• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
XU Zhi-qin, YANG Jing-sui, HOU Zeng-qian, ZHANG Ze-ming, ZENG ling-sen, LI Hai-bing, ZHANG Jian-xin, LI Zhong-hai, MAXu-xuan. The progress in the study of continental dynamics of the Tibetan Plateau[J]. GEOLOGY IN CHINA, 2016, 43(1): 1-42.
Citation: XU Zhi-qin, YANG Jing-sui, HOU Zeng-qian, ZHANG Ze-ming, ZENG ling-sen, LI Hai-bing, ZHANG Jian-xin, LI Zhong-hai, MAXu-xuan. The progress in the study of continental dynamics of the Tibetan Plateau[J]. GEOLOGY IN CHINA, 2016, 43(1): 1-42.

The progress in the study of continental dynamics of the Tibetan Plateau

Funds: 

Supported by National Natural Science Foundation of China (No. 40921001, 41430212, 41202153, 41472198), Programs from China Geological Survey (No. 1212010818094, 12120115026861) and Industrial Foundation of Ministry of Land and Resouces (No. 20511022, 201211093).

undefined

More Information
  • Received Date: November 24, 2015
  • Revised Date: January 06, 2016
  • Available Online: September 25, 2023
  • Based on the previously research, the research group of Key Laboratory of Continental Tectonics and Dynamics has achieved lots of great progress in the study of the continental dynamics of the Tibetan Plateau, especially in the evolution of Tethys and the growth of the Tibetan Plateau during the past decade. These achievements can be summarized as follows:(1) The Hypothesis on Tibetan Plateau as a orogenic plateau was proposed; (2) the reconstruction of the tectonic framework and the Tibetan-Tethys system; (3) the discovery of in situ diamond and deep mantle-derived mineral group in the ophiolites distributed along the Neotethyan suture zone; (4) the understanding of the subduction mechanism of the Neotethy oceanic basins; (5) the role of magmatism formed in the early stage of the Indo-Asian collision for the exhumation of Himalaya; (6) the establishment of the 3D models of the collisional orogeny and exhumation of the Himalaya; (7) the new proposal on the extrusion of the SE Tibetan Plateau:‘crustal bending and decouple’; (8) the subduction-related, collision-related and continental gneiss domes with Tibetan Plateau; (9) the tectonic setting and the Wenchuan Earthquake mechanism on the eastern margin of the Tibetan Plateau; (10) Numerical modeling of the Indo-Asian collisional process. This paper aims to communicate with and stimulate interest among global geologists to make further development in the continental dynamics of the Tibetan Plateau.
  • [1]
    许志琴, 杨经绥, 李海兵, 等. 造山的高原——青藏高原的地体拼合、碰撞造山及隆升机制[M]. 北京:地质出版社, 2007:1-458. Xu Zhiqin, Yang Jingsui, Li Haibing, et al. Orogenic Plateau-terrane Ammalgatation, Collisional Orogeny and Uplifting of the Qinghai-Tibet Plateau[M]. Beijing:Geological Publishing House, 2007:1-458(in Chinese with English abstract).
    [2]
    Tapponnier P G, Peltzer, Armijo R. On the mechanics of the collision between India and Asia[C]//Coward M P,Riess A C. Collision Tectonics. Geo. Soc. Spec. Publ. London, 1986, 19:115-157.
    [3]
    Molnar P. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications[J]. Phil. Trans. R. Soc. Lond, 1988, A326:33-88.
    [4]
    许志琴, 李海兵, 唐哲民,等. 大型走滑断裂对青藏高原地体构架的改造[J].岩石学报,2011, 27(11):3157-3170. Xu Zhiqin, Li Haibing, Tang Zhemin, et al. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults[J]. Acta Petrologica Sinica,2011, 27(11):3157-3170(in Chinese with English abstract).
    [5]
    Molnar P, Tapponnier P. Cenozoic tectonics of Asia:effects of a continental collision[J]. Science, 1975, 189:419-426.
    [6]
    Yin A. Cenozoic tectonic evolution of Asia:A preliminary synthesis. Tectonophysics[J]. 2010, 488:293-325.
    [7]
    Nabelek J, Hetenyi G, Vergne J, et al. Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment[J]. Science, 2009, 325:1371-1374.
    [8]
    Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia[J]. Geophys, Res. Lett., 1993,20:895-898.
    [9]
    Sengör A M C,Natal'in B A. Paleotectonic of Asia:Fragments of a synthesis[C]//Yin A, Harrison M (eds.). The Tectonic Evolution of Asia. Cambridge:Cambridge University Press, 1996:486-640.
    [10]
    Gehrels G E, Yin A, Wang X F. Detrital-zircon geochronology of the northeastern Tibetan plateau[J]. Geological Society of America Bulletin, 2003,115(7):881-896.
