夏林圻等, 2007 Nb/La 0.24~0.60 <1 ≥1 夏林圻等, 2007 5.3 部分熔融和结晶分异
在Nb/Yb–Th/Nb图解上(图6a),所有样品都具有较高的Th/Nb比值,因此落在MORB–OIB演化线上方区域,表明可能经历了不同程度的混染。地壳混染的程度可以用原始地幔标准化(Nb/Th)PM–(Th/Yb)PM值来计算,(Nb/Th)PM常被用来指示Nb异常,而(Th/Yb)PM是地壳混染的敏感指示剂。在(Nb/Th)PM–(Th/Yb)PM图解上(图6b),与N–MORB相比,相山矿田煌斑岩具有很低的(Nb/Th)PM和极高的(Th/Yb)PM值,靠近上地壳部分,符合高程度地壳混染的结果。对于古老大陆,上地壳和下地壳混染的大陆玄武岩仅在87Sr/86Sr比值上有所区别。上地壳混染的大陆玄武岩以高87Sr/86Sr为特征,下地壳混染的大陆玄武岩则以中等87Sr/86Sr比值为特征(夏林圻等, 2007)。相山矿田煌斑岩具有高87Sr/86Sr比值(>0.706),也表明其受到上地壳的混染。
图 6 相山矿田煌斑岩Th/Nb–Nb/Yb图解(a)和(Nb/Th)PM–(Th/Yb)PM图解(b)数据来源:N–MORB和OIB据Sun and McDonough, 1989;上地壳据Taylor and McLennan, 1985;N–MORB—N型洋脊玄武岩;E–MORB—E型洋脊玄武岩;OIB—洋岛玄武岩Figure 6. Th/Nb–Nb/Yb (a) and (Nb/Th)PM–(Th/Yb)PM (b) diagrams for lamprophyres in Xiangshan orefieldData sources: N–MORE and OIB after Sun and McDonough, 1989; Upper crust after Taylor and McLennan, 1985; N–MORB–N–type mid–oceanic ridge basalt; E–MORB–E–type mid–oceanic ridge basalt; OIB–Oceanic island basalt不相容元素La、Sm和Yb的地球化学行为在部分熔融和结晶分异作用过程不同。在La–La/Sm图解(图7a)、La–La/Yb图解(图7b)中,样品的La/Sm、La/Yb与La之间存在明显的正相关性,表明该区煌斑岩的形成方式为熔融作用和结晶分异共同作用的结果。过渡元素Cr(26.30×10−6~411.00×10−6)和Ni(11.60×10−6~193.00×10−6),相对于原始地幔(Cr>500×10−6,Ni>400×10−6~500×10−6)的含量较低,表明在源区部分熔融之后经历了橄榄石与单斜辉石的分异结晶作用。Eu、Ba、P、Sr具有与相山火山杂岩一致的负异常,暗示可能受到上地壳混染作用所致。
5.4 构造环境
大离子亲石元素和轻稀土富集、高场强元素亏损、具有显著Ta–Nb–Ti负异常是俯冲流体交代的岩石圈地幔典型特征。构造环境判别图中(图8b、c、d),相山矿田煌斑岩较为一致地落入岛弧钙碱性玄武岩范围内。而Zr–Zr/Y图解(图8a),所有样品落入板内玄武岩范围内,这与其他构造环境判别图并不一致。产生这种现象的原因可能是受到岩石圈混染,大陆玄武质熔岩样品的成分会向着低Nb、低Ta、低Ti方向迁移,落入到了弧(岛弧和陆缘弧)玄武岩的成分域中(夏林圻等, 2007)。大陆岩石圈(尤其是大陆地壳)总体而言,具有很低的Nb、Ta、Ti,深部地幔上涌,经减压部分熔融产生的大陆玄武岩浆,在上升通过大陆岩石圈的过程中,遭受岩石圈混染的部分,也会出现Nb、Ta、Ti相对亏损(夏林圻等, 2007)。此外,Nb/Ta<1,高(87Sr/86Sr)i低εNd(t)也表明相山矿田为大陆板内构造环境,而非俯冲作用的岛弧构造环境(表6)。武夷山脉东西晚中生代玄武岩地球化学特征研究表明,武夷山以西地区主要受大陆裂谷环境影响,而以东地区玄武岩具有大平洋板块俯冲作用影响的岛弧特征(Chen et al., 2005)。相山矿田实际上形成于大陆板内拉张构造背景,与板内岩石圈伸展减薄有关,也与晚中生代武夷山以西地区拉张断裂和断陷盆地内其他碱性玄武岩形成构造背景一致(Chen et al, 2005; 余心起等, 2006; 杨庆坤, 2015)。
图 8 相山矿田煌斑岩构造环境判别图解a—Zr/Y–Zr图解(据Pearce, 1982);b—Th/Yb–Ta/Yb图解(据Pearce, 1982);c—Hf/3–Th–Nb/16图解(据Wood, 1980);d—Hf/3–Th–Ta图解(据Wood, 1980);WPB—板内玄武岩;MORB—洋中脊玄武岩;IAB—岛弧玄武岩;TH—拉斑系列;TR—过渡系列;ALK—碱性系列;IAT—岛弧拉斑系列;ICA—岛弧钙碱性系列;SHO—岛弧橄榄玄武岩系列;N–MORB—N型洋脊玄武岩;E–MORB—E型洋脊玄武岩;WPT—板内拉斑玄武岩;WPA—板内碱性玄武岩Figure 8. Tectonic environmental discrimination diagrams of lamprophyres in Xiangshan orefielda−Zr/Y–Zr diagram (after Pearce, 1982); b−Th/Yb–Ta/Yb diagram (after Pearce, 1982); c−Hf/3–Th–Nb/16 diagram (after Wood, 1980); d−Hf/3–Th–Ta diagram (after Wood, 1980); WPB–Within plate basalt; MORB–Mid–oceanic ridge basalt; IAB–Island arc basalt; TH–Tholeiitic series; TR–Transitional series; ALK–Alkaline series; IAT–Island arc tholeiitic series; ICA–Island arc calc–alkaline series; SHO–Island arc shoshonite series; N–MORB–N-type mid-oceanic ridge basalt; E–E–type mid–oceanic ridge basalt; WPT–Within plate tholeiite; WPA–Within plate calc-alkaline basalt表 6 相山矿田煌斑岩构造环境判别Table 6. Environmental discrimination of lamprophyres in Xiangshan orefield相山矿田煌斑岩 大陆玄武岩 岛弧玄武岩 未受到大陆岩石圈混染 受大陆岩石圈混染 具古老基底 较年轻岛弧
