高级检索
    唐春雷, 郑秀清, 梁永平, 张发旺, 景泽. 山西太原晋祠—平泉水力联系及对晋祠泉复流的贡献[J]. 中国地质, 2020, 47(6): 1755-1764. DOI: 10.12029/gc20200612
    引用本文: 唐春雷, 郑秀清, 梁永平, 张发旺, 景泽. 山西太原晋祠—平泉水力联系及对晋祠泉复流的贡献[J]. 中国地质, 2020, 47(6): 1755-1764. DOI: 10.12029/gc20200612
    TANG Chunlei, ZHENG Xiuqing, LIANG Yongping, ZHANG Fawang, JING Ze. The hydraulic connection between Jinci and Pingquan in Taiyuan' Shanxi and its contribution to the reflow of Jinci spring[J]. GEOLOGY IN CHINA, 2020, 47(6): 1755-1764. DOI: 10.12029/gc20200612
    Citation: TANG Chunlei, ZHENG Xiuqing, LIANG Yongping, ZHANG Fawang, JING Ze. The hydraulic connection between Jinci and Pingquan in Taiyuan' Shanxi and its contribution to the reflow of Jinci spring[J]. GEOLOGY IN CHINA, 2020, 47(6): 1755-1764. DOI: 10.12029/gc20200612

    山西太原晋祠—平泉水力联系及对晋祠泉复流的贡献

    The hydraulic connection between Jinci and Pingquan in Taiyuan' Shanxi and its contribution to the reflow of Jinci spring

    • 摘要: 晋祠泉出露于山西太原西山悬瓮山下,由难老泉、圣母泉、善利泉组成。1954—1958年实测泉水平均流量为l.94 m3/s。与晋祠泉同处山前断裂带的平泉于1978年成为特大岩溶水自流井水源地,自流量最大达到1.56 m3/s。由于这些自流井的开采,使晋祠泉的流量急剧下降,1994年4月30日断流。研究山西太原晋祠泉—平泉水力联系对晋祠泉复流方案制定具有重要意义。本文以晋祠泉、平泉为研究对象,通过样品采集、水质监测,综合运用水化学(离子比例、硫同位素、氢氧同位素)方法。揭示晋祠泉—平泉水文地球化学特征和环境同位素特征,反映地下水流系统的特征、水力联系特征。得出1980—1992年,晋祠泉地下水水位的变化呈稳定下降趋势,主要原因是有太原化学工业公司、开化沟、淸徐县平泉村和梁泉村等水源地大量开采岩溶地下水,导致地下水水位下降。晋祠—平泉一带岩溶地下水氢氧同位素值较接近,说明这一带岩溶地下水补给来源与补给途径相近。水质监测分析得出晋祠泉与平泉各个离子变化趋势基本一致。说明晋祠与平泉存在紧密的水力联系,因此晋祠泉与平泉必然存在一个比较强的导水通道。可以通过在晋祠泉下游导水通道上帷幕灌浆,提高晋祠泉水水位,使晋祠泉出流。

       

      Abstract: Jinci Spring,which is composed of Nanlao Spring,Shengmu Spring and Shanli Spring,is exposed at the foot of Xishan Mountain in Taiyuan. The average horizontal discharge of Jinci Spring was 1.94 m3/s from 1954 to 1958. Pingquan spring,located in the piedmont fault zone with Jinci spring,became the source of superlarge karst water self-flowing wells in 1978, with the maximum self-flowing rate reaching 1.56 m3/s. Because of the exploitation of these self-flowing wells,the flow of Jinci Spring dropped sharply and was cut off on April 30,1994. The study of the hydraulic connection between Jinci Spring and Pingquan Spring in Taiyuan,Shanxi Province,is of great significance for the formulation of Jinci Spring recharge plan. With Jinci spring and Pingquan spring as the research objects and through sample collection and water quality monitoring,hydrochemistry (ion ratio,sulfur isotope,hydrogen and oxygen isotope) methods were comprehensively applied. The result has revealed hydrogeochemical characteristics and environmental isotope characteristics of Jinci spring to Pingquan spring as well as the characteristics of groundwater flow system and hydraulic connection. From 1980 to 1992, the change of groundwater level in Jinci Spring showed a steady downward trend. The main reason was that a large number of karst groundwater was exploited in Taiyuan Chemical Industry Company,Kaihua Valley,Pingquan Village and Liangquan Village in Zhaoxu County,which resulted in the decline of groundwater level. The hydrogen and oxygen isotope values of karst groundwater in Jinci spring to Pingquan spring area were close to each other,indicating that the source of recharge and the way of recharge were quite similar. Water quality monitoring analysis shows that the change trend of each ion in Jinci spring and Pingquan spring is basically the same,suggesting that Jinci spring and Pingquan spring have close hydraulic connection,so Jinci spring and Pingquan spring must have a strong water channel. The water level of Jinci spring can be raised by curtain grouting on the downstream water channel of Jinci spring,so that Jinci spring can flow out.

       

    /

    返回文章
    返回