Citation: | ZHENG Mianping, XING Enyuan, ZHANG Xuefei, LI Mingming, CHE Dong, BU Lingzhong, HAN Jiahuan, YE Chuanyong. Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits[J]. GEOLOGY IN CHINA, 2023, 50(6): 1599-1620. DOI: 10.12029/gc20231025002 |
This paper is the result of mineral exploration engineering.
A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world's keen demand for lithium resources has expedited the discovery of numerous novel lithium resources.
Given the presence of varied classification criteria for lithium resources presently, this study further ascertained and classified the lithium resources according to their occurrence modes.
The global lithium deposits are divided into 10 types and 5 subtypes of lithium deposits (resources) based on endogenetic and exogenetic factors.
As indicated by surveys of Cenozoic exogenetic lithium deposits in China and abroad, the formation and distribution of the deposits are primarily determined by plate collision zones, their primary material sources are linked to the anatectic magmas in the deep oceanic crust, and they were formed primarily during the Miocene and Late Paleogene. The researchers ascertained that these deposits, especially those of the salt lake, geothermal, and volcanic deposit types are closely related to lithium tuff and geothermal water, which have magmatic exclusivity of acidic nature, and the salt lake deposit types tend to migrate and accumulate toward low-lying areas, and display supernormal enrichment. However, the material sources of lithium deposits (resources) of the Neopaleozoic clay subtype and the deep brine type are yet to be further identified. Given the various types and complex origins of lithium deposits (resources), which were formed due to the interactions of multiple spheres, it is recommended that the mineralization of exogenetic lithium deposits (resources) be investigated by integrating tectono-geochemistry, paleoatmospheric circulation, and salinology. So far, industrialized lithium extraction is primarily achieved in lithium deposits of the salt lake, clay, and hard rock types. The lithium extraction employs different processes, with lithium extraction from salt lake-type lithium deposits proving the most energy-saving and cost-effective.
AGU Fall Meeting. 2018. V14B: Lithium resources in continental brines, pegmatites, and lacustrine sediments[EB/OL]. https://agu.confex.com/agu/fm18/meetingapp.cgi/Session/51511.
|
Arne S K, Johan W S. 1941. Method of recovering lithium salts from lithium-containing minerals: US24041638A[P]. 1941-01-28.
|
Barbosa L I, González J A, Ruiz M D C. 2015. Extraction of lithium from β- spodumene using chlorination roasting with calcium chloride[J]. Thermochimica Acta, 605: 63-67. doi: 10.1016/j.tca.2015.02.009
|
Barbosa L I, Valente G, Orosco R P. 2014. Lithium extraction from beta- spodumene through chlorination with chlorine gas[J]. Minerals Engineering, 56: 29-34. doi: 10.1016/j.mineng.2013.10.026
|
Barbosa L I, Valente N G, González J A. 2013. Kinetic study on the chlorination of β-spodumene for lithium extraction with Cl2 gas[J]. Thermochimica Acta, 557: 61-67. doi: 10.1016/j.tca.2013.01.033
|
Benson T R, Coble M A, Dilles J H. 2023. Hydrothermal enrichment of lithium in intracaldera illite- bearing claystones[J]. Science Advances, 9(35): eadh8183. doi: 10.1126/sciadv.adh8183
|
Benson T R, Coble M A, Rytuba J J, Gail A M. 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J]. Nature Communications, 8(1): 270-278. doi: 10.1038/s41467-017-00234-y
|
Bradley D C, Mccauley A D, Stillings L L. 2017a. Mineral- deposit model for lithium cesium tantalum pegmatites[R]. U. S.: U. S. Geological Survey, 1‒48.
|
Bradley D C, Stillings L L, Jaskula B W, Munk L A, McCauley A D. 2017b. Lithium, chap. K[R]. Schulz K J, DeYoung J H, Seal R R, Bradley D C (eds.). Critical Mineral Resources of the United States- Economic and Environmental Geology and Prospects for Future Supply: U. S. Geological Survey Professional Paper 1802, K1-K21.
|
Chen Ping, Chai Donghao. 1997. Sedimentary Geochemistry of Carboniferous Bauxite Deposite in Shanxi[M]. Taiyuan: Shanxi Science and Technology Press, 1‒194 (in Chinese with English Abstract).