增生地体不相容微量元素浓度 高于消减带玄武岩 高于消减带玄武岩 等同于消减带玄武岩 Nb、Ta、Ti Nb–Ta–Ti负异常 “隆起状”似OIB不相容元素配分模式 Nb–Ta–Ti负异常 Nb–Ta–Ti负异常 Nb/La 0.25~0.60 ≥1 <1 <1 εNd(t) −3.25 ~ −5.37 中等正值 低负值 高正值 高正值 87Sr/86Sr(t) 0.713485~0.714443 低—中等 中等—高 低 低 各种地球化学
判别图中位置在不利用Nb–Ta–Ti作为判别因子的图解中,仍具WPB的特性 恒定于WPB成分域中 在不利用Nb–Ta–Ti作为判别因子的图解中,仍然具有WPB的特性 恒定于弧玄武岩成分域中 5.5 源区特征
Sr–Nd图解可判别玄武质岩石地幔源区的主要特征,在Sr–Nd判别图(图9a)中,显示相山矿田煌斑岩具有EMⅡ型富集地幔特征。与未受地壳混染的华南武夷山西区白垩纪玄武质岩石具有低(87Sr/86Sr)i(0.703260~0.706311)高εNd(t)(0.67~8.00)(Chen et al., 2005)对比,相山矿田煌斑岩具有完全不同的高(87Sr/86Sr)i(0.71130~0.71128)低εNd(t)(−3.25~−5.37),表明其受到地壳物质影响较大,出现与周围完全不同的同位素特征,因此同位素特征无法准确限定源区特征。对华南白垩纪玄武质岩石的地球化学特征研究表明,武夷山以西地区(包括醴临—攸县盆地、衡阳、长沙—平江盆地、南雄、赣州、吉安等盆地)玄武质岩石源区具有与洋岛玄武岩相似的不相容元素配分模式和同位素组成,源区为岩石圈富集地幔(EMⅡ)和软流圈亏损地幔(DMM)两端元混合(Chen et al., 2005)。Ormerod et al.( 1988)研究美国西部WGB火山岩时指出,Zr/Ba<0.2的玄武岩浆来自岩石圈地幔,Zr/Ba>0.2的玄武岩浆更像OIB,来自软流圈地幔,或混有来自软流圈地幔的组分。相山矿田煌斑岩尽管受到地壳影响强烈存在Ta、Nb、Ti亏损,但是Zr和Ba未受明显影响,Zr/Ba为0.21~1.42,平均0.76,远高于0.2,说明其源区主要来自软流圈地幔。因此,相山矿田煌斑岩源区也应该是为亏损的软流圈地幔与岩石圈富集地幔的混合地幔。
图 9 相山矿田煌斑岩的(87Sr/86Sr)i–εNd(t)图解资料来源:EMⅠ、EMⅡ、HIUM和DMM地幔单元组分(Zindler and Hart, 1986; Hart, 1988);MORB、夏威夷火山岩和凯尔盖郎火山岩(White and Hofmann, 1982);钠尔霍云煌岩(Alibert et al., 1986);Vulsini火山岩(Roger et al., 1985);西澳钾镁煌斑岩(Fraser et al., 1985);苏鲁造山带煌斑岩(Guo et al., 2004; Ma et al., 2014);扬子地块上地壳和下地壳(Gao et al., 1999)Figure 9. (87Sr/86Sr)i versus εNd(t) diagram for the lamprophyres in Xiangshan orefieldData resources: EMⅠ, EMⅡ, HIUM and DMM mantle components (Zindler and Hart, 1986; Hart, 1988); MORB, Hawaiian volcanic and Kerguelen volcanic rocks (White and Hofmann, 1982); Nacreoides minette (Alibert et al., 1986); Vulsini volcanic rocks (Roger et al., 1985); Lamproite from western Australia (Fraser et al., 1985); Lamprophyre from Sulu Orogenic Belt (Guo et al., 2004; Ma et al., 2014); Upper and lower crust of the Yangtze Block (Gao et al., 1999)华南中晚燕山期经历了由侏罗纪挤压到白垩纪伸展拉张的转换过程。相山地区位于赣杭构造带西南段,早白垩世晚期—晚白垩世,由于区域性地壳伸展拉张,形成了一系列陆相红色断陷盆地。岩石圈伸展减压诱发软流圈地幔物质部分熔融,上升侵位过程中受到强烈上地壳物质同化混染,形成具有TNT负异常微量元素特征以及高(87Sr/86Sr)i低εNd(t)同位素特征的煌斑岩脉。
5.6 煌斑岩与铀成矿的关系
最新的成矿年代数据显示,相山矿田存在两期铀矿化,碱性铀成矿热事件(119.8~125.6 Ma)和酸性铀成矿热事件(66.4~100.0 Ma)(林锦荣等, 2019)。而相山矿田内部钻孔中产于碎斑熔岩中的3期煌斑岩,分别为134 Ma,120~125 Ma和84.5 Ma。显然,后两期的煌斑岩与早期碱交代和晚期酸交代矿化年龄较为接近。矿田中西部赋矿地区深部普遍见有花岗斑岩脉,同时也见有煌斑岩脉、辉绿岩脉等基性岩脉,且与矿体空间关系密切(曾文乐等, 2019)。煌斑岩分布于盆地西部、北部、中部、中南部,且这些地区均发育铀矿化。如横涧矿床,早期切穿早期环状花岗斑岩的煌斑岩脉叠加构造破碎而发生铀矿化,两者产状近乎一致,铀成矿热液沿煌斑岩脉裂隙充填成矿(王勇剑, 2015)。
关于基性岩脉与铀成矿作用的关系,早期的研究认为,基性岩浆活动能够提供大量矿化剂(富CO2流体),从而有助于成矿流体的形成以及高Fe2+含量有助于成矿流体中U6+还原成沥青铀矿沉淀(胡瑞忠等, 2004)。邓平(2003)通过成矿流体中C–O同位素分析认为幔源流体参与铀成矿作用。相山铀矿床的石英流体包裹体均一化温度为150~205 ℃,并且流体存在幔源组分的加入(Hu et al., 2009),铀主要以碳酸盐离子形成络合物进行迁移,幔源物质提供了大量的矿化剂。骆金诚等(2019)在粤北下庄基性岩脉与铀成矿关系中认为,基性岩脉能够提供幔源流体(ΣCO2矿化剂和He)参与铀的成矿作用,也可为铀沉淀富集提供还原障;当基性岩脉与铀矿化存在较大的时差时,基性岩脉可为后期铀的沉淀富集提供条件,且与基性岩脉相关的深大断裂可为幔源流体参与铀成矿提供运移通道。总之,相山铀矿煌斑岩与铀矿化关系密切,特别是具有合适的矿岩时差时,不仅能够提供运移通道和幔源流体,还能提供铀沉淀富集提供理想场所(还原障)。
6. 结 论
(1)全岩K–Ar年龄结果表明,本区存在3期煌斑岩,分别为134 Ma、120~125 Ma和84.5 Ma。
