• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

胶东西南部三合山岩体岩石成因和构造背景:年代学、地球化学及Sr−Nd−Pb−Hf 同位素约束

邹占春, 刘俊玉, 陈建, 李景波, 丁正江, 孙丽莎, 李双飞, 唐名鹰, 张蕾, 王欣然

邹占春,刘俊玉,陈建,李景波,丁正江,孙丽莎,李双飞,唐名鹰,张蕾,王欣然. 2024. 胶东西南部三合山岩体岩石成因和构造背景:年代学、地球化学及Sr−Nd−Pb−Hf 同位素约束[J]. 中国地质, 51(4): 1387−1410. DOI: 10.12029/gc20211227002
引用本文: 邹占春,刘俊玉,陈建,李景波,丁正江,孙丽莎,李双飞,唐名鹰,张蕾,王欣然. 2024. 胶东西南部三合山岩体岩石成因和构造背景:年代学、地球化学及Sr−Nd−Pb−Hf 同位素约束[J]. 中国地质, 51(4): 1387−1410. DOI: 10.12029/gc20211227002
Zou Zhanchun, Liu Junyu, Chen Jian, Li Jingbo, Ding Zhengjiang, Sun Lisha, Li Shuangfei, Tang Mingying, Zhang Lei, Wang Xinran. 2024. Petrogenesis and tectonic setting of the Sanheshan pluton in southwest of Jiaodong: Evidence from geochronology, geochemistry and Sr−Nd−Pb−Hf isotopes[J]. Geology in China, 51(4): 1387−1410. DOI: 10.12029/gc20211227002
Citation: Zou Zhanchun, Liu Junyu, Chen Jian, Li Jingbo, Ding Zhengjiang, Sun Lisha, Li Shuangfei, Tang Mingying, Zhang Lei, Wang Xinran. 2024. Petrogenesis and tectonic setting of the Sanheshan pluton in southwest of Jiaodong: Evidence from geochronology, geochemistry and Sr−Nd−Pb−Hf isotopes[J]. Geology in China, 51(4): 1387−1410. DOI: 10.12029/gc20211227002

胶东西南部三合山岩体岩石成因和构造背景:年代学、地球化学及Sr−Nd−Pb−Hf 同位素约束

基金项目: 国家自然科学基金项目(41973048)、中国地质调查局项目(DD20190159-11、DD20190159-2020-6)和山东省地质勘查项目(鲁勘字(2020)18号)联合资助。
详细信息
    作者简介:

    邹占春,男, 1986年生,高级工程师,从事地质矿产调查及勘查工作;E-mail:36307895@qq.com

    通讯作者:

    陈建,男, 1982年生,高级工程师,从事地质矿产调查及勘查工作;E-mail:47259697@qq.com

  • 中图分类号: P587; P597.3

Petrogenesis and tectonic setting of the Sanheshan pluton in southwest of Jiaodong: Evidence from geochronology, geochemistry and Sr−Nd−Pb−Hf isotopes

Funds: Supported by the National Natural Science Foundation of China (No.41973048), projects of China Geological Survey (No.DD20190159−11, No.DD20190159−2020−6), Shandong Geological Exploration Project (Lu(2018)No.18).
More Information
    Author Bio:

    ZOU Zhanchun, male, born in 1986, senior engineer, engaged in geological and mineral resources survey and exploration; E-mail: 36307895@qq.com

    Corresponding author:

    CHEN Jian, male, born in 1982, senior engineer, engaged in geological and mineral resources survey and exploration; E-mail: 47259697@qq.com.

  • 摘要:
    研究目的 

    胶东地区是中国最大的金矿矿集区,也是山东省最为重要的铜钼多金属矿成矿区。加强中生代花岗岩的岩相学、岩石地球化学和年代学等方面的研究,有利于进一步促进该区金及多金属矿的找矿工作。

    研究方法 

    本文以胶东半岛西南部三合山岩体中细粒二长花岗岩和花岗斑岩为研究对象,开展系统的岩相学、LA−ICP−MS 锆石U−Pb 年代学、主微量元素地球化学、全岩Sr−Nd−Pb 同位素及锆石Lu−Hf 同位素研究,旨在探讨其岩石成因、岩浆源区性质和构造背景。

    研究结果 

    LA−ICP−MS锆石U−Pb定年结果表明,中细粒二长花岗岩的成岩年龄为(115.42±0.27)Ma,花岗斑岩的形成年龄为(115.21±0.25)Ma,形成时代均属中生代早白垩晚期;岩石地球化学特征表明,中细粒二长花岗岩和花岗斑岩均属高钾钙碱性I型花岗质岩石,LREE较HREE分馏明显,具弱Ce负异常和明显Eu中等负异常,富集Rb、K、Zr和Hf,亏损Sr、Ba、Nb、P、Ti;全岩Sr−Nd−Pb及锆石Hf同位素分析结果表明,三合山岩体起源于重熔的下地壳,并受到了幔源物质的混染。

    结论 

    三合山岩体形成于早白垩世太平洋板块相对欧亚板块俯冲导致的陆内伸展背景下,为中国东部岩石圈减薄过程中壳幔相互作用的产物。

    创新点:

    (1)厘定了三合山岩体的侵入时序;(2)填补了胶东西南部中生代花岗岩的空缺;(3)为胶东西南部早白垩世晚期构造岩浆活动提供了新的佐证和理想的成岩成矿研究对象。

    Abstract:

    This paper is the result of geological survey engineering.

    Objective 

    Jiaodong area is the largest gold ore concentration area in China and the most important copper−molybdenum polymetallic ore deposit area in Shandong Province. Strengthening the study of petrography, petrogeochemistry and chronology of Mesozoic granites is conducive to further promoting the prospecting of gold and polymetallic deposits in this area.

    Methods 

    Taking the medium−fine grained monzogranite and granite porphyry as the main research object, this study primarily carried onlaser ablation inductively coupled plasma mass spectrometry (LA−ICP−MS) U−Pb chronology on the zircon, whole−rock geochemistry,whole−rock Sr−Nd−Pb and zircon Hf isotopic study, aiming to confirm the timing and discuss the petrogenesis and tectonic settings of the Sanheshan pluton in Southwest Jiaodong.

    Results 

    The results of LA−ICP−MS zircon U−Pb show that the medium−fine grained monzogranite was formed in (115.42 ± 0.27) Ma and the granite porphyry was formed in (115.21±0.25) Ma, both of which are belonging to the Late Early Cretaceous of Mesozoic. Geocahemical research shows that the medium−fine grained monzogranite and granite porphyry are both belong to themetaluminous high−K calc−alkaline series I−type granites; LREE are more obvious than HREE,with weak Ce negative anomaly and obvious Eu moderate negative anomaly; trace elements enriched in Rb, K, Zr and Hf, depleted in Sr, Ba, Nb, P and Ti. The whole rock Sr−Nd−Pb and zircon Hf isotope analysis results show that the Sanheshan pluton was originated from the remelting lower crust, and was contaminated by mantle materials.

    Conclusions 

    The Sanheshanpluton was formed in the continental extension background caused by the subduction of the Pacific plate relative to the Eurasian plate in the Early Cretaceous, which was the product of crust−mantle interaction during the lithospheric thinning in eastern China.

    Highlights:

    (1) The intrusive timing of Sanheshanpluton is determined; (2) It fills the vacancy of Mesozoic granites in the southwest of Jiaodong; (3) It provides new evidence and ideal research object for regional tectonic magmatic activity in Late Early Cretaceous.

  • 中国是世界上煤炭开采历史悠久、开采量最大的国家,2022年中国原煤产量45.6亿t(国家统计局,2023)。多年来形成的采空区体积达300×108 m3以上,而且以每年近20×108 m3的速率在增加(李凤明等,2004梁永平等,2021)。由于能源结构优化调整,截止2022年底,新时代十年来全国煤矿数量由1.3万处减少到4400处以内(中国煤炭工业协会,2023)。煤矿关闭后,废弃坑道、采空区将成为地下水循环、蓄积空间,特定条件下将形成劣质的酸性“老窑水”。近年来,中国山西阳泉、山东淄博、贵州凯里等多地相继发现了煤矿“老窑水”对地表、地下水体的污染(梁永平等,2014张秋霞等,2016刘强,2018梁浩乾等,2019梁永平等,2021韩双宝等,2021),成为中国生态文明建设的重要制约因素。

    目前国内外学者对废弃煤矿酸性水的研究主要集中于酸性水的地球化学特征(pH、硫酸根、铁锰、多环芳烃、重金属等)(张建立等,2000赵峰华,2005张秋霞等,2015Juliana et al.,2016高波,2019)及对地表水、地下水(Powell et al.,1988钟佐燊等,1999Zhang et al.,2016)等的影响,而关于水量及其与水质相互关系的研究以及野外原位长系列研究较少。山底河流域位于山西省娘子关泉域内,其煤矿“老窑水”是泉域内流量最大、污染程度最高的污染源(梁永平等,2021),它集地表水、露天矿坑积水、现采煤矿矿坑水、生活污水和煤矿老窑水于一体,是一个完整、独立的水循环系统,具有开展煤矿“老窑水”防治深入研究的“示范性”价值。本文基于对山底河煤矿“老窑水”的长系列监测,分析煤矿“老窑水”水循环系统演化特征,评估对娘子关泉域岩溶水的污染影响,可为流域煤矿“老窑水”治理及娘子关泉域生态修复提供科学依据,为中国同类地区的地下水保护与生态修复提供参考。

    山底河流域处于娘子关泉域内,行政区划属阳泉市河底镇及盂县青城乡,流域面积58 km2图 1)。由于国家政策调整,流域内大部分小型煤矿被关闭。2009—2010年,闭坑煤矿“老窑水”开始溢出,在山底村柳沟一带形成了流域“老窑水”的集中排泄区,老窑水出流后进入娘子关泉域碳酸盐岩渗漏段(梁永平等,2021)。渗漏段分为2段,第一段为山底河下游,从监测点(F05)向下游约0.5 km进入碳酸盐岩后到温河入口处(监测点G03),渗漏长度1.8 km;第二段为山底河汇入温河后至娘子关泉群,渗漏长度35.89 km(图 1b)。研究区属于大陆型干旱、半干旱气候区,根据距流域最近的盂县气象站资料多年平均降水量551.98 mm,最大日降水151.8 mm;多年年平均气温9.14℃,极端日均气温21.6℃,最高24.5℃。雨热同期、四季分明,降水主要集中于6—9月,占全年降水总量75%以上。

    图  1  山底河流域监测点分布图及剖面示意图
    Figure  1.  Distribution map of monitoring points in the Shandi River Basin and section diagram

    山底河流域内主要出露的地层有奥陶系、石炭系、二叠系以及第四系(图 1),其中石炭系太原组及二叠系山西组为含煤层位,分布于流域上游,由砂岩、页岩、灰岩夹层和煤层构成,分布面积占流域总面积的90%以上。东北部出露奥陶系碳酸盐岩。流域区域上位于沁水向斜东北翘起端,地层总体由北东向南西倾斜(图 1),北部发育东西向红土岩背斜,与燕龛一带相比,地层抬升约40 m,其对煤矿“老窑水”的储存运移有控制性作用。

    山底河流域发育有2套含水岩组,分别是上部石炭系—二叠系煤系地层砂页岩夹碳酸盐岩含水岩组(煤系地层含水岩组)和下部奥陶系碳酸盐岩含水岩组,两含水岩组间为石炭系中部本溪组铝土质泥岩区域隔水层。

    (1)上部煤系地层地下水。煤系地层发育有多层砂岩(如图 1c中K1)和灰岩夹层(图 1c中K2和K3)。各含水层间以细砂岩、页岩、煤层为相对隔水层,受采煤活动影响,采空区各含水层间已全部沟通,构成了具有同一流场的含水系统。地下水从燕龛向东北方向径流,山底河柳沟一带是地势最低处,汇集形成了流域煤矿“老窑水”的集中排泄区(图 1c石维芝,2022)。