|
Choubey P K, Kim M S, Srivastava R R, Lee J C. 2016. Advance review on the exploitation of the prominent energy- storage element: Lithium (Ⅰ): From mineral and brine resources[J]. Minerals Engineering, 89: 119-137. doi: 10.1016/j.mineng.2016.01.010
|
Christmann P, Gloaguen E, Labbé J F, Melleton J, Piantone P. 2015. Chapter 1-Global Lithium Resources and Sustainability Issues[C]// Chagnes A., Światowska J (eds.). Lithium Process Chemistry. Elsevier, Amsterdam, 1‒40.
|
Davis J R, Vine J D. 1979. Stratigraphic and Tectonic Setting of the Lithium Brine Field, Clayton Valley, Nevada[C]//Rocky Mountain Association of Geologists, 421‒432.
|
Deng Feiyue, Yin Taoxiu, Gan Wenwen, He Xiaoyan. 1999. Comprehensive utilization of potassium, rubidium, and cesium in mother liquor after extracting lithium from lepidoliter[J]. Mining and Metallurgy Engineering, 19(1): 50-52 (in Chinese with English abstract).
|
Ding T, Zheng M P, Peng S P, Lin Y H, Zhang X F, Li M M. 2023. Lithium extraction from salt lakes with different hydrochemical types in the Tibet Plateau[J]. Geoscience Frontiers, 14: 101485. doi: 10.1016/j.gsf.2022.101485
|
Ferrell J E. 1985. Lithium[M]. Chapter in Minerals Facts and Problems. United States Bureau of Mine Bulletin, 675: 461‒470.
|
Gao T M, Fan N, Chen W, Dai T. 2023. Lithium extraction from hard rock lithium ores (spodumene, lepidolite, zinnwaldite, petalite): Technology, resources, environment and cost[J]. China Geology, 6(1): 137-153. doi: 10.31035/cg2022088
|
Garrett D E. 2004. Handbook of Lithium and Natural Calcium Chloride[M]. Oxford: Academic Press, 1‒476.
|
Gruber P W, Medina P A, Keoleian G A. 2011. Global lithium availability: A constraint for electric vehicles[J]. Journal of Industrial Ecology, 15(5): 760‒775. doi: 10.1111/j.1530-9290.2011.00359.x
|
Kesler S E, Gruber P W, Medina P A. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 48(5): 55-69.
|
Koltsov V, Novikov P Y, Sarychev G A, Tananaev I G. 2016. Experimental investigations during the technology development of sulfuric acid processing of spodumene concentrate[J]. Tsvetnye Metally, (4): 18-22.
|
Kunasz I A. 1974. Lithium occurrence in the brines of Clayton Valley Esmeralda County, Nevada[C]//Coogan A H (eds). Fourth International Symposium on Salt, Houston, 57-66.
|
Li Boyang, Jiang Dawei, Fu Xu, Wang Lei, Gao Shuqi, Fan Zhiyong, Wang Kexiang, Huge Jiletu. 2018. Geological characteristics and prospecting significance of Weilasituo li polymetallic deposit, Inner Mongolia[J]. Mineral Exploraton, 9(6): 1185-1191 (in Chinese with English abstract).
|
Li Jiankang, Liu Xifang, Wang Denghong. 2014. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 88 (12): 2269-2283 (in Chinese with English abstract).
|
Ling Y, Zheng M P, Sun Q, Dai X Q. 2017. Last deglacial climatic variability in Tibetan Plateau as inferred from n- alkanes in a sediment core from Lake Zabuye[J]. Quaternary International, 15‒24.
|
Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 44(2): 263-278 (in Chinese with English abstract).
|
Lowe J J, Walker M J C. 1984. Reconstructing Quaternary Environments[M]. London: Longman, 1‒404.
|
Ma Zhibang, Ma Nina, Zhang Xuefei, Wang Yu. 2010. 230Th/238U chronology of Late Pleistocene lacustrine depositsin Zabuye salt Lake, Tibet[J]. Acta Geologica Sinica, 84(11): 1641-1651 (in Chinese with English abstract).
|
Man Zhimin. 2009. Research on Climate Change during the Historical Period of China[M]. Jinan: Shandong Education Press, 1‒504(in Chinese).