(2)该区煌斑岩为钠质钙碱性煌斑岩,富集LILE和LREE,亏损HFSE,具明显的Ta–Nb–Ti负异常,具有岛弧玄武岩和大陆地壳的微量元素特征。该区煌斑岩为部分熔融和结晶分异共同作用的产物,经历了橄榄石、单斜辉石的结晶分异作用,在岩浆上侵过程中受到明显上地壳物质的混染。该区煌斑岩形成于伸展背景下板内拉张构造环境,未受到古太平洋板块俯冲的直接影响。源区应为软流圈亏损地幔与岩石圈富集地幔的混合,且主要体现为软流圈亏损地幔特征。
(3)第一期煌斑岩可能仅为后期铀的沉淀富集提供条件;后两期与铀矿床时空上关系密切的煌斑岩,可能为相山矿田铀矿化提供幔源流体(ΣCO2矿化剂和He)参与铀的成矿作用,并为铀沉淀富集提供理想场所(还原障)。
-
图 1 相山火山−侵入杂岩地质略图(据张万良, 2015)
1—第四系黏土;2—上白垩统砂岩、砂砾岩;3—下白垩统鹅湖岭组碎斑熔岩;4—下白垩统鹅湖岭组晶屑凝灰岩、砂砾岩;5—下白垩统打鼓顶组流纹英安岩;6—下白垩统打鼓顶组砂岩、熔结凝灰岩;7—上三叠统石英砂岩、页岩;8—中元古界片岩、千枚岩;9—加里东期花岗岩;10—花岗斑岩;11—断裂;12—矿床;13—取样位置
Figure 1. Geological sketch map of Xiangshan volcanic-intrusive complex (after Zhang Wanliang, 2015)
1–Quarternary clay; 2–Upper Cretaceous sandstone and glutenite; 3–Porphyroclastic lava in Ehuling Formation of Lower Cretaceous; 4–Crystal tuff and glutenite in Ehuling Formation of Lower Cretaceous; 5–Rhyodacite in Daguding Formation of Lower Cretaceous; 6–Ignimbrite and sandstone in Daguding Formation of Lower Cretaceous; 7–Upper Triassic sandstone and shale; 8–Mesoproterozoic schist and phyllite; 9–Caledonian granite; 10–Granite−porphyry; 11–Fractures; 12–Deposits; 13–Sampling locations
图 3 相山矿田煌斑岩SiO2–(Na2O+K2O)图(a,据Rock, 1987)和K/(K+Na)–K/Al(b,据路凤香等, 1991)
CAL—钙碱性煌斑岩;UML—超基性煌斑岩;AL—碱性煌斑岩;LL—钾镁煌斑岩
Figure 3. SiO2–(Na2O+K2O) (a, after Rock, 1991) and K/(K+Na)–K/Al (b, after Lu Fengxiang et al., 1991) diagrams of lamprophyres in Xiangshan orefield
CAL–Calc–alkaline lamprophyre; UML–Ultramafic lamprophyre; AL–Alkaline lamprophyre; LL–Lamproite
图 4 煌斑岩原始地幔标准化微量元素蛛网图(a,标准化数据值据Sun and McDonough, 1989)和球粒陨石标准化REE配分模式图(b,标准化数据值据Boynton, 1984)
Figure 4. Primitive mantle−normalized spider diagrams of trace elements (a, normalization values after Sun and McDonough, 1989) and chondrite−normalized REE patterns of the lamprophyres (b, normalization values after Boynton, 1984)
图 5 相山矿田煌斑岩同化混染判别图解207Pb/204Pb–206Pb/204Pb图解(a)和208Pb/204Pb–206Pb/204Pb图解(b)(据Zartman and Doe, 1981)
DMM—亏损型地幔;EMI—I型富集地幔;EMII—II型富集地幔;NHRL—北半球参考线;Geochron—地球等时线
Figure 5. 207Pb/204Pb–206Pb/204Pb (a) and 208Pb/204Pb–206Pb/204Pb (b) diagrams of lamprophyres in Xiangshan orefield (after Zartman and Doe, 1981)
DMM–Depleted mantle; EMI−Enriched mantle I; EMII–Enriched mantle II; NHRL–Northern hemisphere reference line; Geochron–Geochronology line
图 6 相山矿田煌斑岩Th/Nb–Nb/Yb图解(a)和(Nb/Th)PM–(Th/Yb)PM图解(b)
数据来源:N–MORB和OIB据Sun and McDonough, 1989;上地壳据Taylor and McLennan, 1985;N–MORB—N型洋脊玄武岩;E–MORB—E型洋脊玄武岩;OIB—洋岛玄武岩
Figure 6. Th/Nb–Nb/Yb (a) and (Nb/Th)PM–(Th/Yb)PM (b) diagrams for lamprophyres in Xiangshan orefield
Data sources: N–MORE and OIB after Sun and McDonough, 1989; Upper crust after Taylor and McLennan, 1985; N–MORB–N–type mid–oceanic ridge basalt; E–MORB–E–type mid–oceanic ridge basalt; OIB–Oceanic island basalt
图 8 相山矿田煌斑岩构造环境判别图解
a—Zr/Y–Zr图解(据Pearce, 1982);b—Th/Yb–Ta/Yb图解(据Pearce, 1982);c—Hf/3–Th–Nb/16图解(据Wood, 1980);d—Hf/3–Th–Ta图解(据Wood, 1980);WPB—板内玄武岩;MORB—洋中脊玄武岩;IAB—岛弧玄武岩;TH—拉斑系列;TR—过渡系列;ALK—碱性系列;IAT—岛弧拉斑系列;ICA—岛弧钙碱性系列;SHO—岛弧橄榄玄武岩系列;N–MORB—N型洋脊玄武岩;E–MORB—E型洋脊玄武岩;WPT—板内拉斑玄武岩;WPA—板内碱性玄武岩