    [11]
    Xiao W J, Windley B F, Yong Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4):323-333.
    [12]
    Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.
    [13]
    Sengör A M C. The Palaeo-Tethyan suture:A line of demarcation between two fundamentally different architectural styles in the structure of Asia[J]. Island Arc, 1992, 1(1):78-91.
    [14]
    Sengör A M C, Natal'in B A, Burtman U S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299-307.
    [15]
    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic belt[J]. Journal of the Geological Society, 2007, 164(10):31-47.
    [16]
    Sengör A M C. East Asian tectonic collage[J]. Nature, 1987, 318(6041):16-17.
    [17]
    Dewey J F, Shackleton R M, Chang C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, 1988, 327(1594):379-413.
    [18]
    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.
    [19]
    Wan Y S, Zhang J X, Yang J S, et al. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance[J]. Journal of Asian Earth Sciences, 2006, 28(2/3):174-184.
    [20]
    Tung K A, Yang H J, Yang H Y, et al. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances[J]. Chinese Science Bulletin, 2007, 52(11):2687-2701.
    [21]
    Tung K A, Yang H Y, Liu D Y, et al. The Neoproterozoic granitoids from the Qilian block, NW China:Evidence for a link between the Qilian and South China blocks[J]. Precambrian Research, 2013, 235:163-189.
    [22]
    Yu S Y, Zhang J X, Li H K, et al. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP terrane:New evidence for deep continental subduction[J]. Gondwana Research, 2013, 23(3):901-919.
    [23]
    Wang C, Liu L, Yang WQ, et al. Provenance and ages of the Altyn Complex in Altyn Tagh:Implications for the early Neoproterozoic evolution of northwestern China[J]. Precambrian Research, 2013, 230:193-208
    [24]
    Gehrels G E, Kapp P, DeCelles P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011,30(5):TC5016.
    [25]
    Metcalfe I. Gondwana dispersion and Asian accretion:tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:133.
    [26]
    Yan Z, Aitchson J, Fu C L, et al. Hualong Complex, South Qilian terrane:U-Pb and Lu-Hf constraints on Neoproterozoic microcontinental fragments accreted to the northern Proto-Tethyan margin[J]. Precambrian Research, 2015, 266:65-85.
    [27]
    Ueno K, Wang Y, Wang X. Fusulinoidean faunal succession of a Paleo-Tethyan oceanic seamount in the Changning-Menglian Belt, West Yunnan, Southwest China:An overview[J]. The Island Arc, 2003, 12:145-161.
    [28]
    Xu Z Q, Wang Q, Cai Z H, et al. Kinematics of the Tengchong Terrane in SE Tibet from the late Eocene to early Miocene:Insights from coeval mid-crustal detachments and strike-slip shear zones[J]. Tectonophysics, 2015,665:127-148.
    [29]
    Cawood P A, Kröner A. Earth Accretionary Systems in Space and Time[M]. Geological Society of London Special Publication, 2009, 318:1-36.
    [30]
    Cawood P A, Kröner A, Collins, et al. Accretionary orogens through Earth history[M]. Geological Society of London, 2009.
    [31]
    Miyashiro A. The Troodos ophiolitic complex was probably formed in an island arc[J]. Earth Planet Science Letters, 1973, 19:218-224.
    [32]
    Ernst W G. Alpine and Pacific styles of Phanerozoic mountain building:Subduction-zone petrogenesis of continental crust[J]. Terra Nova, 2005, 17:165-188.
    [33]
    Brown M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean[J]. Geology, 2006, 34:961-964.
    [34]
    Brown M. Metamorphic patterns in orogenic systems and the geological record[C]//Cawood P A, Kröner A (eds.). Earth Accretionary Systems in Space and Time. Geological Society, London Special Publications, 2009,318:37-74.
    [35]
    Carter A, Roques D, Bristow C, et al. Understanding Mesozoic accretion in Southeast Asia:significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam[J]. Geology, 2001, 29:211-214.
    [36]
    Metcalfe I. Permian tectonic framework and palaeogeography of SE Asia[J]. Journal of Asian Earth Sciences, 2002, 20:551-566.
    [37]
    Metcalfe I. Tectonic framework and Phanerozoic evolution of Sundaland[J]. Gondwana Research, 2011, 19:3-21.
    [38]
    Metcalfe I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:the Korean Peninsula in context[J]. Gondwana Research, 2006, 9:24-46.
    [39]
    Metcalfe I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33.
    [40]
    Lepvrier C, Maluski H. L'orogenese Trisique Indosinienne en Asia de l'Est[J]. Editorial Comptes Rendu Geoscience, 2008, 340:75-82.
    [41]
    Feng Q, Liu B. A new Early Devonian radiolarian genus from western Yunnan[J]. Science in China (Series B), 1993, 36:242-248.