    (2)下部岩溶水。流域内深层岩溶地下水属于娘子关泉域岩溶地下水系统的一部分,其地下水由北西向东南渗流。因碳酸盐岩裸露区出露面积不大,降雨入渗补给量有限;岩溶地下水主要接受山底河的渗漏补给。

    2014年6月—2020年12月,对山底河流域煤矿老窑水循环系统进行了系统的长期监测(图 1a)。主要监测内容为:(1)雨量站3处,编号Y01、Y02、Y03,监测期为2014—2020年,监测频率3次/日,监测降水量、气温。(2)流量3处,分别为流域煤矿“老窑水”主排泄点柳沟泉(G01)、山底河总出口(F05)和位于F05下游约2.3 km山底河汇入温河入口处的温河口(G03)。F05监测期为2014—2020年,G01和G03监测期为2017—2020年,监测频率3次/月,除监测流量外,还现场测试水温、pH值、氧化还原电位(Eh)、电导率、溶解氧。(3)煤系地层不同类型的水化学监测点5处,其中庙沟泉(F01)发育于太原组K3灰岩之上的砂页岩中,该泉补给区分布有开采煤层,属于上层滞水,采集样品76组;小沟(F02)为露天矿积水,采集样品73组;榆林垴孔(F03)为煤矿老窑水钻孔,该孔水位埋深125 m,开口为石炭系太原组,底部揭穿K1砂岩并进入石炭系本溪组,利用采样桶从井下提水,共采集样品45组;跃进煤矿(F04)主要为跃进煤矿排水,采集样品76组;山底河总出口(F05)为流域总出口监测断面,该断面汇集了流域内闭坑煤矿老窑水出流水、流域地表水、跃进煤矿排水等,采集样品78组。监测期除榆林垴孔(F03)为2017年2020年,其余均为2014—2020年,监测频次1月/次,但受疫情等影响,部分月份缺测。共采集样品348组。

    野外现场利用德国WTW Cond 340i水质测试仪测试水温、pH、氧化还原电位(Eh)、溶解氧(DO)等参数,待现场测试各参数稳定后再进行取样。样品采集前先用采集的水样清洗采样瓶3遍。样品分析测试由国土资源部太原矿产资源监督检测中心采用A-130原子吸收分光光度计、A-37分光光度计等测定。

    山底河总出口(F05)平均流量为12424.12 m3/d,变异系数>1.77(表 1);柳沟泉(G01)和温河口(G03)点流量变异系数分别为0.35和1.53,与F05点相比其流量动态变化较稳定。3个监测点流量动态均明显受降水影响;雨季后进入流量衰减阶段(图 2)。电导率G01>F05>G03,pH值与电导率相反。溶解氧主要受气温和水体酸化程度的影响,其溶解氧值G01<F05<G03。氧化还原电位在一定程度上可以代表水体的Fe3+离子浓度,G01>G03>F05,G03大于F05样表明在两点间径流过程中发生了Fe3+离子沉淀反应,在沿途河床底部可见红色沉淀。

    表  1  各监测点月平均流量及水质现场测试结果统计表(2017.06—2020.12)
    Table  1.  Statistical table of monthly average flow and water quality field test results of each monitoring point (2017.06—2020.12)
    下载: 导出CSV 
    | 显示表格
    图  2  山底河总出口日流量和日降水量
    Figure  2.  Daily discharge and daily precipitation in the total outlet of Shandi River

    降水作为流域各类水体的总补给来源,对总出口流量动态起着着决定性控制作用。流域总流量与降雨量应存在一定关系(Huang et al.,2016罗玉等,2019Wang et al.,2020Li,2020成艺等,2022)。但日流量与日降雨量或月累计流量与月累计降雨量之间却不存在明显的线性相关关系(图 3),说明流域系统对降雨量的调节时间大于一个月,尝试对流量与降雨量进行累计滑动平均处理,流域流量与半年降雨量间呈指数相关,相关系数为0.94(图 3),其主要原因为流域产流滞后、各种水体调节时间不一致、地表水及地下补给、降水等多种因素叠加影响。各产流因素错综复杂,相互间叠加影响,尚未建立完备的统计关系,但随着监测序列的加长,能够建立二者间符合其补排关系的统计模型。

    图  3  山底河总出口流量和降水量关系
    Figure  3.  Relationship between total outlet discharge and precipitation of Shandi River

    电导率与流量间一般存在负相关关系,即:雨季大量低矿化度雨水混合稀释,电导率降低。地表水体由于水的总体电导率较低,雨水等的混入对电导率变化不明显,但对山底河这种矿化程度很高的煤矿“老窑水”,低矿化度新鲜降水补给的稀释将对“老窑水”的电导率变化造成显著影响。因此,可将电导率作为同时表征系统水量与水质的关联性指标(郭芳等,2018张涛等,2018朱彪等,2019)。

    流量-电导率曲线的曲率半径代表了数据变化的剧烈程度,曲率半径越小,数据的稳定性越差。从图 4中可以看出,小流量下的曲率半径较大,而大流量下的曲率半径较小。显然,F05和G03在流量 < 2000 m3/d和电导率>2000 μs/cm时,具有线性关系,说明小流量时老窑水来源较为单一。

    图  4  各监测点流量和电导率关系
    Figure  4.  Relationship between discharge and conductivity of each monitoring point

    流域内3个监测点流量和电导率间均存在较为显著的指数相关性(图 4),表明电导率与流量间存在一定的内在关联,并不能用简单的稀释作用的线性关系解释。分析认为这是多种因素共同叠加形成的,一是采空区积水区水位与采空区接触面积(或体积)间为非线性关系,如榆林垴孔(F03)的采空积水区水位一般在15#煤采空区以下(图 1c),但雨季来临时,水位上升进入采空区,地下水呈面状(或体状)向采空区扩散并与其中残留煤中的黄铁矿发生氧化反应,从而形成水位与水化学浓度间的非线性关系;二是由流域水文地质条件可知,F05和G02的流量是由流域内地表水、地下水以及煤矿老窑水等共同组成,不同来源的水对雨水的转换量以及影响滞后期各不相同,最后叠加的结果可能造成流量对电导率的非线性效应(图 4);三是不同来源水量的混合不仅是一个物理过程,同时也将发生各种复杂的水化学反应。

    电导率与酸性煤矿“老窑水”最主要的特征产物SO42-具有显著的相关性(图 5)。F01、F04和F05的SO42-浓度与电导率间均为线性相关,在一定程度上可认为SO42-浓度在水中占主导性地位;F03与其他3个点的函数类型不同应该与其SO42-浓度变化的控制因素不同有关,而非线性关系的成因应该与多种控制因素有关,主要原因是由于在高电导率区间(也即高SO42-浓度区间)控制SO42-浓度的主要因素是水位上升进入15#煤层采空区后强烈氧化黄铁矿的结果。而F02有几个低电导率的样点偏差较大(可能受融雪或其他因素影响),因此影响了其相关性的建立。综合以上分析,也说明流量与SO42-浓度呈非线性相关。

    图  5  主要监测点的SO42-浓度与电导率关系
    a—F01监测点;b—F03监测点;c—F04监测点;d—F05监测点
    Figure  5.  Relationship between SO42- and conductivity in the main monitoring points
    a-F01 point; b-F03 point; c-F04 point; d-F05 point

    山底河“老窑水”与国内外其他矿区老窑水一样,具有低pH值、高SO42-、高TFe、高Mn和高TDS等特征(表 2岳梅等,2004赵峰华,2005Sun et al.,2018冯海波等,2019)。

    表  2  流域水化学组分统计特征表(mg/L)
    Table  2.  Statistical characteristics of hydrochemical components in the Shandi River Basin (mg/L)
    下载: 导出CSV 
    | 显示表格

    庙沟泉(F01)的SO42-、TFe、Mn、TDS等主要特征组分浓度均最大,其平均值F01> F02>F05>F04> F03,与pH值呈负相关(表 2)。各监测点氧化还原电位(Eh)平均值F02>F01>F05>F04>F03。这主要与各点所处的环境有关。庙沟泉(F01)发育于与大气交换作用强烈的包气带,为开放氧化环境,多年平均氧化还原电位为444.04 mV,开放、强氧化环境是导致各特征组分浓度偏高的主要原因。小沟(F02)露天矿长期处于半暴露状态,其平均氧化还原电位最大为476 mV,由于在雨季大气降雨混入露天矿坑中,Eh变幅较大,其特征组分浓度次之。山底河总出口(F05)是多种来源水的混合断面,其Eh处于中值位置(平均222.07 mV)。跃进煤矿为正在开采的煤矿,其矿坑排水(F04)Eh平均为141.26 mV,虽然低于前3个各样点,但远高于闭坑的榆林垴孔(F03)矿坑水,仍然处于氧化环境。榆林垴孔(F03)的采空区位于水位季节变动带,其氧化还原电位均值为−46.56 mV,总体处于半封闭的还原环境,因此其总体的水化学特征浓度最低。榆林垴孔平均水温19.89℃且较稳定,平均pH值7.26,是有利于硫酸盐还原菌(SRB)生长的良好环境(赵宇华等,1997),在此水化学条件下,可采取微生物方法原位修复矿坑水。流域煤矿“老窑水”主排泄点柳沟泉(G01)的Eh值为346.8~428.6 mv,平均值为401.57 mV,较接近于F01和F02露天矿积水的数值。综上分析,表明煤系地层中黄铁矿的强氧化作用是造成老窑水特征浓度变化的主要原因,其氧化作用主要发生在地下水位季节变动带、包气带和地表,这些地带应作为煤矿“老窑水”源头治理的重点区。因此可通过回填流域内小沟露天矿以及覆盖地面煤渣、煤矸石等治理措施(梁永平等,2021)。

    SO42-和Fe是煤系地层黄铁矿氧化的直接产物(肖有权,1982Evangelou et al.,1995Egon et al., 2016Dogramaci et al., 2017张玉卓等,2021张春潮等,2021)。SO42-更具稳定性,与TDS、总硬度(HB)和Fe组分间存在显著的正相关关系,与pH呈负相关关系(图 6),是水中主要水化学成分的综合体现,对酸性煤矿水具有重要的指征意义。

    图  6  山底河总出口SO42-与其他组分浓度间关系
    Figure  6.  Relationship between the concentration of SO42- and other components in the total outlet of Shandi River

    庙沟泉(F01)的SO42-、TDS浓度最大(图 7),其雨季浓度大,枯季浓度低,且从枯季到雨季,浓度缓慢升高,这与F05显著不同,如2016年7月19日发生一次60年一遇特大暴雨降雨过程(24 h降水量129.80 mm),7月29日TDS值达到了最大51640 mg/L。从水文地质和地球化学背景分析,F01主要发育于采空区上部,为一上层滞水泉,下伏老窑积水水位低于15#煤层标高,在特大暴雨后,地下水位迅速上升至采空区,长时间溶滤的高浓度老窑水补给F01泉,导致离子浓度和TDS迅速增加;雨后地下水位迅速下降,高浓度老窑水补给量减少,泉口浓度降低。小沟(F02)的浓度极大值出现在雨季之前,主要与其氧化和蒸发浓缩作用有关。F01和F02两个监测点的极低值多出现在冬、春季,推测可能与融雪稀释或低温天气有关。

    图  7  监测点SO42-、TDS和月降水量动态曲线
    Figure  7.  Dynamic curve of SO42-, TDS and monthly precipitation in the monitoring points

    榆林垴孔(F03)和跃进煤矿(F04)监测点的SO42-、TDS浓度较为接近(图 7)。其动态变化与降水表现出一定的相关性,具有一定“水文型”补给特征;但两个监测点的浓度与降雨响应时间不同。F04浓度在雨季前增大至极大值,雨季浓度缓慢降低,受降雨影响较大。F03的SO42-、TDS浓度则在雨季达到最大,雨季多处于快速衰减阶段,监测数据中有浓度与降水的波峰与波谷型相对应的状况,这种动态特征与F03特殊的采空区地质结构有关(图 1c)。山底河总出口(F05)的SO42-、TDS浓度最小值一般出现在雨季或雨季后期(图 7),冬春季为浓度升高期;而个别雨季监测数据SO42-含量大于4000 mg/L,如2017年雨季浓度增大到极大值(SO42-为11153 mg/L,TDS为13990 mg/L),主要与其涌出地表的高浓度矿坑老窑水量增大有关,而导致SO42-与HB和Fe的相关性偏离线性关系曲线(图 6);其浓度总体呈现趋势性下降的特点,推测由于老窑水更新加快,水岩作用时间短,污染浓度逐渐降低。