Figure 8. Tectonic environmental discrimination diagrams of lamprophyres in Xiangshan orefield
a−Zr/Y–Zr diagram (after Pearce, 1982); b−Th/Yb–Ta/Yb diagram (after Pearce, 1982); c−Hf/3–Th–Nb/16 diagram (after Wood, 1980); d−Hf/3–Th–Ta diagram (after Wood, 1980); WPB–Within plate basalt; MORB–Mid–oceanic ridge basalt; IAB–Island arc basalt; TH–Tholeiitic series; TR–Transitional series; ALK–Alkaline series; IAT–Island arc tholeiitic series; ICA–Island arc calc–alkaline series; SHO–Island arc shoshonite series; N–MORB–N-type mid-oceanic ridge basalt; E–E–type mid–oceanic ridge basalt; WPT–Within plate tholeiite; WPA–Within plate calc-alkaline basalt
图 9 相山矿田煌斑岩的(87Sr/86Sr)i–εNd(t)图解
资料来源:EMⅠ、EMⅡ、HIUM和DMM地幔单元组分(Zindler and Hart, 1986; Hart, 1988);MORB、夏威夷火山岩和凯尔盖郎火山岩(White and Hofmann, 1982);钠尔霍云煌岩(Alibert et al., 1986);Vulsini火山岩(Roger et al., 1985);西澳钾镁煌斑岩(Fraser et al., 1985);苏鲁造山带煌斑岩(Guo et al., 2004; Ma et al., 2014);扬子地块上地壳和下地壳(Gao et al., 1999)
Figure 9. (87Sr/86Sr)i versus εNd(t) diagram for the lamprophyres in Xiangshan orefield
Data resources: EMⅠ, EMⅡ, HIUM and DMM mantle components (Zindler and Hart, 1986; Hart, 1988); MORB, Hawaiian volcanic and Kerguelen volcanic rocks (White and Hofmann, 1982); Nacreoides minette (Alibert et al., 1986); Vulsini volcanic rocks (Roger et al., 1985); Lamproite from western Australia (Fraser et al., 1985); Lamprophyre from Sulu Orogenic Belt (Guo et al., 2004; Ma et al., 2014); Upper and lower crust of the Yangtze Block (Gao et al., 1999)
表 1 煌斑岩取样位置
Table 1 Sampling locations of larmprophyre
序号 样品编号 样品位置 孔号 孔深/m 1 ZK1−2−301 ZK56-102 477.50~478.30 2 ZK1−2−303 479.05~479.80 3 ZK1−2−301 ZK52-23 483.85~484.75 4 ZK1−2−303 485.70~486.65 5 ZK1−2−307 287.25~288.15 6 ZK1−2−311 291.00~291.90 7 ZK1−2−301 ZK56-101 298.00~298.30 8 ZK1−2−303 298.60~299.00 9 ZK1−2−301 ZK84-102 448.20~448.40 10 ZK1−2−303 448.60~448.80 表 2 相山矿田煌斑岩全岩K−Ar稀释法年龄测试结果
Table 2 Results of whole−rock K−Ar ages of lamprophyres with the dilutional method in Xiangshan orefield
序号 样品编号 岩性 40K/10−2 40Ar/10−6 40Ar/40K 空氩/10−2 年龄/Ma 活动期次 1 ZK1−2−303 煌斑岩 2.310 0.013860 0.005028 13.0 84.5 第三期 2 ZK1−2−303 煌斑岩 1.120 0.009601 0.007185 13.7 120 第二期 3 ZK1−2−303 煌斑岩 2.053 0.018350 0.007490 6.00 125 4 ZK1−2−303 煌斑岩 2.247 0.021570 0.008047 11.2 134 第一期 表 3 相山矿田煌斑岩主量元素(%)、微量(10−6)元素测试结果
Table 3 Analytical results of major element (%) and trace element (10−6) of lamprohyres in Xiangshan orefield