    [42]
    Feng Q L, Ye M. Permian radiolarian sedimentary assemblage and paleoecology in south and southwest China[C]//Long Xiangfu (ed.). Devonian to Triassic Tethys in Western Yunnan, China. China University of Geosciences Press,Wuhan, 1996, 106-112.
    [43]
    Feng Q, Zhang Z. Early Carboniferous radiolarians from West Yunnan[J]. Acta Micropalaeontologica Sinica, 1997, 14:79-92.
    [44]
    Sone M, Metcalfe I. Parallel Tethyan sutures in mainland Southeast Asia:new insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 2008, 340:166-179.
    [45]
    Kapp P, Yin A, Craig E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28:19-22.
    [46]
    Pullen A, Kapp P, Gehrels G E, et al. Metamorphic rocks in central Tibet:Lateral variation and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123:585-600.
    [47]
    Zhai Q G, Zhang, R Y, Jahn, B M,et al. Triassic eclogites from central Qiangtang, northern Tibet, China:Petrology, geochronology and metamorphic P-T path[J]. Lithos, 2011, 125:173-189.
    [48]
    Yang J S, Xu Z Q, Li Z L, et al. Discovery of an eclogite belt in the Lhasa block, Tibet:A new border for Paleo-Tethys?[J]. Journal of Asian Earth Sciences 2009, 34:76-89.
    [49]
    Yang J S, Robinson P T, Dilek Y. Diamonds in ophiolites[J]. Elements, 2014, 10:127-130.
    [50]
    Yang J S, Meng F C, Xu X Z, et al. Diamonds, native elements and metal alloys from chromiites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 2015, 27:459-485.
    [51]
    Xu X Z, Yang J S, Robinson P T, et al. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 2015,27:686-700.
    [52]
    Yang J S, Dobrzhinetskaya L, Bai W J, et al. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 2007,35(10):875-878.
    [53]
    Dobrzhinetskaya L F,Yang J S, Green H W, et al. Qingsongite, natural cubic boron nitride:The first boron mineral from the Earth's mantle[J]. American Mineralogist, 2014, 99:764-772.
    [54]
    Yamamoto S, Komiya T, Hirose K, et al. Coesite and clinopyroxene exsolution lamellae in chromites:In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 2009, 109(3):314-322.
    [55]
    Liou J G, Tsujimori T, Yang J, et al. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths:A review[J]. Journal of Asian Earth Sciences, 2014, 96:386-420.
    [56]
    Coleman R G. The ophiolite concept evolves[J]. Element, 2014, 10(2):82-84.
    [57]
    Howell D, GriffinW L, Yang J, et al. Diamonds in ophiolites:Contamination or a new diamond growth environment?[J]. Earth and Planetary Science Letters, 2015, 430:284-295.
    [58]
    Zhang Z M, Zhao G C, Santosh M, et al. Two-stages of granulite-facies metamorphism in the eastern Himalayan syntaxis, south Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia[J]. Journal of Metamorphic Geology, 2010, 28:719-733
    [59]
    Dong X, Zhang Z M, Santosh M. Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau:implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism[J]. Journal of Geology, 2010, 118:677-690.
    [60]
    Zhang Z M, Zhao G C, Santosh M, et al. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:evidence for Neo-Tethyan mid-ocean ridge subduction?[J]. Gondwana Research, 2010, 17:615-631.
    [61]
    Sisson V B, Hollister L S, Onstott T C. Petrologic and age constraints on the origin of a low-pressure/high-temperature metamorphic complex, southern Alaska[J]. Journal of Geophysical Research, 1989, 94:4392-4410.
    [62]
    Cole R B, Stewart B W. Continental margin volcanism at sites of spreading ridge subduction:examples from southern Alaska and western California[J]. Tectonophysics, 2009, 464:118-136.
    [63]
    Santosh M, Kusky T, Wang L. Supercontinent cycles, extreme metamorphic processes and changing fluid regimes[J]. International Geology Review, 2011, 53:1403-1423.
    [64]
    Santosh M, Maruyama S, Sato K. Anatomy of a Cambrian suture in Gondwana:pacific type orogeny in southern India?[J] Gondwana Research, 2009, 16:321-341.
    [65]
    Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68:173-196.
    [66]
    Mo X X, Dong G C, Zhao Z D, et al. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution[J]. Geological Journal of China University, 2005, 11:281-290(in Chinese with English abstract).
    [67]
    Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011,301:241-255.
    [68]
    Wen D R, Chung S L, Song B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogenesis and tectonic implications[J]. Lithos, 2008,105:1-11.
    [69]
    Wen D R, Liu D Y, Chung S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252:191-201.
    [70]
    Bourgois J, Martin H, Lagabrielle Y, et al. Subduction-erosion related to ridge-trench collision:Taitao Peninsula, Chile margin triple junction area[J]. Geology, 1996, 24:723-726.