|
McQuarrie N, Horton B K, Zandt G. 2005. Lithospheric evolution of the Andean fold-thrust belt, Bolivia, and the origin of the central Andean plateau[J]. Tectonophysics, 399(1/4): 15-37.
|
Meshram P, Pandey B D, Mankhand T R. 2014. Extraction of lithium from primary and secondary sources by pre- treatment, leaching and separation: A comprehensive review[J]. Hydrometallurgy, 150: 192-208. doi: 10.1016/j.hydromet.2014.10.012
|
ОЗОЛ А А. 1987. Sedimentary and Volcanic Sedimentary Boron Deposits[M]. Qin G X, Liu J C, translated. Beijing: Geological Publishing House, 1‒222 (in Chinese).
|
Ren Fangtao, Zhang Jie. 2013. Chemical separation and enrichment of lithium in aluminous rock in central Guizhou[J]. Inorganic Chemicals Industry, 45(3): 19-21 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-4990.2013.03.006
|
Sarchi C, Lucassen F, Meixner A, Caffe P J, Becchio R, Kasemann S A. 2023. Lithium enrichment in the Salar de Diablillos, Argentina, and the influence of Cenozoic volcanism in a basin dominated by Paleozoic basement[J]. Mineralium Deposita, 58: 1351-1370. doi: 10.1007/s00126-023-01181-z
|
Shu Liangshu, Zhu Wenbin, Xu Zhiqin. 2021. Geological settings and metallogenic conditions of the granite- type lithium ore deposits in South China[J]. Acta Geologica Sinica, 95(10): 3099-3114 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.10.011
|
Stanley C J, Jones G C, Rumsey M S. 2007. Jadarite, LiNaSiB3O7 (OH), a new mineral species from the Jadar Basin, Serbia[J]. European Journal of Mineralogy, 19(4): 575-580. doi: 10.1127/0935-1221/2007/0019-1741
|
Sun Honglie, Zheng Du. 1998. Formation, Evolution and Development of the Qinghai-Xizang Plateau[M]. Guangzhou: Guangdong Science and Technology Press, 1‒350(in Chinese with English abstract).
|
Swain B. 2016. Recovery and recycling of lithium: A review[J]. Separation & Purification Technology, 172: 388-403.
|
USGS. 2019. Minerals commodity summaries: Lithium[EB/OL]. Geological Survey: 1-2. https://pubs.usgs.gov/periodicals/mcs2019/mcs2019-lithium.pdf.
|
USGS. 2020. Minerals commodity summaries: Lithium[EB/OL]. Geological Survey: 1-2. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-lithium.pdf.
|
USGS. 2021. Minerals commodity summaries: Lithium[EB/OL]. Geological Survey: 1-2. https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-lithium.pdf.
|
USGS. 2022. Minerals commodity summaries: Lithium[EB/OL]. Geological Survey: 1-2. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-lithium.pdf.
|
USGS. 2023. Minerals commodity summaries: Lithium[EB/OL]. Geological Survey: 1-2. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-lithium.pdf.
|
Vine J D, Dooley J R. 1980. Where on Earth is all the lithium? with a section on uranium isotope studies[R]. USGS, 1‒114.
|
Wang C G, Zheng M P. 2019. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County, Himalayas[J]. Geothermics, 81(SEP.): 243-258.
|
Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenhui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 743-764 (in Chinese with English abstract).
|
Wang Denghong, Li Peigang, Qu Wenjun, Lei Zhiyuan, Liao Youchang. 2013. Discovery and preliminary study of the high tungsten and lithium contents in the Dazhuyuan bauxite deposit, Guizhou, China[J]. Science China: Earth Sciences, 56: 145-152 (in Chinese with English abstract). doi: 10.1007/s11430-012-4504-2
|
Wang Qiushu, Yuan Chunhua, Xu Hong. 2015. Analysis of the global lithium resource distribution and potential[J]. China Mining Magazine, 24(2): 10-17 (in Chinese with English abstract).
|
Wu Xishun, Huang Wenbin, Du Xiaohui, Li Li. 2014. Study on metallogenic types and models of lithium deposits in the world[J]. Deposit Geology, 33(S1), 1197-1198 (in Chinese with English abstract).