    庙沟泉(F01)的TFe和Mn浓度最大(表 2图 8),一般在雨季浓度最大,枯季浓度最低,最大为5600 mg/L,榆林垴孔(F03)有同样的特征。小沟(F02)、榆林垴孔(F03)和山底河总出口(F05)则是在雨季之前浓度最高。大部分样点的TFe和Mg均不同程度超出《地表水环境质量标准》(GB3838-2002)限值0.3 mg/L和0.1 mg/L。各监测点的TFe和Mn表现出与SO42-和TDS相同的变化特征,均与降雨量相关。Mn的浓度低于TFe的浓度,这是由于在地质作用过程中,Fe和Mn具有相似的迁移和富集规律,一般水中的Mn比Fe易迁移富集,但受煤矿中黄铁矿氧化的影响,导致水中TFe浓度高于Mn浓度。

    图  8  监测点TFe、Mn和月降水量动态曲线
    Figure  8.  Dynamic curve of TFe, Mn and monthly precipitation in the monitoring points

    酸性矿坑水SO42-中S和TFe存在较为显著的线性相关关系(图 9),且相关曲线斜率和截距远高于纯FeS2的氧化水解,如F05点。一是因为煤系地层中S元素除来源于FeS2外,还有如石膏、单质硫等其他来源;二是因为水中的Fe离子易发生氧化沉淀为Fe(OH)3。山底河老窑水循环系统水循环过程复杂,渗流过程中发生着一系列的氧化、还原、沉淀、混合等诸多水化学作用和生物化学反应过程,均影响到SO42-中S和TFe的浓度分布。

    图  9  山底河总出口SO42-中S与TFe关系
    Figure  9.  Relationship of S in SO42- and TFe in the total outlet of Shandi River

    溶解氧是水质评价的重要指标(刘胤序等,2019Oluwatosin et al.,2020苗得雨和衣鹏,2021)。黄铁矿氧化需要消耗水中的氧,在不同径流路径上水体溶解氧不同(图 10)。柳沟(G01)水样为煤矿老窑水主出口,相对而言黄铁矿的氧化反应最强烈(现场测试平均pH为3.35,平均电导率为65630 μs/cm),耗氧多,水中溶解氧最低;山底河总出口(F05)的水样混合了上游各类水(现场测试平均pH为5.28,平均电导率为4465 μs/cm),其溶解氧高于G01;温河口(G03)的水样经过了天然爆气,溶解氧较G01的值有所增加。清水中饱和溶解氧随水温的升高而减小(美国公共卫生协会等,1978)。水循环过程中受有机物浓度等其他因素的影响,溶解氧存在着一定的偏差,但总体上3个点水样的溶解氧均低于清水。

    图  10  清水和各监测点温度与溶解氧关系
    Figure  10.  Relationship between temperature and dissolved oxygen of clean water and monitoring points

    酸性矿坑水径流进入下游碳酸盐岩渗漏段,补给岩溶含水层,是泉域地下水的重要补给源(王桃良等,2015霍建光等,2015王志恒等,2020唐春雷等,2020)。监测期(2017年6月至2020年12月)山底河总出口(F05)平均流量为12424.12 m3/d,同期温河口(G03)平均流量为8632.75 m3/d,在1.8 km渗流段内的平均渗漏量为3791.37 m3/d,平均渗漏率为30.5%。忽略区间产流,参考梁永平等(2011)计算单位公里长的漏失系数方法计算如下:

    根据上列数据计算山底河单位公里漏失系数β为0.1831。另外温河单位公里长的漏失系数为0.0156(王桃良等,2015)。

    综上,求得山底河煤矿“老窑水”在娘子关泉域内的总渗漏率为: 1-(1-0.1831)1.8 + 1-(1-0.0156)35.89=73.64%

    汇总监测期(2014—2020年)F05实测平均流量为10085.66 m3/d,利用渗漏率可计算监测期内的总渗漏量,计算得山底河煤矿“老窑水”出流后两个主要渗漏段的总渗漏补给量为7247.08 m3/d;其中山底河流域内的渗漏为3076.13 m3/d,温河主干流渗漏量为4350.95 m3/d。如此大的渗漏补给量和污染程度如此严重的山底河“老窑水”必将成为娘子关泉域岩溶地下水的重要污染源。

    根据梁永平等(霍建光,2015梁永平,2021)研究表明,娘子关泉水SO42-含量快速增加和超标的主要原因是受到煤矿“老窑水”的污染。在娘子关泉域岩溶水渗漏段处于山底河煤矿“老窑水”的河底镇岩溶井已经受到了山底河煤矿“老窑水”的污染(石维芝,2022),其SO42-多年平均含量为882.58 mg/L。

    按照《地表水环境质量标准》(GB3838-2002)集中式饮用水地表水源地补充项目标准限值,山底河总出口(F05)水SO42-是标准限值250 mg/L的7.07~14.47倍,平均值是其13.31倍;Fe是标准限值0.3 mg/L的200.73~511.77倍,平均值是其410倍;Mn是标准限值0.1 mg/L的48.43~150.10倍,平均值是其97.5倍。

    根据上述研究,渗漏量如此大的山底河煤矿“老窑水”,水质恶劣,入渗补给作为饮用水水源的娘子关泉域岩溶地下水,必将对泉域岩溶水造成严重污染,水质恶化同时引起一系列生态环境问题,河道两侧受老窑水污染地区植被破坏、土壤污染,农作物如已造成周边植被枯死,农作物无法生长等,生态环境持续恶化,急需开展煤矿老窑水污染机理、治理措施研究,开展废弃煤矿老窑水治理和区域生态修复。

    (1)山底河流域“老窑水”流量动态主要受降水影响,雨季后为流量衰减阶段;“老窑水”流量对降雨量的调节时间为半年。煤矿“老窑水”的流量与水化学特征指标电导率、SO42-浓度呈非线性相关。山底河流域煤系地层中黄铁矿的强氧化反应主要发生在地下水位季节变动带、包气带和地表,而且煤矿采空积水区的一定深度为还原环境。

    (2)山底河煤矿“老窑水”出流后进入下游碳酸盐岩河段渗漏,对娘子关泉域岩溶水的渗漏补给量达7247.08 m3/d。山底河煤矿“老窑水”总出口水SO42-、Fe、Mn已严重超过《地表水环境质量标准》(GB3838-2002)集中式饮用水地表水源地补充项目标准限值,水质恶劣,急需开展煤矿“老窑水”的治理和废弃煤矿生态修复。

    1➊山东省地质矿产勘查开发局第四地质大队.1992.1/5万沙河、新河、辛安、郭家店地质调查报告[R].
  • 图  1   胶东大地构造位置( a) 与金−多金属矿床分布图(b)(据丁正江等,2013杨立强等,2014修改)

    Figure  1.   Schematic tectonic map of Jiaodong (a) and distribution map of gold-polymetallic deposits (b) (modified from Ding Zhengjiang et al.,2013; Yang Liqiang et al.,2014)

    图  2   三合山岩体地质略图及野外露头照片(据山东省地质矿产勘查开发局第四地质大队,1992 1修改)

    a—三合山地质略图;b—岩性穿插关系;c—矿脉穿插关系;d—民采老硐;e—二长花岗岩野外露头;f—花岗斑岩野外露头;1—第四系;2—荆山群野头组;3—荆山群陡崖组;4—中细粒二长花岗岩;5—花岗斑岩;6—矽卡岩;7—萤石−重晶石脉;8—石英-辉钼矿脉;9—地质界线;10—实测/推测断裂;11—采样位置;12—辉钼矿点;13.—金矿点;14—银矿点;15—铅矿点

    Figure  2.   Geological map and field photos of Sanheshanpluton (modified from Shandong Provincial No.4 Institute of Geological and Mineral Survey,1992 1)

    a–Sketch geological map of Sanheshan; b–Lithology interspersed relation; c–Ore veins interspersed relation; d–Civilian mines; e–Field outcrops of monzogranite; f–Field outcrop of granite porphyry; 1–Quaternary; 2–Yetou Formation of Jingshan Group; 3–Douya Formation of Jingshan Group; 4–Medium−fine grained monzogranite; 5–Granite porphyry; 6–Skarn; 7–Fluorite−barite veins; 8–Quartz−molybdenite vein; 9–Geological boundary; 10–Measured/presumed fault; 11–Sampling location; 12–Molybdenite points; 13–Gold sites; 14–Silver ore points; 15–Lead ore points

    图  3   三合山岩体手标本及显微镜照片

    a—中细粒二长花岗岩及其内部暗色包体;b—花岗斑岩;c—花岗结构;d—斑状结构;Q—石英;Kfs—钾长石;Bi—黑云母;Pl—斜长石;Hb—角闪石

    Figure  3.   Field and micrograph of Sanheshan pluton

    a–Medium−fine grained monzogranite and its internal dark inclusion; b–Granite porphyry; c–Granitic texture; d–Porphyric texture; Q–Quartz; Kfs–Potash feldspar; Bi–Biotite; Pl–Plagioclase; Hb–Hornblende

    图  4   三合山岩体花岗岩TAS图解(a)(据Wilson,1989)、A/CNK−A/NK图解(b)(据Maniar and Piccoli,1989)、SiO2−K2O图解(c)(据Le Maitre,1989; Rickwood,1989)及AR−SiO2图解(d)(据Wright,1969

    Figure  4.   Granite TAS diagram of Sanheshanpluton (a) (after Wilson, 1989), A/CNK−A/NK diagram (b) (after Maniar and Piccoli, 1989), SiO2−K2O diagram (c) (after Le Maitre, 1989; Rickwood, 1989) and AR−SiO2 diagram (d) (after Wright,1969)

    图  5   三合山岩体球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

    (标准化数据:a据Boynton,1984;b据Sun and Mcdonough,1989

    Figure  5.   Chondrite−normalized REE patterns and primitive mantle−normalized trace element spider diagrams

    (normalization data: a after Boynton, 1984; b after Sun and McDonough, 1989)

    图  6   三合山岩体中细粒二长花岗岩(a、c)和花岗斑岩(b、d)锆石阴极发光图像和锆石U−Pb年龄谐和图

    (黄圈为锆石U−Pb测量位置,红圈为锆石Lu−Hf测量位置)

    Figure  6.   Cathodoluminescence images and zircon U−Pb age concordance diagram of medium-fine grained monzogranite and granite porphyry in Sanheshan pluton

    (The yellow circle represents the measurement location of zircon U−Pb, the red circle represents the measurement location of zircon Lu−Hf)

    图  7   三合山岩体Harker图解(空心为实测数据;实心为收集数据,数据来源据山东省地质矿产勘查开发局第四地质大队,1992 1

    Figure  7.   Harker diagrams of Sanheshan pluton(Hollow is measured data, solid for collecting data; The data were collected from Shandong Provincial No.4 Institute of Geological and Mineral Survey,1992 1

    图  8   三合山岩体花岗岩成因判别图解(底图据Whalen et al., 1987

    Figure  8.   Genetic discrimination diagram of granite in Sanheshanpluton (basemap from Whalen et al., 1987)

    图  9   三合山岩体花岗岩Sr−Nd同位素图解

    a—εNdt)−εSrt)图解(据Zhu et al. 2001);b—εNdt)−(87Sr/86Sr)i图解(据Jahn et al.,1999盖永升等,2015修改;基性脉岩范围据Yang et al.,2012);MORB—洋中脊型玄武岩;B—玄武岩源区;Bc—过渡源区;C—陆壳源区