    [71]
    Guivel C, Lagabrielle Y, Bourgois J, et al. New geochemical constraints for the origin of ridge subduction-related plutonic and volcanic suites from the Chile Triple Junction (Taitao Peninsula and Site 862, LEG ODP141 on the Taitao Ridge)[J]. Tectonophysics, 1999, 311:83-111.
    [72]
    Thorkelson D J, Breitsprecher K. Partial melting of slab window margins:genesis of adakitic and non-adakitic magmas[J]. Lithos, 2005, 79:25-41.
    [73]
    Sakaguchi A. High paleo-geothermal gradient with ridge subduction beneath Cretaceous Shimanto accretionary prism, southwest Japan[J]. Geology, 1996,24:795-798.
    [74]
    Ujiie K. Off-scraping accretionary process under the subduction of young oceanic crust:the Shimanto belt of Okinawa Island, Ryukyu Arc[J]. Tectonics, 1997, 16:305-322.
    [75]
    Osozawa S, Takeuchi H, Koitabashi T. Formation of the Yakuno ophiolite:accretionary subduction under medium-pressure-type metamorphic conditions[J]. Tectonophysics, 2004,393:197-219.
    [76]
    Zhang Z M, Shen K, Santosh M, et al. High density carbonic fluids in a slab window:Evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet[J]. Journal of Asian Earth Sciences, 2011,42:515-524.
    [77]
    Matthews K J, Seton M, Muller R D. A global-scale plate reorganization event at 105-100 Ma[J]. Earth and Planetary Science Letters, 2012,355:283-298.
    [78]
    Coulon C, Maluski H, Bollinger C et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986,79:281-302.
    [79]
    Lee H Y, Chung S L, Lo C H, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tectonophysics, 2009, 477:20-35.
    [80]
    Guo L, Zhang H F, Harris N, et al. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis:Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex[J]. Gondwana Research, 2012, 21:100-111.
    [81]
    Chung S L, Liu DY, Ji J Q, et al. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31:1021-1024.
    [82]
    Zhang Z M, Dong X, Xiang H, et al. Building of the Deep Gangdese Arc, South Tibet:Paleocene Plutonism and Granulite-Facies Metamorphism[J]. Journal of Petrology, 2013, 54:2547-2580.
    [83]
    Zhang Z M, Dong X, Xiang H, et al. Metagabbros of the Gangdese arc root, south Tibet:Implications for the growth of continental crust[J]. Geochimica et Cosmochimica Acta, 2014, 143:268-284.
    [84]
    Searle M P, Elliott J R, Phillips R J, et al. Crustal-lithospheric structure and continental extrusion of Tibet[J]. Journal of the Geological Society, 2011, 168(3):633-672.
    [85]
    Edwards M A, Kidd W S F, Li J X, et al. Multi-stage development of the southern Tibet detachment system near Khula Kangri——New data from Gonto La[J]. Tectonophysics, 1996, 260:1-19.
    [86]
    Edwards M A, Harrison T M. When did the roof collapse? Late Miocene north-south extension in the High Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite[J]. Geology, 1997, 25:543-546.
    [87]
    Harrison T M, Grove M, McKeegan K D, et al. Origin and episodic emplacement of the Manaslu Intrusive Complex, Central Himalaya[J]. J. Petrol, 1999, 40:3-19.
    [88]
    Hodges K V, Parrish R R, Searle M P. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas[J]. Tectonics, 1996, 15:1264-1291.
    [89]
    Schärer U, Xu R, Allegre C. U-(Th)-Pb systematics and ages of Himalayan leucogranites, south Tibet[J]. Earth and Planetary Science Letters, 1986, 77:35-48.
    [90]
    Searle M P, Whitehouse M J. Shisha Pangma leucogranite, South Tibetan Himalaya; field relations, geochemistry, age, origin, and emplacement[J]. Journal of Geology, 1997, 105(3):295-317.
    [91]
    Simpson R L, Parrish R R, Searle M P, et al. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya[J]. Geology, 2000, 28:403-406.
    [92]
    Wang Y C, Bin, X Zhang Y Q, et al. U-Pb SHRIMP zircon ages of the GUohuonongba tourmaline two-mica granite in Pulan, southwest Tibet[J]. Geotectonia et Metallogenia, 2005, 29:517-521.
    [93]
    Wu C K D, Nelson G, Wortman S, et al. Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89-90°E)[J]. Tectonics, 1998, 17:28-45.
    [94]
    Xu R H. Age and geochemistry of granites and metamorphic rocks in south-central Xizang (Tibet)[M]//Igneous and Metamorphic Rocks of the Tibetan Plateau. Chinese Academy of Geological Sciences. Science Press, 1990, 287-302.
    [95]
    Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes:melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303:251-266.
