• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
ZHU Qiao-qiao, XIE Gui-qing, LI Wei, Zhang Fan, WANG Jian, ZHANG Ping, YU Bing-fei. In situ analysis of garnets from the Jingshandian iron skarn deposit, Hubei Province, and its geological implications[J]. GEOLOGY IN CHINA, 2014, 41(6): 1944-1963.
Citation: ZHU Qiao-qiao, XIE Gui-qing, LI Wei, Zhang Fan, WANG Jian, ZHANG Ping, YU Bing-fei. In situ analysis of garnets from the Jingshandian iron skarn deposit, Hubei Province, and its geological implications[J]. GEOLOGY IN CHINA, 2014, 41(6): 1944-1963.

In situ analysis of garnets from the Jingshandian iron skarn deposit, Hubei Province, and its geological implications

More Information
  • Abstract: This paper presents in situ microanalysis data of garnets form the Jinshandian iron skarn deposit, Hubei Province. Studies show that garnets from the Jinshandian iron skarn deposit can be divided into two stages, i.e., early Al-rich garnets mainly with grossular and grossular-andradite series, and late Fe-rich garnets dominated by andradite, with the variation implying the increase of the fluid oxidation. Compared with the early garnets, the late stage are rich in large ion lithophile elements and high field strength elements as well as REE. Early grossular shows typical HREE-enrichment and LREE-depletion features, while smaller fractionation between HREE and LREE characterizes grossular-andradite series. Total REE content, δEu and HREE/LREE fractionation degrees of Fe-rich garnet samples vary from sample to sample, and are even different in different parts of a single garnet grain, suggesting that the process of its formation was not stable, and fluid properties changed greatly, possibly due to the addition of evaporate minerals from the wall rocks. Garnet in situ microanalysis research also suggests that the evaporate minerals added into the Jinshandian skarn system had features of heterogeneity and periodicity.
  • Related Articles

    [1]WANG Chaoqun, JIA Liyun, HU Daogong, MA Xiumin, GU Jingchao, DING Yingying, CAO Xinwen, XIA Mengmeng, WU Huanhuan. Activity of eastern part of the Maniao-Puqian fault in northern Hainan Island and its evaluation of crustal stability[J]. GEOLOGY IN CHINA, 2021, 48(2): 618-631. DOI: 10.12029/gc20210219
    [2]CHEN Hongqiang, ZHUAN Shaopeng, CHEN Chao, ZHAO Huaping, YANG RUI, HE Jiaoyue, XU Qinmian. Quaternary activity of the Fengtai-Yejituo fault in Tangshan, Hebei Province: Evidence from 14C and magnetic stratigraphy[J]. GEOLOGY IN CHINA, 2021, 48(2): 605-617. DOI: 10.12029/gc20210218
    [3]SU Hejun, WANG Zongli, CAO Lingling, ZHANG Hui, LI Chenhua, ZHOU Huiling. The application of measurement method of soil gas from fault zone to fault activity study: A case study of Jiayuguan fault[J]. GEOLOGY IN CHINA, 2020, 47(6): 1894-1903. DOI: 10.12029/gc20200623
    [4]ZHANG Xiaoliang, ZHANG Lei, WANG Zhihui, BAI Lingyan, CAI Xiangmin, ZHANG Jingjiang, LIU Zhenhua, ZHANG Yueze, NI Jingbo. Evaluation of the Nankou-Sunhe fault activity in Beijing based on the characteristics of magnetic strata and sedimentary strata[J]. GEOLOGY IN CHINA, 2020, 47(3): 868-878. DOI: 10.12029/gc20200322
    [5]QI Bangshen, FENG Chengjun, TAN Chengxuan, ZHANG Peng, MENG Jing, ZHANG Chunshan, YANG Weimin, YANG Xiaoxiao, LEI Xiaodong. Application of comprehensive geophysical-drilling exploration to detect the buried North Boundary active Fault Belt of Yanqing-Fanshan Basin in Sangyuan town, Beijing-Zhangjiakou area[J]. GEOLOGY IN CHINA, 2019, 46(3): 468-481. DOI: 10.12029/gc20190303
    [6]DONG Hao-gang, LU Tao, HE Wan-shuang, LI Yi-yong, ZENG Min. Quaternary activity of Shawan fault in Pearl River delta[J]. GEOLOGY IN CHINA, 2016, 43(5): 1803-1813. DOI: 10.12029/gc20160528
    [7]ZHANG Xiao-liang, ZHANG Lei, CAI Xiang-min, BAI Ling-yan. A study of structure and activity characteristics of the northern segment of Huangzhuang-Gaoliying fault in Beijing plain area[J]. GEOLOGY IN CHINA, 2016, 43(4): 1258-1265. DOI: 10.12029/gc20160412
    [8]ZHANG Lei, HE Jing, BAI Ling-yan, CAI Xiang-min, WANG Ji-min, YANG Tian-shui. The response relationship between the variation characteristics of deposition rate of Quaternary depression basin on the northern margin of Beijing depression and the activity of Shunyi fault[J]. GEOLOGY IN CHINA, 2016, 43(2): 511-519. DOI: 10.12029/gc20160212
    [9]ZHANG Lei, BAI Ling-yan, CAI Xiang-min, WANG Ji-ming, LIU Yu, HE Fu-bing, WANG Zhi-hui, HE Jing. An analysis of the activity of the northwest part of Nankou-Sunhe fault[J]. GEOLOGY IN CHINA, 2014, 41(3): 902-911. DOI: 10.12029/gc20140317
    [10]HUA Wei, CHEN Ting-dong, JI Hong-jun, LI Chun-lei, LUO Shen-yue. Fault activity and evolution of the Zhenwu fault zone in Gaoyou sag[J]. GEOLOGY IN CHINA, 2012, 39(3): 605-611. DOI: 10.12029/gc20120304

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return