    Figure  9.   Sr−Nd isotope diagram of granite in Sanheshan pluton

    a−εNd(t)−εSr(t)diagram (modified from Zhu et al., 2001); b−εNd(t) − (87Sr/86Sr)i diagram (modified from Jahn et al., 1999; Gai Yongsheng et al., 2015; basic dike range by Yang et al., 2012); MORB–Mid ocean ridge basalt; B–Origin of basalt; Bc–Origin of transitional mantle; C–Continental source

    图  10   三合山岩体花岗岩Pb同位素207Pb/204Pb–206Pb/204Pb相关曲线(a,据Allègre,1988)、206Pb/204Pb–143Nd/144Pb相关图解(b,据Zindler and Hart,1986

    PREMA—原始地幔;DM—亏损地幔;EMⅠ—Ⅰ型富集地幔;EMⅡ—Ⅱ型富集地幔;HIMU—高μ值地幔;MORB—洋中脊型玄武岩;BSE—全硅酸盐地球

    Figure  10.   207Pb / 204Pb–206Pb / 204Pb curve (a, after Allègre, 1988) and 143 Nd/144Nd–206Pb/204Pb isotopic diagram (b, after Zindler and Hart, 1986 ) of granite in Sanheshan pluton

    PREMA–Primitive mantle; DM–Depleted mantle; EMⅠ–Enriched mantle Ⅰ; EMⅡ–Enriched mantle Ⅱ; HIMU–High μ mantle; MORB–Mid ocean ridge basalt; BSE–Bulk silicate earth

    图  11   三合山岩体花岗岩锆石εHf(t)−t图解(据李秀章等, 2022

    Figure  11.   εHf(t)−t diagram of zircons of granite in Sanheshan pluton (modified from Li Xiuzhang et al., 2022)

    图  12   三合山岩体构造环境判别图解(底图据Pearce et al.,1984

    syn−COLG—同碰撞型;VAG—火山弧型;WPG—板内型;ORG—洋中脊型;post−COLG—后碰撞型

    Figure  12.   Tectonic environment discrimination diagram of the Sanheshan pluton (modified from Pearce et al.,1984)

    syn−COLG−Syn−collision granite; VAG−Volcanic arc granite; WPG−Within plate granite; ORG−Oceanic ridge granite; post−COLG−Post−collision granite

    表  1   三合山岩体主量元素(%)和微量元素(10−6)测试结果

    Table  1   Major (%) and trace elements (10−6) data of Sanheshan pluton

    样号SHS-H1SHS-H2SHS-H3SHS-H4SHS-H5SHS-H6样号SHS-H1SHS-H2SHS-H3SHS-H4SHS-H5SHS-H6
    岩性中细粒二长花岗岩花岗斑岩岩性中细粒二长花岗岩花岗斑岩
    Al2O313.6113.9014.0113.9114.4014.50Cd0.151.500.220.110.130.11
    SiO272.5072.1371.3971.3469.9570.94In0.010.020.020.010.010.01
    CaO1.171.051.301.401.461.45Sb0.160.860.440.220.230.18
    K2O4.805.125.094.725.155.09Cs0.960.881.271.271.211.41
    Fe2O3T2.152.302.462.572.502.50Ba479.20635.43711.47652.29960.24853.53
    FeO*1.131.171.261.361.281.30Ta3.352.472.852.072.152.24
    MgO0.430.460.490.600.640.58W3.893.412.920.761.740.72
    MnO0.050.060.060.060.050.06Re0.020.020.020.020.020.01
    Na2O4.014.094.124.074.124.17Tl0.590.630.720.600.630.64
    P2O50.080.090.100.120.120.12Pb17.1918.2320.0217.6718.5419.80
    TiO20.310.360.390.420.400.41Bi0.170.132.690.050.020.02
    LOI0.990.710.720.690.790.61Th18.1015.3415.7717.1514.7416.45
    Total100.10100.27100.1399.9199.58100.41U3.903.033.437.033.884.59
    DI89.8590.5889.488887.5688.6Hf4.835.026.145.204.854.62
    SI3.833.894.095.105.244.77La41.7642.7354.5351.6050.0346.71
    A/NK1.151.131.141.181.171.17Ce80.8681.0999.0489.6986.7283.07
    A/CNK0.980.980.960.970.960.97Pr7.897.839.648.178.327.67
    AR3.373.423.333.273.163.19Nd30.0429.3736.6030.2830.1828.76
    σ2.632.912.992.733.193.07Sm5.284.685.964.644.684.52
    Mg#28.4128.4528.3131.6333.6231.46Eu0.690.750.830.790.880.81
    Li10.917.9010.8715.8916.5315.96Gd4.634.415.294.354.214.07
    Be5.984.865.854.624.504.63Tb0.720.590.800.570.570.58
    Sc2.292.393.422.682.882.59Dy3.963.094.062.873.022.96
    Ti2223.662637.783036.493174.673064.323122.98Ho0.670.520.730.480.500.49
    V12.3412.2714.8719.5119.2219.42Er2.231.672.391.601.641.63
    Cr9.4410.693.1514.887.5614.15Tm0.410.300.410.280.290.29
    Mn349.94409.02461.86425.79469.52419.42Yb2.632.102.641.972.062.02
    Co2.043.204.815.304.474.34Lu0.390.310.400.290.290.29
    Ni1.3727.6480.7939.7421.8522.43∑REE182.16179.44223.32197.58193.39183.87
    Cu8.8631.8115.3310.5210.6516.48LREE166.52166.45206.60185.17180.81171.54
    Zn36.18286.8337.0042.6236.4038.14HREE15.6412.9916.7212.4112.5812.33
    Ga18.5017.7419.9218.6418.5719.46L/H10.6512.8112.3614.9214.3713.91
    As1.362.682.031.771.651.60δEu0.420.500.440.530.590.57
    Rb184.80173.34193.80180.07187.87194.07δCe1.000.990.960.950.930.96
    Sr152.11149.54176.50243.13276.10275.48(La/Sm)N4.985.745.767.006.726.50
    Y21.8516.4223.7515.4915.8616.05(La/Yb)N10.7113.7213.9317.6616.3715.59
    Zr195.03225.33276.03210.21194.88187.26(Sm/Nd)N0.540.490.500.470.480.48
    Nb27.9127.2332.7524.7324.6225.10(Gd/Yb)N1.421.691.621.781.651.63
    Mo1.8713.5714.469.008.675.96T/℃796808823799790787
    下载: 导出CSV

    表  2   三合山岩体中细粒二长花岗岩和花岗斑岩全岩Sr−Nd同位素分析结果

    Table  2   Sr−Nd isotope date of whole rock of medium-fine grained monzogranite and granite porphyry in Sanheshan pluton

    样品
    编号
    岩性 t/Ma Rb Sr 87Rb/86Sr 87Sr/86Sr 2σ Sm Nd 147Sm/144Nd 143Nd/144Nd 2σ ISr(t) INd(t) εNd(t) TDM2/Ma
    /10−6 /10−6
    SHS-H1 中细
    粒二
    长花
    岗岩
    115.42 167.0 156.4 3.09 0.714895 0.000004 5.21 27.47 0.114550 0.511863 0.000009 0.70984 0.511777 −13.91 2041
    SHS-H2 115.42 168.8 170.9 2.86 0.714753 0.000004 5.04 29.86 0.102043 0.511877 0.000009 0.71008 0.511800 −13.46 2005
    SHS-H4 花岗
    斑岩
    115.21 152.2 295.4 1.49 0.713277 0.000004 4.94 31.15 0.095839 0.511770 0.000009 0.71084 0.511698 −15.45 2167
    SHS-H5 115.21 156.2 338.2 1.34 0.712558 0.000005 4.90 30.49 0.097061 0.511793 0.000009 0.71037 0.511720 −15.02 2132
    下载: 导出CSV

    表  3   三合山岩体中细粒二长花岗岩和花岗斑岩全岩Pb同位素分析结果

    Table  3   Pbisotope date of whole rock of medium-fine grained monzogranite and granite porphyry in Sanheshan pluton

    样品
    编号
    岩性 t/Ma Th U Pb 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ (206Pb/204Pb)i (207Pb/204Pb)i (208Pb/204Pb)i
    /10−6
    SHS-H1 中细粒二长
    花岗岩
    115.42 16.9 5.16 21.4 17.4478 0.0003 15.4702 0.0003 37.9679 0.0007 17.1799 15.4572 37.6805
    SHS-H2 115.42 35.4 14.1 45.9 17.3563 0.0003 15.4656 0.0003 37.8582 0.0008 17.0150 15.4491 37.5775
    SHS-H4 花岗斑岩 115.21 31.9 7.27 26.4 17.4101 0.0003 15.4709 0.0003 37.9594 0.0007 17.1041 15.4561 37.5196
    SHS-H5 115.21 28.7 8.71 40.8 17.3811 0.0003 15.4656 0.0002 37.9395 0.0006 17.1440 15.4541 37.6835
    下载: 导出CSV

    表  4   三合山岩体中细粒二长花岗岩和花岗斑岩LA−ICP−MS U−Pb 分析结果

    Table  4   LA−ICP−MS zircons U−Pb isotope date of medium−fine grained monzogranite and granite porphyry in Sanheshan pluton