ZK1−2−301 ZK1−2−303 ZK1−2−301 ZK1−2−303 ZK1−2−307 ZK1−2−311 ZK1−2−301 ZK1−2−303 ZK1−2−301 ZK1−2−303 SiO2 51.00 44.90 44.30 42.40 42.20 53.12 47.90 54.40 51.10 49.30 TiO2 1.22 1.36 1.36 1.34 1.24 0.91 1.48 1.08 1.01 1.00 Al2O3 14.70 13.40 12.30 12.20 12.10 20.27 14.70 12.50 13.52 11.70 Fe2O3 6.95 5.80 4.25 4.85 4.90 6.00 5.20 5.25 6.45 4.50 FeO 10.40 8.81 10.40 11.60 10.00 8.79 9.23 9.15 9.03 7.13 MnO 0.12 0.17 0.19 0.19 0.24 0.19 0.18 0.14 0.13 0.18 MgO 7.22 7.50 11.20 13.60 12.60 3.50 6.35 5.66 6.89 4.85 CaO 3.82 9.51 7.14 7.64 9.05 1.09 6.68 5.27 5.48 10.20 Na2O 1.24 2.08 2.44 1.78 1.58 0.16 3.94 1.70 2.16 1.72 K2O 3.22 1.83 1.96 1.60 1.21 5.56 1.60 2.39 1.99 2.92 P2O5 0.27 0.30 0.54 0.50 0.49 0.19 0.29 0.23 0.28 0.22 LOI 6.73 9.96 7.96 7.35 9.34 3.22 7.29 7.27 2.85 10.27 Cr 256 411 341 354 359 95.40 283 179 26.30 245 Ni 128 149 172 193 166 38.20 116 93.30 11.60 96.60 Rb 154 148 124 104 39.3 125 93.10 105 145 132 Ba 603 60.70 527 706 1083 605 138 303 234 568 Th 15.30 8.53 9.76 8.68 8.62 9.34 9.18 13.70 22.40 10.70 U 5.620 5.400 2.730 1.990 2.160 2.750 9.460 3.440 7.410 3.260 Nb 22.20 21.10 16.70 13.90 14.50 12.40 19.70 18.40 15.60 16.70 Ta 1.620 1.160 0.920 0.770 0.810 0.870 1.350 1.290 1.600 1.090 Sr 142 299 480 598 744 91.50 145 174 73.40 258 Zr 239 175 252 226 226 251 197 183 127 177 Hf 6.390 4.230 5.800 5.120 5.420 6.430 5.560 4.920 4.130 4.410 Tl 1.010 0.710 0.810 0.590 0.350 0.100 0.720 0.580 0.830 0.840 Y 27.00 23.20 26.50 23.90 22.00 26.60 30.30 24.10 24.40 23.90 Li 229 165 148 154 169 82.60 154 234 64.9 145 Be 4.580 3.510 2.380 2.160 1.410 2.130 4.880 4.360 2.500 3.910 Sc 22.90 25.50 26.80 29.60 27.40 14.00 24.00 18.40 5.910 21.30 V 141 162 197 193 188 106 164 120 30.00 126 Co 34.80 33.70 42.50 46.30 37.30 16.80 34.70 28.40 5.110 27.00 Cu 72.30 37.60 50.10 46.80 38.10 65.90 95.00 59.60 12.20 62.50 Zn 104 90.0 90.20 86.60 86.40 102 86.50 87.60 43.00 68.70 Ga 19.80 21.20 16.30 17.50 15.90 17.30 25.20 16.70 17.10 14.80 Mo 1.780 1.020 0.235 0.156 0.499 0.419 2.850 2.470 2.800 1.030 Cd 0.080 0.130 0.100 0.130 0.120 0.050 0.090 0.080 0.070 0.140 In 0.080 0.060 0.060 0.050 0.060 0.050 0.060 0.050 0.060 0.050 Sb 0.400 0.690 0.190 0.170 0.480 0.300 1.270 0.610 0.510 0.830 Cs 9.530 36.70 27.50 33.20 31.10 15.00 7.190 9.490 14.00 9.040 W 6.270 4.130 2.530 1.620 0.970 2.230 6.100 4.980 4.660 4.470 Re 0.004 0.001 0.002 0.002 — 0.001 0.001 0.004 0.004 0.002 Pb 7.990 13.60 8.290 7.940 9.700 7.920 15.80 15.90 18.20 19.60 Bi 0.280 0.150 0.080 0.080 0.040 0.150 0.250 0.310 0.500 0.150 La 43.90 35.10 51.40 41.30 43.50 35.60 37.80 42.70 63.30 33.90 Ce 83.90 67.10 92.20 80.00 80.60 66.80 72.10 77.80 114.0 64.80 Pr 10.30 8.240 11.40 10.30 10.10 8.060 8.830 9.490 13.30 7.680 Nd 39.60 32.50 46.30 42.40 39.40 32.20 34.30 35.80 48.80 29.90 Sm 6.960 5.780 8.180 7.660 6.980 5.980 6.360 6.250 8.300 5.600 Eu 1.390 1.560 2.490 2.220 2.250 1.470 1.750 1.310 0.900 1.310 Gd 6.130 5.130 7.060 6.630 6.210 5.410 5.810 5.270 6.570 5.360 Tb 1.030 0.860 1.100 1.030 0.960 0.980 1.070 0.890 1.050 0.880 Dy 5.530 4.620 5.640 5.120 4.720 5.510 6.010 4.730 5.350 4.750 Er 3.180 2.540 2.860 2.550 2.530 2.920 3.590 2.640 2.690 2.520 Tm 0.490 0.390 0.440 0.380 0.360 0.480 0.540 0.400 0.440 0.400 Yb 3.070 2.560 2.900 2.340 2.460 2.950 3.530 2.570 2.650 2.440 Lu 0.630 0.610 0.630 0.540 0.620 0.600 0.590 0.680 0.760 0.610 REE 206.11 166.99 232.60 202.47 200.70 168.96 182.29 190.53 268.12 160.14 (La/Yb)N 9.64 9.24 11.95 11.90 11.92 8.14 7.22 11.20 16.10 9.37 (Gd/Yb)N 1.61 1.62 1.96 2.29 2.04 1.48 1.33 1.65 2.00 1.77 (La/Sm)N 3.97 3.82 3.95 3.39 3.92 3.74 3.74 4.30 4.80 3.81 δEu 0.65 0.88 1.00 0.95 1.04 0.79 0.88 0.70 0.37 0.73 δCe 0.95 0.95 0.92 0.93 0.93 0.95 0.95 0.93 0.95 0.97 表 4 相山矿田煌斑岩Sr–Nd–Pb同位素组成