    [96]
    Zeng, L S, Chen Z Y, Chen J. Metamorphic solid salt (KCl-NaCl) in quartzo-feldspathic polyphase inclusions in the Sulu ultrahighpressure eclogite[J]. Chinese Science Bulletin, 2013, 58(8):931-937.
    [97]
    Zeng L S, Gao L E, Tang S H, et al. Eocene magmatism in the Tethyan Himalaya, southern Tibet[J]. Geological Society, London, Special Publications, 2014, 412:SP412-8.
    [98]
    Gao L E, Zeng L S. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J]. Geochimica et Cosmochimica Acta, 2014, 130:136-155.
    [99]
    Burchfiel B C, Royden L H. North-south extension within the convergent Himalayan region[J]. Geology, 1985, 13:679-682.
    [100]
    Grujic D, Casey M, Davidson C, et al. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan:evidence from quartz micro-fabrics[J]. Tectonophysics, 1996, 260:21-43.
    [101]
    Beaumont C, Jamieson G A, Nguy M H, et al. Himalaya tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414:738-742.
    [102]
    Hodges K V, Hurtado J M, Whipple K X, et al. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics[J], Tectonics, 2001, 20:799-809.
    [103]
    Grujic D, Hollister L S, Parrish R R. Himalayan metamorphic sequence as an orogenic channel:insight from Bhutan[J]. Earth Planetary Science Letters, 2002, 198(s 1-2):177-191.
    [104]
    Yin A, Dubey C S, Kelty T K, et al. Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen[J]. Current Science, 2006, 90:195-206.
    [105]
    Webb AA G, Yin A, Harrison T M, et al. The leading edge of the Greater Himalayan Crystallines revealed in the NW Indian Himalaya:Implications for the evolution of the Himalayan Orogen[J]. Geology, 2007, 35:955-958.
    [106]
    Webb A A G, Yin A, Harrison T M, et al. Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen[J]. Geosphere, 2011, 7:1013-1061.
    [107]
    许志琴,王勤,曾令森,等. 高喜马拉雅的三维挤出模式[J]. 中国地质,2013, 40(3):671-68. Xu Zhiqin, Wang Qin, Zeng Lingsen, et al. Three-dimensional extrusion model of the Great Himalaya slice[J]. Geology in China, 2013, 40(3):671-68(in Chinese with English abstract).
    [108]
    Xu Z Q, Wang Q, Arnaud P, et al. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene[J]. Tectonics, 2013, 32(2):191-215.
    [109]
    Brun J P, Burg J P, Ming C C, et al. Strain trajectories above the Main Central Thrust (Himalaya) in southern Tibet[J]. Nature, 1985, 313:388-390.
    [110]
    许志琴, 杨经绥, 李化启,等. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 2012, 28(6):1697-1709. Xu Zhiqin,Yang Jingsui,Li Huaqi,et al. Indosinian collisionorogenic system of Chinese continent and its orogenic mechanism[J]. Acta Petrologica Sinica,28(6):1697-1709(in Chinese with English abstract).
    [111]
    Pêcher A. The contact between the Higher Himalaya crystallines and the Tibetan sedimentary series:Miocene large scale dextral shearing[J]. Tectonics, 1991,10:587-598.
    [112]
    Coleman M E. Orogen-parallel and orogen-perpendicular extension in the central Nepalese Himalayas[J]. Geological Society of America Bulletin, 1996, 108(12):1594-1607.
    [113]
    Pêcher A, Scaillet B. La structure du haut Himalaya au Garhwal[J]. Eclogae Geologicae Helvetiae, 1989, 82(2):655-668.
    [114]
    Murphy M A, Yin A, Kapp P, et al. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet:Implications for the eastward extent of the Karakoram fault system[J]. Geological Society of America Bulletin, 2002, 114(4):428-447.
    [115]
    Wang Y, Li Q, Qu G S. 40Ar/39Ar thermochronological constraints on the cooling and exhumation history of the South Tibetan Detachment System, Nyalam area, southern Tibet[C]//Law R D, et al(eds.). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geol. Soc., London, Spec. Pub., 2006, 268:327-354.
    [116]
    Aikman A B, Harrison T M, Ding L. Evidence for Early (> 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet[J]. Earth Planetary Science Letters, 2008, 274:14-23.
    [117]
    Dipietro J A, Pogue K R. Tectonostratigraphic subdivisions of the Himalaya:A view from the west[J]. Tectonics, 2004, 23(5):271-297.
    [118]
    Pêcher A, Seeber L, Guillot S, et al. Stress field evolution in the northwest Himalayan syntaxis, northern Pakistan[J]. Tectonics, 2008, 27(6):178-196.
    [119]
    Harris N B W, Caddick M, Kosler J, et al. The pressuretemperature-time path of migmatites from the Sikkim Himalaya[J]. Journal of Metamorphic Geology, 2004, 22(3):249-264.