    样品编号 含量/10−6 Th/U 同位素比值 年龄/Ma 谐和度
    /%
    Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    SHS-H1-01 298.08 550.69 0.54 0.04884 0.00099 0.12673 0.00256 0.01884 0.00015 140.4 47.6 121.2 2.3 120.3 1 99.29
    SHS-H1-02 436.92 495.22 0.88 0.04773 0.00105 0.11878 0.00265 0.01808 0.00023 86.1 52.4 114 2.4 115.5 1.4 98.65
    SHS-H1-03 274.80 525.30 0.52 0.04893 0.00112 0.12683 0.00313 0.01879 0.0002 144.3 53.8 121.2 2.8 120 1.2 98.97
    SHS-H1-04 543.04 771.30 0.70 0.04848 0.00066 0.12216 0.00224 0.01822 0.00024 122.9 32.1 117 2 116.4 1.5 99.46
    SHS-H1-05 461.77 704.41 0.66 0.0486 0.00081 0.12099 0.00214 0.01805 0.0002 128.8 39.5 116 1.9 115.3 1.2 99.45
    SHS-H1-06 778.55 897.44 0.87 0.04864 0.00075 0.12036 0.00206 0.01795 0.00025 130.3 36.2 115.4 1.9 114.7 1.6 99.38
    SHS-H1-07 388.93 602.59 0.65 0.04892 0.00078 0.12619 0.00211 0.01869 0.00013 144 37.2 120.7 1.9 119.4 0.8 98.94
    SHS-H1-08 584.03 909.03 0.64 0.05177 0.00061 0.13748 0.00214 0.01925 0.00023 275.4 26.8 130.8 1.9 122.9 1.5 93.95
    SHS-H1-09 299.49 584.38 0.51 0.0486 0.00081 0.1217 0.00209 0.0182 0.00025 128.6 39.1 116.6 1.9 116.3 1.6 99.71
    SHS-H1-10 721.04 1079.50 0.67 0.05068 0.00071 0.12576 0.00235 0.01796 0.00023 226.5 32.2 120.3 2.1 114.7 1.5 95.38
    SHS-H1-11 342.01 560.97 0.61 0.04823 0.00084 0.12004 0.00168 0.01811 0.00021 110.4 41.1 115.1 1.5 115.7 1.3 99.51
    SHS-H1-12 382.91 496.64 0.77 0.0492 0.00086 0.13447 0.00259 0.01982 0.00024 157.1 41.1 128.1 2.3 126.5 1.5 98.74
    SHS-H1-13 646.64 817.67 0.79 0.04843 0.00099 0.12063 0.00267 0.01807 0.00022 120.2 48.2 115.6 2.4 115.4 1.4 99.81
    SHS-H1-14 672.97 809.51 0.83 0.04835 0.00071 0.1196 0.00177 0.01797 0.00018 116.4 34.9 114.7 1.6 114.8 1.1 99.89
    SHS-H1-15 503.59 775.33 0.65 0.04885 0.00085 0.12743 0.00213 0.01891 0.00021 140.5 40.8 121.8 1.9 120.7 1.3 99.14
    SHS-H1-16 799.18 1008.37 0.79 0.05048 0.00085 0.12453 0.00225 0.01791 0.00022 217.2 38.8 119.2 2 114.4 1.4 96.01
    SHS-H1-17 291.41 530.44 0.55 0.04783 0.00073 0.11906 0.00203 0.01804 0.00015 91 36.3 114.2 1.8 115.3 1 99.07
    SHS-H1-18 369.34 460.87 0.80 0.04843 0.00085 0.11945 0.00219 0.01791 0.00022 120.5 41.6 114.6 2 114.4 1.4 99.86
    SHS-H1-19 506.22 705.33 0.72 0.04825 0.00096 0.11987 0.00208 0.01805 0.00016 111.6 47 115 1.9 115.3 1 99.66
    SHS-H1-20 580.28 802.42 0.72 0.04836 0.00063 0.12 0.00207 0.01805 0.00024 116.8 30.7 115.1 1.9 115.3 1.5 99.77
    SHS-H1-21 520.20 690.67 0.75 0.05056 0.00088 0.13097 0.00247 0.01884 0.0003 220.7 40.1 125 2.2 120.3 1.9 96.27
    SHS-H1-22 312.05 466.17 0.67 0.04793 0.00078 0.12474 0.00197 0.0189 0.00022 96 38.5 119.4 1.8 120.7 1.4 98.87
    SHS-H1-23 331.44 525.58 0.63 0.0519 0.00082 0.13187 0.00202 0.01846 0.00017 281.1 36.2 125.8 1.8 117.9 1.1 93.73
    SHS-H1-24 138.16 174.13 0.79 0.0488 0.00137 0.1208 0.00328 0.01806 0.00023 138.4 65.9 115.8 3 115.4 1.4 99.62
    SHS-H1-25 358.83 432.95 0.83 0.0487 0.00098 0.12014 0.00209 0.01796 0.00017 133.4 47.2 115.2 1.9 114.8 1.1 99.63
    SHS-H1-26 299.95 400.79 0.75 0.0487 0.00068 0.12119 0.00202 0.01807 0.00019 133.2 32.9 116.2 1.8 115.4 1.2 99.39
    SHS-H1-27 404.64 640.94 0.63 0.04823 0.00086 0.11961 0.00222 0.01803 0.00022 110.4 42.3 114.7 2 115.2 1.4 99.58
    SHS-H1-28 464.66 704.26 0.66 0.04856 0.00092 0.1224 0.0024 0.0183 0.00023 126.4 44.6 117.2 2.2 116.9 1.4 99.72
    SHS-H1-29 664.74 757.28 0.88 0.04838 0.00065 0.12128 0.00194 0.0182 0.00019 118 31.8 116.2 1.8 116.2 1.2 99.99
    SHS-H1-30 417.79 644.51 0.65 0.04805 0.00067 0.12017 0.00187 0.01815 0.00017 101.9 33 115.2 1.7 115.9 1.1 99.38
    SHS-H4-01 404.97 634.56 0.61 0.04823 0.00107 0.12184 0.00229 0.01836 0.00027 110.8 52.2 116.7 2.1 117.3 1.7 99.51
    SHS-H4-02 221.91 363.68 0.59 0.04769 0.00095 0.11753 0.00238 0.01789 0.00017 83.9 47.5 112.8 2.2 114.3 1.1 98.71
    SHS-H4-03 662.61 785.21 0.81 0.0484 0.00069 0.11611 0.00148 0.01741 0.00014 119.1 33.8 111.5 1.3 111.3 0.9 99.76
    SHS-H4-04 359.95 606.30 0.57 0.04815 0.00082 0.12113 0.00182 0.01829 0.00019 106.4 40.1 116.1 1.6 116.9 1.2 99.34
    SHS-H4-05 499.70 1199.82 0.42 0.0496 0.00097 0.12807 0.00239 0.01881 0.00028 176.1 45.4 122.4 2.2 120.1 1.8 98.18
    SHS-H4-06 353.63 584.96 0.6 0.0516 0.00108 0.12611 0.00271 0.01773 0.0002 267.5 48.2 120.6 2.4 113.3 1.3 93.94
    SHS-H4-07 606.58 728.31 0.82 0.04841 0.00067 0.12016 0.00176 0.01803 0.00018 119.5 32.7 115.2 1.6 115.2 1.1 99.98
    SHS-H4-08 547.19 940.08 0.57 0.04884 0.0009 0.1219 0.00252 0.0181 0.00022 140 43.2 116.8 2.3 115.6 1.4 99
    SHS-H4-09 162.49 218.28 0.72 0.0976 0.00581 0.26322 0.01747 0.0189 0.00028 1578.7 111.5 237.3 14 120.7 1.8 50.88
    SHS-H4-10 219.02 316.83 0.67 0.0481 0.00087 0.11923 0.00235 0.01795 0.00017 104.3 42.7 114.4 2.1 114.7 1.1 99.7
    SHS-H4-11 492.39 669.39 0.73 0.04854 0.00088 0.12031 0.0021 0.01801 0.00018 125.7 42.4 115.4 1.9 115.1 1.1 99.74
    SHS-H4-12 485.68 769.69 0.62 0.0482 0.00075 0.1189 0.00195 0.01789 0.00017 108.9 36.6 114.1 1.8 114.3 1.1 99.78
    SHS-H4-13 332.11 449.72 0.73 0.04777 0.00067 0.11921 0.00184 0.0181 0.00016 87.7 33.4 114.4 1.7 115.6 1 98.91
    SHS-H4-14 373.12 576.05 0.63 0.12877 0.00986 0.38418 0.03117 0.02106 0.00033 2081.3 134.7 330.1 22.9 134.4 2.1 40.7
    SHS-H4-15 384.84 655.90 0.57 0.04871 0.00113 0.12081 0.00281 0.01802 0.00026 133.9 54.7 115.8 2.5 115.1 1.6 99.42
    SHS-H4-16 652.15 675.30 0.94 0.04863 0.00089 0.12097 0.00278 0.018 0.00022 130.1 42.8 116 2.5 115 1.4 99.17
    SHS-H4-17 403.25 600.87 0.65 0.04963 0.00128 0.12442 0.00344 0.0182 0.00029 177.8 60 119.1 3.1 116.2 1.9 97.63
    SHS-H4-18 336.63 669.29 0.49 0.04799 0.00064 0.11944 0.00155 0.01807 0.00014 98.6 31.6 114.6 1.4 115.4 0.9 99.25
    SHS-H4-19 313.74 524.55 0.59 0.06444 0.00112 0.15985 0.00253 0.01804 0.00016 756.2 36.5 150.6 2.2 115.2 1 76.53
    SHS-H4-20 352.20 569.94 0.6 0.04851 0.00123 0.11984 0.00301 0.01792 0.00027 124 59.5 114.9 2.7 114.5 1.7 99.62
    SHS-H4-21 159.20 238.15 0.67 0.04871 0.00126 0.12083 0.003 0.01808 0.00019 133.7 60.6 115.8 2.7 115.5 1.2 99.7
    SHS-H4-22 381.55 517.41 0.72 0.04875 0.00097 0.12092 0.00227 0.01803 0.00018 136 46.5 115.9 2.1 115.2 1.2 99.38
    SHS-H4-23 388.39 602.39 0.62 0.04775 0.0009 0.1187 0.00221 0.01805 0.00016 87 44.6 113.9 2 115.3 1 98.76
    SHS-H4-24 266.55 379.52 0.69 0.04811 0.00088 0.11798 0.00197 0.01785 0.00018 104.8 43.1 113.2 1.8 114 1.1 99.31
    SHS-H4-25 368.31 609.97 0.58 0.04864 0.00125 0.1211 0.00263 0.01811 0.00024 130.6 60.3 116.1 2.4 115.7 1.5 99.68
    SHS-H4-26 223.64 335.62 0.66 0.0525 0.00113 0.13084 0.0029 0.01812 0.00023 307.3 49.1 124.8 2.6 115.8 1.4 92.73
    SHS-H4-27 226.31 323.53 0.68 0.04887 0.00141 0.12122 0.00236 0.01817 0.00033 141.7 67.9 116.2 2.1 116.1 2.1 99.89
    SHS-H4-28 847.75 1294.89 0.63 0.04854 0.00056 0.11494 0.00138 0.01718 0.00017 125.7 27.3 110.5 1.3 109.8 1.1 99.41
    SHS-H4-29 520.32 623.94 0.81 0.04883 0.00099 0.12087 0.00217 0.01798 0.00022 139.7 47.6 115.9 2 114.9 1.4 99.15
    SHS-H4-30 307.92 557.81 0.53 0.04868 0.00094 0.1212 0.00221 0.0181 0.00018 132.6 45.4 116.2 2 115.6 1.1 99.54
    下载: 导出CSV

    表  5   三合山岩体中细粒二长花岗岩和花岗斑岩锆石Lu−Hf分析结果

    Table  5   Zircon Lu−Hf isotope date of medium−fine grained monzogranite and granite porphyry in Sanheshan pluton