|
Xiao M S, Wang S H, Zhang Q F, Zhang J W. 1997. Leaching mechanism of the spodumene sulphuric acid process[J]. Rare Metals, 16(1): 37-45.
|
Xu S S, Song J F, Bi Q Y, Chen Q, Zhang W M, Qian Z X, Zhang L, Xu S A, Tang N, He T. 2021. Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice[J]. Journal of Membrane Science, 635: 119441. doi: 10.1016/j.memsci.2021.119441
|
Yu Feng, Wang Denghong, Yu Yang, Liu Zhu, Gao Juanqin, Zhong Jiaai, Qin Yan. 2019. The distribution and exploration status of domestic and foreign sedimentary-type Lithium deposits[J]. Rock and Mineral Analysis, 38(3): 354-364 (in Chinese with English abstract).
|
Zhang Yingli, Chen Lei, Wang Kunming, Wang Gang, Guo Xianqing, Nie Xiao, Pang Xuyong. 2022. Metallogenic characteristics of sedimentary lithium resources[J]. Mineral Deposits, 41(5): 1073-1092 (in Chinese with English abstract).
|
Zhao Lei, Wang Xibo, Dai Shifeng. 2022. Lithium resources in coal-bearing strata; Occurrence, mineralization and resource potential[J]. Journal of China Coal Society, 47(5): 1750-1760 (in Chinese with English abstract).
|
Zhao Yuanyi, Fu Jiajun, Li Yun. 2015. Super large lithium and boron deposit in Jadar Basin, Serbia[J]. Geological Review, 61(1): 34-44 (in Chinese with English abstract).
|
Zheng Mianping. 1995. A New Type of Hydrothermal Deposit Cesium- bearing Geyserite in Tibet[M]. Beijing: Geological Publishing House, 1-114(in Chinese).
|
Zheng Mianping, Chen Wenxi, Qi Wen. 2016. New findings and perspective analysis of prospecting for volcanic sedimentary boron deposits in the Tibetan Plateau[J]. Acta Geoscientica Sinica, 37(4): 407-418 (in Chinese with English abstract).
|
Zheng Mianping, Liu Wengao. 1987. A new lithium mineral-Zabuyeite[J]. Geological Review, 79(4): 365-368 (in Chinese with English abstract).
|
Zheng Mianping, Lü Yuanyuan. 2018. The 'Nuclear Boron Ore' Viewed from the Angle of Geochemistry[J]. Acta Geoscientica Sinica, (2): 250-256 (in Chinese with English abstract).
|
Zheng Mianping, Wang Qiuxia, Duo Ji. 1989a. A New Type of Hydrothermal Deposit: Cesium‒bearing Geyserite in Tibtet[M]. Beijing: Geological Publishing House, 1‒114 (in Chinese with English abstract).
|
Zheng Mianping, Xiang Jun, Wei Xinjun, Zheng Yuan. 1989b. Saline Lake on the Qinghai-Xizang (Tibet) Plateau[M]. Beijing: Science Press, 1‒431 (in Chinese with English abstract).
|
Zheng M P, Yuan H R, Liu J Y, Li Y H, Ma Z B, Sun Q. 2007. Sedimentary characteristics and paleoenvironmental records of Zabuye Salt Lake, Tibetan Plateau, since 128 ka BP[J]. Acta Geologica Sinica-English Edition, 81(5): 861-874. doi: 10.1111/j.1755-6724.2007.tb01008.x
|
Zheng Mianping, Yuan Heran, Liu Junying, Li Yanhe, Ma Zhibang, Sun Qing. 2007. Sedimentary characteristics and paleoenvironmental records of Zabuye Salt Lake, Tibetan Plateau, since 128 ka BP[J]. Acta Geologica Sinica, 81(12): 1608-1617, 1779-1781.
|
Zheng Mianping, Yuan Heran, Zhao Xitao, Liu Xifang. 2006. The Quaternary Pan-lake (Overflow) period and paleoclimate on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 80(2): 169-180 (in Chinese with English abstract).
|
陈平, 柴东浩. 1997. 山西地块石炭纪铝土矿沉积地球化学研究[M]. 太原: 山西科学技术出版社, 1‒194.