Table 4 Sr–Nd–Pb isotopic composition of lamprophyres in the Xiangshan orefield
ZK1−2−303 ZK1−2−303 ZK1−2−303 147Sm/144Nd 0.1075 0.1055 0.1232 143Nd/144Nd 0.5124 0.5123 0.5123 (143Nd/144Nd)i 0.5123 0.5122 0.5123 87Rb/86Sr 1.4333 1.7474 1.4815 87Sr/86Sr 0.7155 0.7144 0.7135 (87Sr/86Sr)i 0.7128 0.7113 0.7117 208Pb/204Pb 38.8060 38.8940 38.7810 207Pb/204Pb 15.6270 15.6180 15.8150 206Pb/204Pb 18.8270 18.6120 18.6270 (208Pb/204Pb)i 38.5190 38.5400 38.6300 (207Pb/204Pb)i 15.6010 15.6050 15.6050 (206Pb/204Pb)i 18.2920 18.3410 18.5320 εNd(t) −3.25 −4.76 −5.37 注:样品87Rb/86Sr比值根据微量元素含量(表2)和87Sr/86Sr测量值计算得到;样品147Sm/144Nd比值根据微量元素含量(表2)和143Nd/144Nd测量值计算得到。 表 5 相山矿田煌斑岩同化混染微量元素比值
Table 5 Ratios of trace elements of lamprophyres assimilation and contamination in the Xiangshan orefield
相山矿田 同化混染 未同化混染 备注 Yi/Yb 1849~3488 <5000 >5000 Hart et al., 1989 Ba/Nb 15.00~74.69 >10 <10 Furman et al., 2006 La/Nb 1.92~4.06 >1 <1 (Th/Nb)N 3.39~12.05 >1 <1 夏林圻等, 2007 Nb/La 0.24~0.60 <1 ≥1 夏林圻等, 2007 表 6 相山矿田煌斑岩构造环境判别
Table 6 Environmental discrimination of lamprophyres in Xiangshan orefield
相山矿田煌斑岩 大陆玄武岩 岛弧玄武岩 未受到大陆岩石圈混染 受大陆岩石圈混染 具古老基底 较年轻岛弧
增生地体不相容微量元素浓度 高于消减带玄武岩 高于消减带玄武岩 等同于消减带玄武岩 Nb、Ta、Ti Nb–Ta–Ti负异常 “隆起状”似OIB不相容元素配分模式 Nb–Ta–Ti负异常 Nb–Ta–Ti负异常 Nb/La 0.25~0.60 ≥1 <1 <1 εNd(t) −3.25 ~ −5.37 中等正值 低负值 高正值 高正值 87Sr/86Sr(t) 0.713485~0.714443 低—中等 中等—高 低 低 各种地球化学
判别图中位置在不利用Nb–Ta–Ti作为判别因子的图解中,仍具WPB的特性 恒定于WPB成分域中 在不利用Nb–Ta–Ti作为判别因子的图解中,仍然具有WPB的特性 恒定于弧玄武岩成分域中 -
[1] Alibert C, Michard A, Albaréde F. 1986. Isotope and trace element geochemistry of Colorado Plateau volcanics[J]. Geochimica et Cosmochimica Acta, 50(12): 2735−2750. doi: 10.1016/0016-7037(86)90223-1
[2] Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 2: 63−114.
[3] Chen W F, Chen P R, Xu X S, Zhang M. 2005. Geochemical characteristics of Cretaceous basaltic rocks in South China and constraints on Pacific plate subduction[J]. Science in China (Series D: Earth Sciences), 48(12): 2104−2117. doi: 10.1360/04yd0149
[4] Deng Ping, Shen Weizou, Ling Hongfei, Ye Haimin, Wang Xuecheng, Pu Wei, Tan Zhengzhong. 2003. Uranium mineralization related to mantle fluid: A case study of the Xianshi deposit in the Xiazhuang uranium orefield[J]. Geochimica, 32(6): 520−528 (in Chinese with English abstract).
[5] Fan Honghai, Wang Dezi, Liu Changshi, Zhao Lianze, Shen Weizhou, Ling Hongfei, Duan Yun. 2001. Discovery of quenched enclaves in subvolcanic rocks in Xiangshan, Jiangxi Province and its genetic mechanism[J]. Acta Geologica Sinica, 75(1): 64−69 (in Chinese with English abstract).