    样品编号 T/Ma 176Yb/178Hf 2σ 176Lu/178Hf 2σ 176Hf/178Hf 2σ εHf(0) εHf(t) TDM/Ma TDM2/Ma fLu/Hf
    SHS-H1-002 115.5 0.034365 0.000136 0.001259 0.000005 0.282244 0.000016 −18.67 −16.25 1431 2204 −0.96
    SHS-H1-004 116.4 0.040687 0.000423 0.001395 0.000013 0.282230 0.000014 −19.17 −16.72 1456 2235 −0.96
    SHS-H1-005 115.3 0.035505 0.000181 0.001268 0.000007 0.282195 0.000015 −20.40 −17.95 1500 2313 −0.96
    SHS-H1-006 114.7 0.055793 0.000178 0.001942 0.000014 0.282288 0.000017 −17.12 −14.74 1395 2109 −0.94
    SHS-H1-009 116.3 0.034779 0.000340 0.001231 0.000007 0.282220 0.000014 −19.53 −17.08 1464 2257 −0.96
    SHS-H1-011 115.7 0.041548 0.001231 0.001526 0.000035 0.282209 0.000014 −19.93 −17.52 1492 2284 −0.95
    SHS-H1-013 115.4 0.043584 0.000611 0.001507 0.000017 0.282239 0.000016 −18.84 −16.43 1448 2216 −0.95
    SHS-H1-014 114.8 0.042933 0.000181 0.001555 0.000004 0.282223 0.000018 −19.42 −17.01 1473 2253 −0.95
    SHS-H1-016 114.4 0.048977 0.001296 0.001710 0.000035 0.282156 0.000021 −21.78 −19.42 1574 2403 −0.95
    SHS-H1-017 115.3 0.035244 0.000354 0.001233 0.000017 0.282241 0.000016 −18.77 −16.32 1434 2210 −0.96
    SHS-H1-018 114.4 0.053518 0.001327 0.001771 0.000035 0.282183 0.000019 −20.81 −18.43 1537 2341 −0.95
    SHS-H1-019 115.3 0.035349 0.000213 0.001262 0.000008 0.282268 0.000015 −17.82 −15.40 1398 2151 −0.96
    SHS-H1-020 115.3 0.051387 0.000848 0.001737 0.000025 0.282208 0.000014 −19.94 −17.56 1501 2286 −0.95
    SHS-H1-024 115.4 0.023987 0.000194 0.000814 0.000007 0.282252 0.000016 −18.41 −15.93 1404 2185 −0.98
    SHS-H1-025 114.8 0.032159 0.000260 0.001121 0.000016 0.282159 0.000018 −21.66 −19.23 1544 2392 −0.97
    SHS-H1-026 115.4 0.048079 0.000216 0.001565 0.000011 0.282422 0.000019 −12.36 −9.95 1190 1807 −0.95
    SHS-H1-027 115.2 0.048379 0.000880 0.001646 0.000028 0.282127 0.000018 −22.80 −20.39 1612 2466 −0.95
    SHS-H1-028 116.9 0.038652 0.000438 0.001333 0.000015 0.282171 0.000016 −21.25 −18.80 1537 2366 −0.96
    SHS-H1-029 116.2 0.048147 0.001031 0.001636 0.000036 0.282198 0.000016 −20.31 −17.90 1512 2309 −0.95
    SHS-H1-030 115.9 0.036768 0.000498 0.001304 0.000015 0.282243 0.000014 −18.72 −16.27 1435 2207 −0.96
    SHS-H4-001 117.3 0.056976 0.001736 0.001836 0.000057 0.282135 0.000018 −22.51 −20.10 1608 2447 −0.94
    SHS-H4-002 114.3 0.034185 0.000795 0.001206 0.000020 0.282180 0.000013 −20.94 −18.54 1519 2347 −0.96
    SHS-H4-004 116.9 0.036438 0.000215 0.001309 0.000007 0.282242 0.000023 −18.75 −16.29 1437 2209 −0.96
    SHS-H4-006 113.3 0.035037 0.000510 0.001240 0.000021 0.282261 0.000015 −18.07 −15.69 1407 2168 −0.96
    SHS-H4-007 115.2 0.057145 0.001128 0.001917 0.000035 0.282225 0.000015 −19.35 −16.96 1484 2249 −0.94
    SHS-H4-008 115.6 0.036822 0.000405 0.001276 0.000013 0.282240 0.000014 −18.82 −16.39 1438 2214 −0.96
    SHS-H4-010 114.7 0.029173 0.000118 0.001025 0.000005 0.282227 0.000016 −19.28 −16.83 1447 2243 −0.97
    SHS-H4-011 115.1 0.039391 0.000574 0.001368 0.000010 0.282199 0.000017 −20.26 −17.85 1499 2305 −0.96
    SHS-H4-012 114.3 0.038626 0.000294 0.001350 0.000015 0.282247 0.000015 −18.57 −16.17 1431 2199 −0.96
    SHS-H4-013 115.6 0.037094 0.000262 0.001278 0.000007 0.282163 0.000015 −21.55 −19.11 1546 2385 −0.96
    SHS-H4-015 115.1 0.040294 0.000423 0.001421 0.000020 0.282200 0.000015 −20.24 −17.81 1500 2304 −0.96
    SHS-H4-016 115 0.046511 0.000306 0.001610 0.000006 0.282194 0.000017 −20.45 −18.06 1516 2318 −0.95
    SHS-H4-017 116.2 0.040350 0.000583 0.001369 0.000014 0.282184 0.000018 −20.79 −18.36 1520 2338 −0.96
    SHS-H4-018 115.4 0.037646 0.000760 0.001252 0.000021 0.282323 0.000014 −15.87 −13.42 1320 2028 −0.96
    SHS-H4-020 114.5 0.030983 0.000654 0.001083 0.000025 0.282260 0.000015 −18.11 −15.67 1402 2168 −0.97
    SHS-H4-021 115.5 0.028978 0.000462 0.000996 0.000014 0.282208 0.000016 −19.95 −17.49 1472 2284 −0.97
    SHS-H4-022 115.2 0.042578 0.000377 0.001447 0.000013 0.282173 0.000015 −21.17 −18.77 1538 2362 −0.96
    SHS-H4-023 115.3 0.022154 0.000350 0.000765 0.000013 0.282259 0.000014 −18.14 −15.69 1392 2169 −0.98
    SHS-H4-024 114 0.035765 0.000751 0.001215 0.000020 0.282183 0.000016 −20.85 −18.44 1516 2342 −0.96
    SHS-H4-025 115.7 0.035741 0.000105 0.001236 0.000004 0.282283 0.000015 −17.29 −14.83 1376 2117 −0.96
    下载: 导出CSV

    表  6   胶东伟德山期花岗岩同位素年龄表(LA−ICP−MS锆石U−Pb)

    Table  6   Isotope chronology of the Weideshan granite in Jiaodong( LA−ICP−MS zircon U−Pb )

    岩体名称 样品编号 地理位置 岩性 年龄/Ma 资料来源
    伟德山GZ威海市崮庄村细粒石英闪长岩112±1李杰等,2013
    SSD-1/1B荣成冷家中细粒钾长花岗岩113. 4±1.8丁正江等,2013
    GZ荣成南台中细粒碎裂花岗岩114. 2±2.1
    三佛山D04-1乳山市三佛山细粒正长花岗岩119.6± 1.0李增达等,2018
    D09-1中细粒二长花岗岩111.4± 2.2
    D11-2中粗粒二长花岗岩115.7± 1.7
    泽头06SD01海阳辛安中粒二长花岗岩114±3郭敬辉等,2005
    06SD17乳山市高家台村中粗粒二长花岗岩116±3
    ZT-1-01文登泽头中粒黑云角闪石英二长岩115.6±1.1董学等,2020
    牙山—
    院格庄
    2017N1院格庄中粒含角闪二长花岗岩118.10±0.66邹键等,2021
    2017N2含巨斑状细中粒二长花岗岩118.52±0.78
    2017N3巨斑状中粒含角闪二长花岗岩118.80±0.67
    艾山16SD-33蓬莱艾山斑状角闪花岗闪长岩116.7±1.7胡波,2019
    WDS07/1B蓬莱张家沟村含斑中粗粒二长花岗岩122±1任天龙等,2021
    JD48栖霞市前寨村斑状中粗粒二长花岗岩119±1
    JD87蓬莱市邓格庄村含斑中粗粒二长花岗岩113±1
    南宿LM06/1b莱州市西姜家村中粒二长花岗岩121.3±2.1胡波,2019
    秦姑庵JD151莱州市秦姑庵斑状中粒二长花岗岩119.9±1.3李秀章等,2021
    三合山SHS-H1平度市三合山中细粒二长花岗岩115.42±0.27本文
    SHS-H4平度市三合山花岗斑岩115.21±0.25
    下载: 导出CSV
  • [1]

    Allègre C J, Lewin E, Dupré B. 1988. A coherent crust−mantle model for the uranium−thorium–lead isotopic system[J]. Chemical Geology, 70(3): 211−234. doi: 10.1016/0009-2541(88)90094-0

    [2]

    Amelin Y, Lee D C, Halliday A N. 2000. Early−middle archaean crustal evolution deduced from Lu−Hf and U−Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 64(24): 4205−4225. doi: 10.1016/S0016-7037(00)00493-2

    [3]

    Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J, Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U−Pb geochronology[J]. Chemical Geology, 200(1/2): 155–170.

    [4]

    Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 63–114.

    [5]

    Chu N C, Taylor R N, Valérie Chavagnac, Nesbitt R W, Boella R M, Milton J A, German C R, Bayon G, Burton K. 2002. Hf isotope ratio analysis using multi−collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 17: 1567−1574. doi: 10.1039/b206707b

    [6]

    Ding Zhengjiang, Sun Fengyue, Liu Fulai, Liu Jianhui, Liu Dianhaop, Zhang Peijian, Du Shengxian, Li Bing. 2013. U–Pb dating of zircons from the Weideshan molybdenum copper polymetallic deposits in Jiaodong Peninsula, China, and its geological significance[J]. Acta Petrologica Sinica, 29(2): 607−618

    [7]

    Ding Zhengjiang, Sun Fengyue, Liu Jianhui, Liu Dianhao, Li Bile, Zhang Peijian, Qian Ye, Li Jie. 2012. Re–Os dating of molybdenites from the Xingjiashan molybdenum–tungsten deposit in Jiaodong Peninsula, China and its geological significance[J]. Acta Petrologica Sinica, 28(9): 2721−2732 (in Chinese with English abstract).

    [8]

    Ding Zhengjiang, Sun Fengyue, Li Guohua, Ji Pan, Kong Yan. 2015. Accurate zircon U–Pb dating of Early Yanshanian molybdenum–tungsten mother rocks in Xingjiashan area of Jiaodong Peninsula and its significance[J]. Geology in China, 42(2): 556−569 (in Chinese with English abstract).

    [9]

    Dong Xue, Li Dapeng, Zhao Rui, Wang Xinran, Wang Qingfei. 2020. Zircon U–Pb chronology and petrogenesis of Zetou pluton in the Jiaodong Peninsula: Implications for regional petrogenesis and mineralization in the Aptian to Albian[J]. Acta Petrologica Sinica, 36(5): 1501−1514 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.05.11

    [10]

    Dong Yinfeng, Xu Jinxin, Zhao Jin, Li Mingbo, Du Zhenming. 2015. Metallogenic regularity of laizhou–Anqiu iron ore–forming belt in Shandong Province[J]. Shandong Land and Resources, 31(5): 7−12 (in Chinese with English abstract).

    [11]

    Gai Yongsheng, Liu Liang, Kang Lei, Yang Wenqiang, Liao Xiaoying, Wang Yawei. 2015. The origin and geologic significance of plagiogranite inophiolite belt at North Altyn Tagh[J]. Acta Petrologica Sinica, 31(9): 2549−2565 (in Chinese with English abstract).

    [12]

    Gao S, Luo T C, Zhang B R, Zhang H F, Han Y W, Zhao Z D, Hu Y K. 1998. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 62(11): 1959−1975. doi: 10.1016/S0016-7037(98)00121-5

    [13]

    Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust–mantle system[J]. Chemical Geology, 120(3/4): 347−359.

    [14]

    Guo Jing, Zhu Xueqiang, Ren Tianlong, Dai Guangkai. 2019. Discovery and significance of cryptoexplosive intrusive breccia in Xiangkuang polymetallic sulfide deposit in Qixia Area of Shandong Province[J]. Shandong Land and Resources, 35(1): 19−24 (in Chinese with English abstract).

    [15]

    Guo Jinghui, Chen Fukun, Siebel W, Zhai Mingguo. 2005. Evolution of syn− to post−collisional magmatism from north Sulu UHP belt, eastern China: Zircon U−Pb geochronology[J]. Acta Petrologica Sinica, 21(4): 1281–1301 (in Chinese with English abstract).

    [16]

    Han Xiaomeng, Duan Liu'an, Zhao Pengfei, Wang Jiantian, Guo Yuncheng. 2024. Pyrite Rb−Sr isochron age of the Qianchuiliu gold deposit on northeastern margin of Jiaolai Basin, Shandong Province[J]. Geology in China, 51(1): 366−367 (in Chinese with English abstract).

    [17]

    Hart S R. 1984. A large–scale isotope anomaly in the southern hemisphere mantle[J]. Nature, 309(5971): 753−757. doi: 10.1038/309753a0

    [18]

    Hua Bei, Gao Xue, Hu Zhaoguo, Mei Zhenhua, Zhang Zhiwu, Meng Yinsheng, Zhang Baotao, Zhao Lei. 2020. Petrogenesis and tectonic setting of the Wuzhuxinwusu granite, western Xing–Meng Orogenic Belt: Evidences from geochemistry, zircon U–Pb geochronology and Sr–Nd–Hf isotopes[J]. Acta Petrologica Sinica, 36(5): 1426−1444 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.05.07

    [19]

    Hu Bo. 2019. Chronology, Geochemical Characteristics and Tectonic Significance of the Aishan–Nansu Pluton in Jiaodong[D]. Shijiazhuang: Hebei GEO University, 1–63(in Chinese with English abstract).

    [20]

    Jahn B M ,Wu F Y, Lo C H, Tsai C H. 1999. Crust−mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post−collisional mafic–ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 157(1/2): 119–146.

    [21]

    Jochum K P, Mcdonough W F, Palme H, Spettel B. 1989. Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths[J]. Nature, 340(6234): 548−550. doi: 10.1038/340548a0

    [22]

    Kelemen P B, Hanghj K, Greene A R. 2007. One view of the geochemistry of subduction–related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 3: 1−70.

    [23]

    Le Maitre R W. 1989. A Classification of Igneous Rocks and a Glossary of Terms: Recommendations of the International Union of Geological Sciences Sub–Commision on the Systematics of Igneous Rocks[M]. Blackwell, Oxford.

    [24]

    Li Hongkui, Zhuo Chuanyuan, Geng Ke, Liang Taitao. 2017. Intra–continental extensional tectonics of the Tan–Lu fault zone: An example from the appearance characteristics of the Yishu fault zone[J]. Earth Science Frontiers, 24(2): 73−84 (in Chinese with English abstract).