    [120]
    Metcalfe R P, Metcalfe R P. Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan Slab in the Garhwal Himalaya[J]. Geological Society of London Special Publications, 1993, 74(1):485-509.
    [121]
    Stephenson B J, Searle M P, Waters D J, et al. Structure of the Main Central Thrust Zone and Extrusion of the High Himalayan Deep Crustal Wedge, Kishtwar-Zanskar Himalaya[J]. Journal of the Geological Society, 2001, 158(4):637-652.
    [122]
    Zeng L S, Liu J, Gao L E, et al. Early Oligocene crustal anatexis in the Yardoi gneiss dome, southern Tibet and geological implications[J]. Chinese Science Bulletin, 2009, 54, 104-112.
    [123]
    Peltzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, and basins during the India——Asia collision-An experimental approach[J]. Journal of Geophysical Research Atmospheres, 1988, 931(B12):15085-15117.
    [124]
    Royden L H, Burchfiel B C, Van der Hilst R D. The geological evolution of the Tibetan Plateau.[J]. Science, 2008, 321(5892):1054-1058.
    [125]
    Zhang P Z, Shen Z, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9):809-812.
    [126]
    Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research Solid Earth, 2001, 106(B4):6683-6732.
    [127]
    Clark M K, Royden L H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703.
    [128]
    Allen C R, Gillespie A R, Han Y, et al. Red River and associated faults, Yunnan Province, China:Quaternary geology, slip rates, and seismic hazard[J]. Geological Society of America Bulletin, 1984, 95(6):686-700.
    [129]
    Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(s 1-4):3-10.
    [130]
    Chung S L, Lee T Y, Lo C H, et al. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone.[J]. Geology, 1997, 25(4):311-314.
    [131]
    Ratschbacher L, Frisch W, Chen C, et al. Cenozoic deformation, rotation, and stress patterns in eastern Tibet and western Sichuan, China[C]//Yin A, Harrison T M (eds.). The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 1996:227-249.
    [132]
    Wang E, Wang E. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China[M]. Geological Society of America, 1998.
    [133]
    许志琴,侯立伟,王宗秀, 等. 中国松潘-甘孜造山带的造山过程[M]. 北京:地质出版社, 1992. Xu Zhiqin, Hou Liwei, Wang Zhongxiu, et al. Orogenic Processes of the Songpan GarZi Orogenic Belt, China[M]. Beijing:Geological Publishing House, 1992(in Chinese).
    [134]
    Tapponnier P, Mattauer M, Proust F, et al. Mesozoic ophiolites, sutures, and Large-scale tectonic movements in Afghanistan[J]. Earth and Planetary Science Letters, 1981, 52(2):355-371.
    [135]
    Burtman V S, Molnar P. Geological and Geophysical Evidence for Deep Subduction of Continental Crust Beneath the Pamir[J]. Special Paper of the Geological Society of America, 1993, 281.
    [136]
    Treloar P J, Izatt C N, Izatt C N. Tectonics of the Himalayan collision between the Indian Plate and the Afghan Block:a synthesis[J]. Geological Society of London Special Publications, 1993, 74(1):69-87.
    [137]
    Brunel M, Arnaud N, Tapponnier P, et al. Kongur Shan normal fault:Type example of mountain building assisted by extension (Karakoram fault, eastern Pamir)[J]. Geology, 1994, 22(8):707-710.
    [138]
    Strecker M R, Frisch W, Hamburger M W, et al. Quaternary Deformation in the Eastern Pamirs, Tajikistan and Kyrgyzstan[J]. Tectonics, 1995, 14(5):1061-1079.
    [139]
    Rumelhart P E, An Y, Cowgill E, et al. Cenozoic vertical-axis rotation of the Altyn Tagh fault system[J]. Geology, 1999, 27(9):480.
    [140]
    Schneider D A, Edwards M A, Kidd W S F, et al. Tectonics of Nanga Parbat, western Himalaya:Synkinematic plutonism within the doubly vergent shear zones of a crustal-scale pop-up structure[J]. Geology, 1999, 27(11):999-1002.
    [141]
    Schmidt J, Hacker B R, Ratschbacher L, et al. Cenozoic deep crust in the Pamir[J]. Earth and Planetary Science Letters, 2011, 312:411-421.
    [142]
    Robinson A C, Ducea M, Lapen T J. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir[J]. Tectonics, 2012, 31(2):531-535.
    [143]
    Zhang Z M, Zhao G C, Santosh M, et al. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia[J]. Journal of Metamorphic Geology, 2010, 28(7):719-733.
    [144]
    Zhang Z, Dong X, Xiang H, et al. Building of the Deep Gangdese Arc, South Tibet:Paleocene Plutonism and Granulite-Facies Metamorphism[J]. Journal of Petrology, 2013, 54(12):2547-2580.