|
邓飞跃, 尹桃秀, 甘文文, 河晓燕. 1999. 锂云母提锂母液中钾铷铯的综合利用[J]. 矿冶工程, (1): 52‒54.
|
李泊洋, 姜大伟, 付旭, 王磊, 高树起, 樊志勇, 王可祥, 胡格吉乐吐. 2018. 内蒙古维拉斯托矿区锂多金属矿床地质特征及找矿意义[J]. 矿产勘查, 9(6): 1185‒1191.
|
李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要[J]. 地质学报, 88(12): 2269‒2283.
|
刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 44(2): 263‒278. doi: 10.12029/gc20170204
|
马志邦, 马妮娜, 张雪飞, 王宇. 2010. 西藏扎布耶湖晚更新世沉积物230Th/238U年代学研究[J]. 地质学报, 84(11): 1641‒1651.
|
满志敏. 2009. 中国历史时期气候变化研究[M]. 山东: 山东教育出版社, 1‒504.
|
ОЗОЛ А А. 1987. 沉积和火山沉积硼矿[M]. 北京: 地质出版社, 1‒222.
|
任方涛, 张杰. 2013. 黔中地区铝质岩中锂的化学分离富集研究[J]. 无机盐工业, 45(3): 19-21.
|
舒良树, 朱文斌, 许志琴. 2021. 华南花岗岩型锂矿地质背景与成矿条件[J]. 地质学报, 95(10): 3099‒3114.
|
孙鸿烈, 郑度. 1998. 青藏高原形成演化与发展[M]. 广州: 广东科技出版社, 1‒350.
|
王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 28(5): 743‒764.
|
王登红, 李沛刚, 屈文俊, 雷志远, 廖友常. 2013. 贵州大竹园铝土矿中钨和锂的发现与综合评价[J]. 中国科学: 地球科学, 43(1): 44‒51.
|
王秋舒, 元春华, 许虹. 2015. 全球锂矿资源分布与潜力分析[J]. 中国矿业, 24(2): 10‒17.
|
吴西顺, 黄文斌, 杜晓慧, 李莉. 2014. 世界锂矿床成矿类型及模式研究[J]. 矿床地质, 33(S1): 1197‒1198.
|
于沨, 王登红, 于扬, 刘铸, 高娟琴, 仲佳爱, 秦燕. 2019. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 38(3): 354‒364.
|
张英利, 陈雷, 王坤明, 王刚, 郭现轻, 聂潇, 庞绪勇. 2022. 沉积型锂资源成矿作用特征[J]. 矿床地质, 41(5): 1073‒1092.
|
赵蕾, 王西勃, 代世峰. 2022. 煤系中的锂矿产: 赋存分布、成矿与资源潜力[J]. 煤炭学报, 47(5): 1750‒1760.
|
赵元艺, 符家骏, 李运. 2015. 塞尔维亚贾达尔盆地超大型锂硼矿床[J]. 地质论评, 61(1): 34‒44.
|
郑绵平. 1995. 水热成矿新类型——西藏铯硅华矿床[M]. 北京: 地质出版社, 1-114.
|
郑绵平, 陈文西, 齐文. 2016. 青藏高原火山-沉积硼矿找矿的新发现与远景分析[J]. 地球学报, 37(4): 407‒418.
|
郑绵平, 刘文高. 1987. 一种锂的新矿物—扎布耶石[J]. 地质论评, 79(4): 365‒368.
|
郑绵平, 吕苑苑. 2018. 从地球化学角度看"核用硼矿"[J]. 地球学报, 39(2): 250‒256.
|
郑绵平, 王秋霞, 多吉. 1989a. 水热成矿新类型[M]. 北京: 地质出版社, 1‒114.
|
郑绵平, 向军, 魏新俊, 郑元. 1989b. 青藏高原盐湖[M]. 北京: 科学技术出版社, 1‒431.
|
郑绵平, 袁鹤然, 刘俊英, 李延河, 马志邦, 孙青. 2007. 西藏高原扎布耶盐湖128 ka以来沉积特征与古环境记录[J]. 地质学报, 81(12): 1608-1617, 1779-1781.
|
郑绵平, 袁鹤然, 赵希涛, 刘喜方. 2006. 青藏高原第四纪泛湖期与古气候[J]. 地质学报, (2): 169‒180.
|