    [25]

    Li Jie. 2012. The Study on Metallization and Metallogenetic Model of Mo–Cu–Pb–Zn Complex Deposits and Comparison with Gold Metallization in Jiaodong Area[D]. Chengdu: Chengdu University of Technology, 1–127(in Chinese with English abstract).

    [26]

    Li Jie, Song Mingchun, Li Shiyong, Zhou Mingling, Ni Shijun, Zhang Chengjiang, Ding Zhengjiang, Yue Yuepo. 2013. Geological and geochemical features of the Dadengge gold polymetallic deposit in Jiaodong Peninsula[J]. Geology in China, 43(1): 221−237 (in Chinese with English abstract).

    [27]

    Li Jie, Song Mingchun, Li Shiyong, Zhou Xiaojian, Song Yingxin, Ding Zhengjiang, Yang Lixin, Wang Shanshan, Jiang Fan, Li Qian. 2016. Geological and geochemical features of the Dadengge gold polymetallic deposit in Jiaodong Peninsula[J]. Geology in China, 43(1): 221−237 (in Chinese with English abstract).

    [28]

    Li Xiuzhang, Liu Handong, Yu Xiaowei, Wang Ligong, Zhu Peigang, Guo Ruipeng. 2021. Petrogenesis element geochenistry Zircon U–Pb Chronology and Lu–Hf isotopic constraints of Qinguan granite body in northwestern Jiaozhou area[J]. Shandong Land and Resources, 37(12): 1−16 (in Chinese with English abstract).

    [29]

    Li Xiuzhang, Wang Ligong, Li Yixin, Wang Yingpeng, Yu Xiaowei, Zhang Wen, Guo Ruipeng, Liu Handong. 2022. Geochemistry, Zircon U–Pb chronology and Lu–Hf isotope characteristics of monzogranites from Aishan Pluton in Jiaodong Peninsula[J]. Geoscience, 36(1): 333−346. (in Chinese with English abstract).

    [30]

    Li Zengda, Yu Xiaofei, Wang Qunming, Du Zezhong, Cao Qiang, Shi Yuanming, Wang Ran. 2018. Petrogenesis of Sanfoshan granite, Jiaodong: Diagenetic physical and chemical conditions, zircon U–Pb geochronology and Sr–Nd isotope constraints[J]. Acta Petrologica Sinica, 34(2): 447−468 (in Chinese with English abstract).

    [31]

    Liu A D, Yun C G, Xiao M H, Jian T W, Peng F Z, Li P W, You F W. 2022. Discovery of a medium–scale tectonic altered rock type gold deposit (13.5 t) on the northeastern margin of Jiaolai Basin, Shandong Province, China and its new application of exploration direction[J]. China Geology, 5: 543−545.

    [32]

    Ludwig K R. 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication.

    [33]

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [34]

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956–983.

    [35]

    Qian Qing, Zhong Sunlin, Li Tongyi, Wen Daren. 2002. Geochemical characteristics and petrogenesis of the Badaling high Ba–Sr granitoids: A comparison of igneous rocks from North China and the Dabie–Sulu Orogen[J]. Acta Petrologica Sinica, 18(3): 275−292 (in Chinese with English abstract).

    [36]

    Ren Tianlong, Wang Laiming, Zhu Xueqiang, Yu Xiaowei, Yang Zhenyi, Liu Handong, Guo Ruipeng, Tao Youbing. 2021. Early Cretaceous Weideshan Period granite in Jiaodong Area[J]. Shandong Land and Resources, 37(10): 1−12 (in Chinese with English abstract).

    [37]

    Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247–263.

    [38]

    Sláma J, Košler Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S, Morris G A, Nasdala L, Norberg N. 2008. Plešovice zircon: A new natural reference material for U–Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249: 1−35. doi: 10.1016/j.chemgeo.2007.11.005

    [39]

    Song Mingchun, Yan Qingli. 2000. Characteristics of dioritic inclusions in Weideshan superunit and its magma origin in Jiaonan Area[J]. Shandong Land and Resources, (4): 16−21 (in Chinese with English abstract).

    [40]

    Song Mingchun, Wang Peicheng. 2003. Regional Geology of Shandong Province[M]. Jinan: Shandong Map Publishing House, 1–970 (in Chinese).

    [41]

    Song Mingchun. 2014. Jiaodong gold deposit and its tectonic magmatic background for mineralization[J]. Mineral Deposits, 33(S1): 131−132 (in Chinese).

    [42]

    Song Mingchun, Song Yingxin, Li Jie, Li Shiyong. 2015. Metallogenic series of gold and nonferrous metal deposits related to Cretaceous granites in eastern Shandong Peninsula, China[J]. Geotectonica et Etallogenia, 39(5): 828−843 (in Chinese with English abstract).

    [43]

    Song Mingchun, Lin Shaoyi, Yang Liqiang, Song Yingxin, Ding Zhengjiang, Li Jie, Li Shiyong, Zhou Mingling. 2020. Metallogenic model of Jiaodong Peninsula gold deposits[J]. Mineral Deposits, 39(2): 215−236 (in Chinese with English abstract).

    [44]

    Song Mingchun, Song Yingxin, Li Jie, Cao Chunguo, Ding Zhengjiang, Liu Xiao, Zhou Mingling, Li Shiyong. 2022. Stepwise prospecting method for deep–seated deposits: Take deep prospecting of ore concentration area of gold in Jiaodong Peninsula, China as an example[J]. Geology in China, 49(1): 1−15 (in Chinese with English abstract).

    [45]

    Song M C, Ding Z J, Zhang J J, Song Y X, Bo J W, Wang Y Q , Liu H B, Li S Y, Li J, Li R X, Wang B, Liu X D, Zhang L L, Dong L L, Li J, He C Y. 2021. Geology and mineralization of the sanshandao supergiant gold deposit (1200 t) in the Jiaodong Peninsula, China: A review[J]. China Geology, 4(4): 686–719.

    [46]

    Sun Jinfeng, Yang Jinhui, Wu Fuyuan. 2009. Application of in–situ isotopic analysis to granite genesis[J]. Earth Science Frontiers, 16(2): 129−139 (in Chinese with English abstract).

    [47]

    Sun Luwei, Wang Guangliang. 2014. Geological characteristics and ore prospecting directions of xingshabei molybdenum deposit in Yantai area of Jiaodong peninsula in Shandong Province[J]. Shandong Land and Resources, 30(4): 41−45 (in Chinese with English abstract).

    [48]

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    [49]

    Tian Jiepeng, Tian Jingxiang, Guo Ruipeng, Wei Cangshan, Wang Ligong, Yu Xiaowei, Li Xiuzhang, Huang Yongbo, Zhang Chunchi, Liu Handong, Zhu Peigang. 2016. Jiaodong–type gold deposit related to crust source remelting layered granite and crust–mantle mixed granodiorite[J]. Acta Geologica Sinica, 90(5): 987−996.

    [50]

    Vervoort J D, Patchett P J, Gehrels G E, Nutman A P. 1996. Constraints on early earth differentiation from hafnium and neodymium isotopes[J]. Nature, 379(6566): 624−627. doi: 10.1038/379624a0

    [51]

    Wan Zhongjie. 2017. Analysis on geological characteristics and the origin of Nanren iron deposit in Changyi City of Shandong Province[J]. Shandong Land and Resources, 33(8): 27−32 (in Chinese with English abstract).

    [52]

    Wang Laiming, Ren Tianlong, Liu Handong, Ning Zhenguo, Yu Xiaowei, Guo Ruipeng, Hou Jianhua, Zhu Xueqiang. 2021. Division of Mesozoic granites in Jiaodong Area[J]. Shandong Land and Resources, 37(8): 1−14 (in Chinese with English abstract).

    [53]

    Watson E B, Harrison T M. 1983. zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. earth planet[J]. Earth and Planetary Science Letters, 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X

    [54]

    Wen Bojie, Fan Hongrui, Hu Fangfang, Yang Kuifeng, Liu Xuan, Cai Yachun, Sun Zhifu, Sun Zongfeng. 2015. The genesis of pegmatite–type molybdenum mineralization in Sanshandao, and their implications for molybdenum deposit in Jiaodong, East China[J]. Acta Petrologica Sinica, 31(4): 1002−1014 (in Chinese with English abstract).

    [55]

    Wen Chunqi, Duo Ji. 1999. Methods of Ore Deposit Study[M]. Chengdu: Sichuan Science and Technology Press, 1–202 (in Chinese with English abstract).

    [56]

    Whalen J, Currie K, Chappell B. 1987. A–type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, (4): 95.

    [57]

    Wilson M. 1989. Igneous Petrogenesis: A Global Tectonic Approach[M]. London: Chapman & Hall, 466.

    [58]

    Wright J B. 1969. A simple alkalinity ratio and its application to questions of non–orogenic granite genesis[J]. Geological Magazine, 106(4): 370−384. doi: 10.1017/S0016756800058222

    [59]

    Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology[J]. Chemical Geology, 234(1/2): 105−126.

    [60]

    Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu–Hf isotopic systematics and thier applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185−220 (in Chinese with English abstract).

    [61]

    Wu Yuanbao, Zheng Yongfei. 2004. Genetic mineralogy of zircon and its constraints on U–Pb age interpretation[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589

    [62]

    Xu Yigang, Wu Xiangyang, Luo Zhenyu, Ma Jinlong, Huang Xiaolong, Xie Liewen. 2007. Zircon Hf isotope compositions of Middle Jurassic–Early Cretaceous intrusions in Shandong Province and its implications[J]. Acta Petrologica Sinica, 23(2): 307−316 (in Chinese with English abstract).

    [63]

    Yang Liqiang, Deng Jun, Wang Zhongliang, Zhang Liang, Guo Linnan, Song Mingchun, Zheng Xiaoli. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 30(9): 2447−2467 (in Chinese with English abstract).

    [64]

    Yang K F, Fan H R, Santosh M, Hu F F, Wilde S A, Lan T G, Lu L N, Liu Y S. 2012. Reactivation of the archean lower crust: Implications for zircon geochronology, elemental and Sr–Nd–Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong terrane, the North China craton[J]. Lithos, 146/147(8): 112−127.

    [65]

    Zeng Fanyu. 2019. Analysis on geological characteristics and the origin of Wazi iron deposit in Shandong[J]. Mineral Exploration, 10(8): 1928−1933 (in Chinese with English abstract).

    [66]

    Zhang Lishi, Sun Fengyue, Li Bile, Qian Ye, Zhang Yajing, Wang Li, Wang Linlin. 2021. Petrogenesis and tectonic setting of granitoids in the Fu'anpu molybdenum deposit, Lesser Xing’an–Zhangguangcai range metallogenic belt: Constraints from element geochemistry, zircon U–Pb geochronology and Sr– Nd– Hf isotopes[J]. Acta Geologica Sinica, 95(8): 2471−2492 (in Chinese with English abstract).

    [67]

    Zhang Qi, Wang Yan, Pan Guoqiang, Li Cengdong, Jin Weijun. 2008. Sources of granites: Some crucial questions on granite study (4)[J]. Acta Petrologica Sinica, 24(6): 1193−1204.