[6] Furman T, Kaleta K M, Bryce J G, Hanan B B. 2006. Tertiary mafic lavas of Turkana, Kenya: Constraints on East African plume structure and the occurrence of high–μ volcanism in Africa[J]. Journal of Petrology, 59(6): 2583−2591.
[7] Fraser K J, Hawkesworth C J, Erlank A J, Mitchell R H, Scott–Smith B H. 1985. Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites[J]. Earth and Planetary Science Letters, 76(1): 57−70.
[8] Gao S, Ling W L, Qiu Y M, Lian Z, Hartmann G, Simon K. 1999. Contrasting geochemical and Sm–Nd isotopic compositions of Archean Metasediments from the Kongling high–grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 63(13/14): 2071−2088.
[9] Guo F, Fan W M, Wang Y J, Zhang M. 2004. Origin of early Cretaceous calc–alkaline lamprophyres from the Sulu orogen in Eastern China: Implications for enrichment processes beneath continental collisional belt[J]. Lithos, 78(3): 291−305. doi: 10.1016/j.lithos.2004.05.001
[10] Hart S R. 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies[J]. Earth and Planetary Science Letters, 90(3): 273−296. doi: 10.1016/0012-821X(88)90131-8
[11] Hart W K, Woldegabriel G, Walter R C, Mertzman S A. 1989. Basaltic volcanism in Ethiopia: Constraints on continental rifting and mantle interactions[J]. Journal of Geophysical Research: Solid Earth, 94(B6): 7731−7748. doi: 10.1029/JB094iB06p07731
[12] Hu Ruizhong, Bi Xianwu, Su Wenchao, Peng Jiantang, Li Chaoyang. 2004. The relationship between uranium metallogenesis and crustal extension during the Cretaceous–Tertiary in South China[J]. Earth Science Frontiers, 11(1): 153−160 (in Chinese with English abstract).
[13] Hu Ruizhong, Luo Jincheng, Chen Youwei, Pan Lichuan. 2019. Several progresses in the study of uranium deposits in South China[J]. Acta Petrologica Sinica, 35(9): 2625−2636 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.01
[14] Hu R Z, Burnard P G, Bi X W, Zhou M F, Peng J T, Su W C, Zhao J H. 2009. Mantle–derived gaseous components in ore–forming fluids of the Xiangshan uranium deposit, Jiangxi province, China: Evidence from He, Ar and C isotopes[J]. Chemical Geology, 266(1/2): 86−95.
[15] Lin Jinrong, Hu Zhihua, Wang Yongjian, Zhang Song, Tao Yi. 2019. Ore–forming age and thermal history of uranium–polymetallic mineralization in Xiangshan uranium orefield[J]. Acta Petrologica Sinica, 35(9): 2801−2816 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.12
[16] Lu Fengxiang, Shu Xiaoxin, Zhao Chonghe. 1991. A suggestion on classification of lamprophyres[J]. Geological Science and Technology Information, 10(Sup): 55−62 (in Chinese with English abstract).
[17] Luo Jincheng, Qi Youqiang, Wang Lianxun, Chen Youwei, Tian Jianji, Shi Shaohua. 2019. Ar–Ar dating of mafic dykes from the Xiazhuang uranium ore field in northern Guangdong, South China: A reevaluation of the role of mafic dyke in uranium mineralization[J]. Acta Petrologica Sinica, 35(9): 2660−2678 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.03
[18] Ma L, Jiang S Y, Hofmann A W, Dai B Z, Hou M L, Zhao K D, Chen L H, Li J W, Jiang Y H. 2014. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?[J]. Geochimica et Cosmochimica Acta, 124: 250−271. doi: 10.1016/j.gca.2013.09.035
[19] Ormerod D S, Hawkesworth C J, Rogers N W, Leeman W P, Menzies M A. 1988. Tectonic and magmatic transitions in the Western Great Basin USA[J]. Nature, 333(26): 349−353.
[20] Pearce J A. 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries[M]. Andesites: Orogenic Andesites and Related Rocks, 525–548.
[21] Rock N M S. 1987. The nature and origin of lamprophyre: An overview[J]. Alkaline Igneous Rocks, 30(1): 191−226.
[22] Roger N W, Hawkesworth C J, Parker R J, Marsh J S. 1985. The geochemistry of potassic lavas from Vulsini, Central Italy and implications for mantle enrichment processes beneath the Roman Region[J]. Contributions to Mineralogy and Petrology, 90(2/3): 244−257.
[23] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.
[24] Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications, 1–312.
[25] Wang Yongjian. 2015. Characteristics of Granite–porphyry and Meso–Mafic Dykes in Xiangshan and Their Relationship with Uranium Mineralization[D]. Beijing: Institute of Nuclear Industry (Beijing), 1–112 (in Chinese).
[26] White W M, Hofmann A W. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution[J]. Nature, 296(5860): 821−825. doi: 10.1038/296821a0
[27] Wu Hao, Xu Zuyang, Yan Weibing, Hao Yujie, Liu Haiyong. 2023. Zircon U–Pb ages and geochemical characteristics of diabase in Nie’erco area, entral Tibet: Implication for Neo–Tethyan slab breakoff[J]. Geology in China, 50(6): 1804−1816 (in Chinese with English abstract).
[28] Wu Jianhua, Lao Yujun, Xie Guofa, Zhang Jingyan, Wu Rengui, Nie Fengjun. 2017. Stratigraphy and geochronology of the volcanic rocks in the Xiangshan uranium orefield, Jiangxi Province and its geological implications[J]. Geology in China, 44(5): 974−992 (in Chinese with English abstract).
