• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
CHEN Jie, DUAN Shi-gang, ZHANG Zuo-heng, LUO Gang, JIANG Zong-sheng, LUO Wen-juan, WANG Da-chuan, ZHENG Ren-qiao. Geology, mineral chemistry and sulfur isotope geochemistry of the Shikebutai iron deposit in West Tianshan Mountains, Xinjiang: Constraints on genesis of the deposit[J]. GEOLOGY IN CHINA, 2014, 41(6): 1833-1852.
Citation: CHEN Jie, DUAN Shi-gang, ZHANG Zuo-heng, LUO Gang, JIANG Zong-sheng, LUO Wen-juan, WANG Da-chuan, ZHENG Ren-qiao. Geology, mineral chemistry and sulfur isotope geochemistry of the Shikebutai iron deposit in West Tianshan Mountains, Xinjiang: Constraints on genesis of the deposit[J]. GEOLOGY IN CHINA, 2014, 41(6): 1833-1852.

Geology, mineral chemistry and sulfur isotope geochemistry of the Shikebutai iron deposit in West Tianshan Mountains, Xinjiang: Constraints on genesis of the deposit

More Information
  • Abstract: The Shikebutai iron deposit is hosted in Upper Carboniferous intermediate-acidic volcaniclastic rocks, low-grade metamorphic schist and phyllite in the Yili rifting of West Tianshan Mountains. Stratiform, stratoid and phacoidal orebodies are distributed along the strata. Ore minerals are predominantly hematite and specularite, with small amounts of pyrite and siderite, whereas gangue minerals are dominated by jasper, barite and quartz, with a small quantity of calcite. The ores display banded, lamellar and massive structures. Ore minerals usually show cryptocrystalline, filling and subhedral textures. The ore-forming process of the Shikebutai iron deposit can be divided into four stages, i.e., pyrite-hematite-jasper-barite stage, siderite-pyrolusite stage, quartz-specularite stage and oxide minerals stage. Geological characteristics of lamellar structure and the distribution along the strata indicate that the formation of the Shikebutai iron deposit was related to sedimentation. Electron microprobe analyses show that hematite from massive ore has variable Al2O3, Na2O, Mgo and SiO2 values, which suggests that massive hematite ores are products of rapid sedimentation and crystallization, and also implies the rapid extravasation of iron-rich fluids. Nevertheless, hematite from lamellar ore and banded ore have concentrated Al2O3, Na2O, Mgo and SiO2 values, suggesting that they formed in calm sedimentary environment with slow extravasation of iron-rich fluids. In general, the extravasation rate of mineral-rich fluid and the sedimentary environment changed continuously during the metallogenic process. The high Co-Ni ratio of pyrite shows that it was derived from volcanism. A negative correlativity between FeOT and MnO+MgO is found in siderite which can be divided into two groups corresponding respectively to two different types of siderite under microscope. These phenomena imply that siderite experienced a process of differentiation at the late metallogenic stage. The δ34S values of pyrite range from -6.1‰ to 6.5‰ and the value of barite is 12.9‰ , which indicates that the sulfur was derived from magma, and it was subjected to fractionation between sulfide and sulfate. In summary, the Shikebutai iron deposit belongs to submarine volcanic exhalative-sedimentary high-grade iron deposit.
  • Related Articles

    [1]GAO Wanli, WANG Zongxiu, LI Leilei, QIAN Tao, CUI Mingming. 40Ar/39Ar laser dating of the Zongwulong ductile shear zone in northeastern Tibetan Plateau: Constraints on the time of Indosinian orogeny[J]. GEOLOGY IN CHINA, 2021, 48(1): 149-160. DOI: 10.12029/gc20210111
    [2]ZHANG Wengao, WANG Xiaohu, CHEN Zhengle, DING Zhilei, ZHOU Rongde, HU Wenjie. The deformation characteristics of ductile shear zone and its relationship with mineralization in Lianhuashan fault zone, Guangdong Province[J]. GEOLOGY IN CHINA, 2020, 47(4): 932-943. DOI: 10.12029/gc20200403
    [3]KOU Lin-lin, ZHANG Sen, ZHONG Kang-hui, TIAN Cheng-sheng. A study of the deformation characteristics of the ductile shear zone in the Wulonggou gold ore concentration area, East Kunlun,Qinghai[J]. GEOLOGY IN CHINA, 2015, 42(2): 495-503. DOI: 10.12029/gc20150210
    [4]WEI Bo, PEI Xian-zhi, LIU Cheng-jun, PEI Lei, LI Rui-bao, LI Zuo-chen, CHEN You-xin, XU Xiao-chun, LIU Tu-jie, WANG Yuan-yuan, REN Hou-zhou, CHEN Wei-nan. Structural deformation of Xinyang-Yuanlong ductile shear zone in Tianshui area,Western Qinling Mountains,and its geological significance[J]. GEOLOGY IN CHINA, 2015, 42(1): 51-70. DOI: 10.12029/gc20150104
    [5]Li Xiaobing, Pei Xianzhi, Liu Chengjun, Chen Youxin, Li Ruibao, Li Zuochen, Chen Guochao, Wei Gangfeng. Ductile shearing in the eastern segment of Central Kunlun tectonic belt and its geological significance[J]. GEOLOGY IN CHINA, 2014, 41(2): 419-436. DOI: 10.12029/gc20140209
    [6]TANG Zhe-min, CAI Zhi-hui, WANG Zong-xiu, CHEN Fang-yuan. Deformational characteristics of ductile shear zones in northern and southern margins of eastern central Tianshan[J]. GEOLOGY IN CHINA, 2011, 38(4): 970-979. DOI: 10.12029/gc20110413
    [7]HUANG Jun, LU Ru-kui, CHU Zhi-an, ZHANG Yong-qiang. Magnetic fabric features of the ductile shear zone in Sandaogou area of Inner Mongolia and their tectonic significance[J]. GEOLOGY IN CHINA, 2011, 38(3): 544-552. DOI: 10.12029/gc20110304
    [8]DENG Song-tao, GUO Zhao-jie, ZHANG Zhi-cheng, LIAO Guo-hui. Timing of the formation of the Sangshuyuanzi ductile shear zone in the central segment of the South Tianshan and its tectonic significance[J]. GEOLOGY IN CHINA, 2006, 33(3): 641-647. DOI: 10.12029/gc20060322
    [9]QI Jin-zhong, QI Xue-xiang, CHEN Fang-yuan. Characteristics of the Nangang-Gaogongdao ductile shear zone in the South Su-Lu high-pressure metamorphic belt and EBSD fabric analysis of quartz[J]. GEOLOGY IN CHINA, 2005, 32(2): 287-298. DOI: 10.12029/gc20050212
    [10]FENG Jian-zhong, SHAO Shi-cai, WANG Dong-bo, WANG Xue-ming, MA Zhi-guo. Baguamiao superlarge gold deposit in the Qinling orogen:the characteristics of its control by the brittle-ductile shear zone and dynamic mechanism for ore-forming structure[J]. GEOLOGY IN CHINA, 2002, (1): 58-66. DOI: 10.12029/gc20020110

Catalog

    Article views (3402) PDF downloads (3691) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return