    [145]
    Li H, Xue L, Brodsky E E, et al. Long-term temperature records following the Mw 7.9 Wenchuan (China) earthquake are consistent with low friction[J]. Geology, 2015, 43(2):163-166.
    [146]
    Kuo L W, Li H, Smith S A F, et al. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake[J]. Geology, 2014, 42(1):47-50.
    [147]
    Xue L, Li H B, Brodsky E E, et al. Continuous Permeability Measurements Record Healing inside the Wenchuan Earthquake Fault Zone[J]. Science, 2013, 340:1555-1559.
    [148]
    Hou Z, Yang Z, Qu X, et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(s 1-3):25-51.
    [149]
    Hou Z, Zheng Y, Yang Z, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2012, 48(2):173-192.
    [150]
    Hou Z, Yang Z, Lu Y, et al. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3):247-250.
    [151]
    Hou Z, Liu Y, Tian S, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 2015, 5.
    [152]
    Hou Z, Zhang H, Pan X, et al. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust:examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39(1):21-45.
    [153]
    Li Z H, Xu Z Q, Gerya T V. Flat versus steep subduction:Contrasting modes for the formation and exhumation of high-to ultrahigh-pressure rocks in continental collision zones[J]. Earth & Planetary Science Letters, 2011, 301(s 1-2):65-77.
    [154]
    Li Z H, Xu Z, Gerya T, et al. Collision of continental corner from 3-D numerical modeling[J]. Earth & Planetary Science Letters, 2013, 380:98-111.
    [155]
    Li Z H, Liu M Q, Gerya T. Material transportation and fluidmelt activity in the subduction channel:Numerical modeling[J]. Science China (Earth Science), 2015, 58(08):1-18.
    [156]
    Li Z H. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation[J]. Science China Earth Sciences, 2014, 57(1):47-69.
    [157]
    Nelson K D, Zhao W, Brown L D, et al. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results[J]. Science, 1996, 274(5293):1684-1688.
    [158]
    Thomas J. Owens, Zandt G. Implications of crustal property variations for models of Tibetan plateau evolution[J]. Nature, 1997, 387(6628).
    [159]
    Roecker S W. Velocity structure of the Pamir-Hindu Kush Region:Possible evidence of subducted crust[J]. Journal of Geophysical Research Atmospheres, 1982, 87(B2):945-959.
    [160]
    Negredo A M, Replumaz A, Villaseñor A, et al. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region[J]. Earth & Planetary Science Letters, 2007, 259(1/2):212-225.
    [161]
    Mukherjee B K, Sachan H K, Ogasawara Y, et al. Carbonate-Bearing UHPM Rocks from the Tso-Morari Region, Ladakh, India:Petrological Implications[J]. International Geology Review, 2003, 2003(1):49-69.
  • Related Articles

    [1]KONG Huilei, LI Yazhi, LI Jinchao, JIA Qunzi, GUO Xianzheng, WANG Yu, YAO Xuegang. Petrogenesis of Xiwanggou olivine gabbro in East Kunlun Mountains: Constraints from geochemistry, zircon U-Pb dating and Hf isotopes[J]. GEOLOGY IN CHINA, 2021, 48(1): 173-188. DOI: 10.12029/gc20210113
    [2]ZHANG Zhaowei, QIAN Bing, LI Wenyuan, WANG Yalei, ZHANG Jiangwei, YOU Minxin, LIU Yuegao. The discovery of Early Paleozoic eclogite from the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt:Zircon U-Pb chronologic evidence[J]. GEOLOGY IN CHINA, 2017, 44(4): 816-817. DOI: 10.12029/gc20170415
    [3]PAN Tong. The prospecting for magmatic liquation type nickel deposits on the southern and northern margin of Qaidam Basin, Qinghai Province: A case study of the Xiarihamu Ni-Cu sulfide deposit[J]. GEOLOGY IN CHINA, 2015, 42(3): 713-723. DOI: 10.12029/gc20150323