    [68]

    Zhao Zhenhua, Xiong Xiaolin, Wang Qiang, Qiao Yulou. 2008. Someaspectson geochemistry of Nb and Ta[J]. Geochimica, 37(4): 304−320. (in Chinese with English abstract

    [69]

    Zhu B Q, Zhang J L, Tu X L, Chang X Y, Fan C Y, Liu Y, Liu J Y. 2001. Pb, Sr, and Nd isotopic features in organic matter from China and their implications for petroleum generation and migration[J]. Geochimica et Cosmochimica Acta, 65(15): 2555−2570. doi: 10.1016/S0016-7037(01)00608-1

    [70]

    Zindler A, Hart S. 1986. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14: 493−571. doi: 10.1146/annurev.ea.14.050186.002425

    [71]

    Zou Jian, Tang Wenlong, Ding Zhengjiang, Bo Junwei, LIi Zhiqiang, Yu Sen. 2021. Zircon U–Pb dating of the Yuangezhuang pluton in Muping of Shandong Province and its constraints on mineralization of Cu–Mo deposits[J]. Geology in China, 48(3): 883−899 (in Chinese with English abstract). doi: 10.12029/gc20210316

    [72] 丁正江, 孙丰月, 刘福来, 刘建辉, 刘殿浩, 张丕建, 杜圣贤, 李兵. 2013. 胶东伟德山地区铜钼多金属矿锆石U–Pb法测年及其地质意义[J]. 岩石学报, 29(2): 607−618.
    [73] 丁正江, 孙丰月, 刘建辉, 刘殿浩, 李碧乐, 张丕建, 钱烨, 李杰. 2012. 胶东邢家山钼钨矿床辉钼矿Re–Os同位素测年及其地质意义[J]. 岩石学报, 28(9): 2721−2732.
    [74] 丁正江, 孙丰月, 李国华, 纪攀, 孔彦. 2015. 胶东邢家山地区燕山早期钼钨成矿母岩锆石U–Pb年龄及其意义[J]. 中国地质, 42(2): 556−569. doi: 10.3969/j.issn.1000-3657.2015.02.015
    [75] 董学, 李大鹏, 赵睿, 王欣然, 王庆飞. 2020. 胶东泽头岩体锆石U–Pb年代学和岩石成因: 对区域早白垩世晚期成岩成矿作用的指示[J]. 岩石学报, 36(5): 1501−1514. doi: 10.18654/1000-0569/2020.05.11
    [76] 董银峰, 徐金欣, 赵金, 李明波, 杜振明. 2015. 山东省莱州–安丘铁成矿带成矿规律探析[J]. 山东国土资源, 31(5): 7−12.
    [77] 盖永升, 刘良, 康磊, 杨文强, 廖小莹, 王亚伟. 2015. 北阿尔金蛇绿混杂岩带中斜长花岗岩的成因及其地质意义[J]. 岩石学报, 31(9): 2549−2565.
    [78] 郭晶, 朱学强, 任天龙, 戴广凯. 2019. 山东栖霞香夼地区多金属硫化物矿床外围隐爆–侵入角砾岩的发现及意义[J]. 山东国土资源, 35(1): 19−24.
    [79] 郭敬辉, 陈福坤, 张晓曼, Siebel W, 翟明国. 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学[J]. 岩石学报, 21(4): 1281−1301.
    [80] 韩小梦, 段留安, 赵鹏飞, 王建田, 郭云成. 2024. 山东省胶莱盆地东北缘前垂柳金矿床黄铁矿Rb−Sr等时线年龄[J]. 中国地质, 51(1): 366−367.
    [81] 华北, 高雪, 胡兆国, 梅贞华, 张之武, 孟银生, 张保涛, 赵磊. 2020. 兴蒙造山带西段乌珠新乌苏花岗岩岩石成因和构造背景: 地球化学、U–Pb年代学和Sr–Nd–Hf同位素约束[J]. 岩石学报, 36(5): 1426−1444. doi: 10.18654/1000-0569/2020.05.07
    [82] 胡波. 2019. 胶东艾山–南宿岩体年代学、地球化学特征及构造意义[D]. 石家庄: 河北地质大学, 1–63.
    [83] 李洪奎, 禚传源, 耿科, 梁太涛. 2017. 郯–庐断裂带陆内伸展构造: 以沂沭断裂带的表现特征为例[J]. 地学前缘, 24(2): 73−84.
    [84] 李杰. 2012. 胶东地区钼−铜−铅锌多金属矿成矿作用及成矿模式[D]. 成都: 成都理工大学, 1–127.
    [85] 李杰, 宋明春, 王美云, 李世勇, 周明岭, 倪师军, 张成江, 丁正江, 岳跃破. 2013. 胶东尚家庄钼矿床Re–Os同位素年龄及其地质意义[J]. 中国地质, 40(5): 1612−1621. doi: 10.3969/j.issn.1000-3657.2013.05.024
    [86] 李杰, 宋明春, 李世勇, 周晓剑, 宋英昕, 丁正江, 杨立新, 王珊珊, 姜帆, 李倩. 2016. 胶东大邓格金多金属矿床地质地球化学特征及意义[J]. 中国地质, 43(1): 221−237. doi: 10.3969/j.issn.1000-3657.2016.01.016
    [87] 李秀章, 刘汉栋, 于晓卫, 王立功, 祝培刚, 郭瑞朋. 2021. 胶西北秦姑庵花岗岩体岩石成因及对金成矿的启示: 元素地球化学、锆石U–Pb 年代学及Lu–Hf同位素制约[J]. 山东国土资源, 37(12): 1−16. doi: 10.12128/j.issn.1672-6979.2021.12.001
    [88] 李秀章, 王立功, 李衣鑫, 王英鹏, 于晓卫, 张文, 郭瑞朋, 刘汉栋. 2022. 胶东艾山岩体二长花岗岩地球化学、锆石U–Pb年代学及Lu–Hf同位素特征研究[J]. 现代地质, 36(1): 333−346.
    [89] 李增达, 于晓飞, 王全明, 杜泽忠, 曹强, 师明元, 王然. 2018. 胶东三佛山花岗岩的成因: 成岩物理化学条件、锆石U–Pb年代学及Sr–Nd同位素约束[J]. 岩石学报, 34(2): 447−468.
    [90] 钱青, 钟孙霖, 李通艺, 温大任. 2002. 八达岭基性岩和高Ba–Sr花岗岩地球化学特征及成因探讨: 华北和大别–苏鲁造山带中生代岩浆岩的对比[J]. 岩石学报, 18(3): 275−292. doi: 10.3969/j.issn.1000-0569.2002.03.002
    [91] 任天龙, 王来明, 朱学强, 于晓卫, 杨振毅, 刘汉栋, 郭瑞朋, 陶有兵. 2021. 胶东地区早白垩世伟德山期花岗岩[J]. 山东国土资源, 37(10): 1−12. doi: 10.12128/j.issn.1672-6979.2021.10.001
    [92] 宋明春, 严庆利. 2000. 胶南地区伟德山超单元中闪长质包体的特征及岩浆成因[J]. 山东地质, (4): 16−21.
    [93] 宋明春, 王沛成. 2003. 山东省区域地质[M]. 济南: 山东省地图出版社, 1–970.
    [94] 宋明春. 2014. 胶东型金矿及其成矿的构造岩浆背景[J]. 矿床地质, 33(S1): 131−132.
    [95] 宋明春, 宋英昕, 李杰, 李世勇. 2015. 胶东与白垩纪花岗岩有关的金及有色金属矿床成矿系列[J]. 大地构造与成矿学, 39(5): 828−843.
    [96] 宋明春, 林少一, 杨立强, 宋英昕, 丁正江, 李杰, 李世勇, 周明岭. 2020. 胶东金矿成矿模式[J]. 矿床地质, 39(2): 215−236.
    [97] 宋明春, 宋英昕, 李杰, 曹春国, 丁正江, 刘晓, 周明岭, 李世勇. 2022. 深部矿阶梯找矿方法: 以胶东金矿集区深部找矿为例[J]. 中国地质, 49(1): 1−15.
    [98] 孙金凤, 杨进辉, 吴福元. 2009. 原位微区同位素分析在花岗岩成因研究中的应用[J]. 地学前缘, 16(2): 129−139.
    [99] 孙璐伟, 王光良. 2014. 胶东半岛烟台地区杏山北钼矿床地质特征及其找矿预测[J]. 山东国土资源, 30(4): 41−45. doi: 10.3969/j.issn.1672-6979.2014.04.009
    [100] 田杰鹏, 田京祥, 郭瑞朋, 韦昌山, 王立功, 于晓卫, 李秀章, 黄永波, 张春池, 刘汉栋, 祝培刚. 2016. 胶东型金矿: 与壳源重熔层状花岗岩和壳幔混合花岗闪长岩有关的金矿[J]. 地质学报, 90(5): 987−996.
    [101] 万中杰. 2017. 山东省昌邑市南任铁矿地质特征及成因初探[J]. 山东国土资源, 33(8): 27−32.
    [102] 王来明, 任天龙, 刘汉栋, 宁振国, 于晓卫, 郭瑞朋, 侯建华, 朱学强. 2021. 胶东地区中生代花岗岩划分[J]. 山东国土资源, 37(8): 1−14.
    [103] 文博杰, 范宏瑞, 胡芳芳, 杨奎锋, 刘玄, 蔡亚春, 孙之夫, 孙宗锋. 2015. 胶西北三山岛伟晶岩型脉状钼矿化成因及对胶东钼成矿的指示意义[J]. 岩石学报, 31(4): 1002−1014.
    [104] 温春齐, 多吉. 1999. 矿床学研究方法[M]. 成都: 四川科技出版社, 1–202.
    [105] 吴福元, 李献华, 郑永飞, 高山. 2007. Lu–Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185−220.
    [106] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U–Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    [107] 徐义刚, 巫祥阳, 罗震宇, 马金龙, 黄小龙, 谢烈文. 2007. 山东中侏罗世—早白垩世侵入岩的锆石Hf同位素组成及其意义[J]. 岩石学报, 23(2): 307−316. doi: 10.3969/j.issn.1000-0569.2007.02.011
    [108] 杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统[J]. 岩石学报, 30(9): 2447−2467.
    [109] 曾凡玉. 2019. 山东洼子铁矿地质特征及成因探讨[J]. 矿产勘查, 10(8): 1928−1933.
    [110] 张立仕, 孙丰月, 李碧乐, 钱烨, 张雅静, 王力, 王琳琳. 2021. 小兴安岭–张广才岭成矿带福安堡钼矿区花岗岩类的岩石成因和构造背景: 元素地球化学、锆石U–Pb年龄和Sr–Nd–Hf同位素约束[J]. 地质学报, 95(8): 2471−2492.
    [111] 张旗, 王焰, 潘国强, 李承东, 金惟俊. 2008. 花岗岩源岩问题——关于花岗岩研究的思考之四[J]. 岩石学报, 24(6): 1193−1204.
    [112] 赵振华, 熊小林, 王强, 乔玉楼. 2008. 铌与钽的某些地球化学问题[J]. 地球化学, 37(4): 304−320. doi: 10.3321/j.issn:0379-1726.2008.04.005
    [113] 邹键, 唐文龙, 丁正江, 薄军委, 李志强, 于森. 2021. 山东牟平院格庄岩体锆石U–Pb年龄及其对周缘铜钼多金属成矿的制约[J]. 中国地质, 48(3): 883−899.
  • 期刊类型引用(5)

    1. 闫军林. 河道活动坝特性研究与应用——以白杨河为例. 水利科技与经济. 2024(04): 59-64 . 百度学术
    2. 李冰,杜天愉,梅惠杰,吴玥洁,马卿皓,郭玉杰,弋双文,李月丛. 泥河湾盆地油房遗址MIS 5阶段人类活动与气候、植被的关系. 第四纪研究. 2024(05): 1322-1337 . 百度学术
    3. 彭远黔,高武平,冉志杰,王红蕾,朱坤静,张安东,王志胜. 基于浅层地震勘探的滹沱河断裂第四纪活动性研究. 华北地震科学. 2024(04): 35-43 . 百度学术
    4. 郝娇娇,郭雯豪,刘耀徽,陈伟,李鹏为,马小飞,李夫星,袁璟,扶有镜. 基于高分辨率遥感影像的古中山国平原区地面古河道识别研究. 河北师范大学学报(自然科学版). 2023(06): 628-637 . 百度学术
    5. 王燕校,王永,姚培毅,田飞,袁路朋,叶梦旎. 白洋淀漕河全新世早期古洪水事件的沉积特征及气候背景. 岩石矿物学杂志. 2022(05): 916-928 . 百度学术

    其他类型引用(3)

图(12)  /  表(6)
计量
  • 文章访问数:  2635
  • HTML全文浏览量:  963
  • PDF下载量:  259
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-12-26
  • 修回日期:  2022-05-06
  • 刊出日期:  2024-07-24

目录

/

返回文章
返回
x 关闭 永久关闭