[29] Wood D A. 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 50(1): 11−30. doi: 10.1016/0012-821X(80)90116-8
[30] Xia Linqi, Xia Zhuchun, Xu Xueyi, Li Xiangmin, Ma Zhongping. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica, 26(1): 77−89 (in Chinese with English abstract).
[31] Yang Qingkun. 2015. Genesis of the Volcanic–intrusive Complex and Metallogenesis of Uranium Polymetallic in the Xiangshan Orefield of Jiangxi Province[D]. Beijing: China University of Geosciences (Beijing), 1–192 (in Chinese with English abstract).
[32] Yu Xinqi, Wu Ganguo, Shu Liangshu, Yan Tiezeng, Zhang Da, Di Yongjun. 2006. The Cretaceous tectonism of the Gan–Hang tectonic belt, southeastern China[J]. Earth Science Frontiers, 13(3): 31−43 (in Chinese with English abstract).
[33] Zartman R E, Doe B R. 1981. Plumbotectonics–the model[J]. Tectonophysics, 75: 135−162. doi: 10.1016/0040-1951(81)90213-4
[34] Zeng Wenle, Chen Rongqing, Xie Guofa, Pang Wenjing, Wu Zanhua. 2019. Prospecting progress and prospective analysis of uranium deposit in Xiangshan ore field[J]. Journal of East China University of Technology (Natural Science), 42(2): 101−107 (in Chinese with English abstract).
[35] Zhang Wanliang. 2015. Orebody morphology and mineralization structure type of Xiangshan uranium field[J]. Geotectonica et Metallogenia, 39(5): 844−854 (in Chinese with English abstract).
[36] Zindler A, Hart S. 1986. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14(1): 493−571. doi: 10.1146/annurev.ea.14.050186.002425
[37] 邓平, 沈渭洲, 凌洪飞, 叶海敏, 王学成, 濮巍, 谭正中. 2003. 地幔流体与铀成矿作用: 以下庄矿田仙山铀矿床为例[J]. 地球化学, 32(6): 520−528. doi: 10.3321/j.issn:0379-1726.2003.06.002 [38] 范洪海, 王德滋, 刘昌实, 赵连泽, 沈渭洲, 凌洪飞, 段芸. 2001. 江西相山潜火山岩中淬冷包体的发现及其成因机制探讨[J]. 地质学报, 75(1): 64−69. doi: 10.3321/j.issn:0001-5717.2001.01.007 [39] 胡瑞忠, 毕献武, 苏文超, 彭建堂, 李朝阳. 2004. 华南白垩—第三纪地壳拉张与铀成矿的关系[J]. 地学前缘, 11(1): 153−160. doi: 10.3321/j.issn:1005-2321.2004.01.012 [40] 胡瑞忠, 骆金诚, 陈佑纬, 潘力川. 2019. 华南铀矿床研究若干进展[J]. 岩石学报, 35(9): 2625−2636. doi: 10.18654/1000-0569/2019.09.01 [41] 林锦荣, 胡志华, 王勇剑, 张松, 陶意. 2019. 相山铀矿田多金属成矿时代与成矿热历史[J]. 岩石学报, 35(9): 2801−2816. [42] 路凤香, 舒小辛, 赵崇贺. 1991. 有关煌斑岩分类的建议[J]. 地质科技情报, 10(增刊): 55−62. [43] 骆金诚, 齐有强, 王连训, 陈佑纬, 田建吉, 石少华. 2019. 粤北下庄铀矿田基性岩脉Ar–Ar定年及其与铀成矿关系新认识[J]. 岩石学报, 35(9): 2660−2678. doi: 10.18654/1000-0569/2019.09.03 [44] 王勇剑. 2015. 相山花岗斑岩和中基性脉岩特征及其与铀成矿关系[D]. 北京: 核工业北京地质研究院, 1–112. [45] 吴浩, 徐祖阳, 严维兵, 郝宇杰, 刘海永. 2023. 西藏中部聂耳错地区辉绿岩锆石U–Pb年龄与地球化学特征: 对新特提斯洋板片断离的指示[J]. 中国地质, 50(6): 1804−1816. [46] 巫建华, 劳玉军, 谢国发, 张婧妍, 吴仁贵, 聂逢君. 2017. 江西相山铀矿田火山岩系地层学、年代学特征及地质意义[J]. 中国地质, 44(5): 974−992. doi: 10.12029/gc20170510 [47] 夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 26(1): 77−89. doi: 10.3969/j.issn.1000-6524.2007.01.011 [48] 杨庆坤. 2015. 江西相山矿田火山–侵入杂岩成因及其铀多金属的关系[D]. 北京: 中国地质大学(北京), 1–192. [49] 余心起, 吴凎国, 舒良树, 颜铁增, 张达, 狄永军. 2006. 白垩纪时期赣杭构造带的伸展作用[J]. 地学前缘, 13(3): 31−43. [50] 曾文乐, 陈荣清, 谢国发, 庞文静, 吴赞华. 2019. 相山矿田铀矿找矿进展及远景分析[J]. 东华理工大学学报(自然科学版), 42(2): 101−107. [51] 张万良. 2015. 相山铀矿田矿体形态分类及成因意义[J]. 大地构造与成矿学, 39(5): 844−854. -
期刊类型引用(2)
1. 刘龙,张树明,张鑫,陈瑜. 江西相山两类流纹英安岩锆石和磷灰石矿物化学特征及地质意义. 东华理工大学学报(自然科学版). 2024(06): 521-537 . 百度学术
2. 李栋,朱建林,雷炼,昝芳,庄任武,张恒. 赣杭带马荃盆地富铀火山熔岩特征及铀矿找矿方向研究. 华北地质. 2024(04): 12-24 . 百度学术
其他类型引用(0)