    [4]WANG Ya-lei, ZHANG Zhao-wei, YOU Min-xin, LI Xin, LI Kan, WANG Bo-lin. Chronological and gechemical charcateristics of the Baixintan Ni-Cu deposit in Eastern Tianshan Mountains, Xinjiang, and their implications for Ni-Cu mineralization[J]. GEOLOGY IN CHINA, 2015, 42(3): 452-467. DOI: 10.12029/gc20150305
    [5]ZHANG Zhao-wei, LI Wen-yuan, QIAN Bing, WANG Ya-lei, LI Shi-jin, LIU Chang-zheng, ZHANG Jiang-wei, YANG Qi-an, YOU Min-xin, WANG Zhi-an. Metallogenic epoch of the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt and its prospecting significance[J]. GEOLOGY IN CHINA, 2015, 42(3): 438-451. DOI: 10.12029/gc20150304
    [6]QIN Ke-zhang, TIAN Ye, YAO Zhuo-sen, WANG Yong, MAO Ya-jing, WANG Bin, XUE Sheng-chao, TANG Dong-mei, KANG Zhen. Metallogenetic conditions, magma conduit and exploration potential of the Kalatongk Cu-Ni orefield in Northern Xinjiang[J]. GEOLOGY IN CHINA, 2014, 41(3): 912-935. DOI: 10.12029/gc20140318
    [7]LOU De-bo, XIAO Ke-yan, WANG Deng-hong, WANG Xiao-hui, DING Jian-hua. A prospective analysis of magmatic Ni-Cu sulfide deposits in Huangshan-Jing'erquan area, Xinjiang[J]. GEOLOGY IN CHINA, 2013, 40(4): 1278-1289. DOI: 10.12029/gc20130424
    [8]GAO Hui, WANG An-jian, CAO Dian-hua, LI Rui-ping, WANG Yong-lei. A comparison of trace element geochemical characteristics between the Platreef deposit of Bushveld Complex and the Jinchuan Cu-Ni-PGE sulfide deposit and its significance[J]. GEOLOGY IN CHINA, 2009, 36(2): 268-290. DOI: 10.12029/gc20090202
    [9]DING Qing-feng, SUN Feng-yue, LI Zhong-shan. Composite ore prospect areas in the East Kunlun metallogenic belt, Qinghai[J]. GEOLOGY IN CHINA, 2007, 34(6): 1101-1108. DOI: 10.12029/gc20070616
    [10]SUN He, QIN Ke-zhang, LI Jin-xiang, XU Xing-wang, SAN Jin-zhu, DING Kui-shou, HUI Wei-dong, XU Ying-xia. Petrographic and geochemical characteristics of the Tulargen Cu-Ni-Co sulfide Deposit, East Tianshan, Xinjiang, and its tectonic setting[J]. GEOLOGY IN CHINA, 2006, 33(3): 606-617. DOI: 10.12029/gc20060318
  • Cited by

    Periodical cited type(13)

    1. 王强,李五福,王秉璋,王涛,周金胜,马林,李玉龙,袁博武,王春涛,王军,张新远,刘建栋,薛尔堃,胡万龙,黄彤宇,李旺超. 与碱性岩-碳酸岩杂岩共生的铌-稀土成矿作用——兼论东昆仑大格勒铌-稀土矿床中的碱性岩-碳酸岩杂岩成因. 大地构造与成矿学. 2024(01): 1-37 .
    2. 张照伟,钱兵,王亚磊,李文渊. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨. 中国地质. 2024(02): 371-384 . 本站查看
    3. 李思奥,包亚文,梁慨慷,高旭,许瑶,张铭杰,李立武,李中平. 东昆仑古生代镁铁质岩浆镍钴成矿条件——希望沟地区超镁铁质岩C-He-Ne-Ar同位素制约. 岩石学报. 2024(07): 2153-2168 .
    4. Xue-peng Duan,Fan-cong Meng,Zong-qi Wang,Xiao-fei Yu. Metallogenic characteristics of Shitoukengde intrusion and its implications for Ni-Co-(Cu) sulfide mineralization in East Kunlun. China Geology. 2024(04): 714-729 .
    5. 王秉璋,张金明,李五福,王泰山,金婷婷,付长垒. 昆仑河早古生代两期埃达克质侵入岩的发现及其对东昆仑碰撞造山过程的启示. 岩石学报. 2023(03): 763-784 .
    6. 赵云川,胡俊,周洪兵,何志威. 东昆仑那更银矿床斜长花岗岩锆石U-Pb年代学、地球化学特征与地质意义. 矿物学报. 2023(05): 640-652 .
    7. 张照伟,钱兵,王亚磊,李文渊. 中国西北地区岩浆铜镍矿床地质特点与找矿潜力. 西北地质. 2021(01): 82-99 .
    8. 张照伟,王亚磊,邵继,李文渊. 东昆仑夏日哈木超大型岩浆镍钴硫化物矿床成矿特征. 矿床地质. 2021(06): 1230-1247 .
    9. 李文渊,王亚磊,钱兵,刘月高,韩一筱. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨. 地学前缘. 2020(02): 276-293 .
    10. 潘彤,张勇. 东昆仑夏日哈木铜镍矿区榴辉岩地球化学特征及成矿响应. 大地构造与成矿学. 2020(03): 447-464 .
    11. 刘超,王亚磊,张照伟,刘月高,韩一筱,董一博,冷馨. 东昆仑夏日哈木矿床镍黄铁矿、磁黄铁矿成因认识及钴赋存特征. 西北地质. 2020(02): 183-199 .
    12. 张照伟,钱兵,王亚磊,李文渊,张江伟,尤敏鑫. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示. 西北地质. 2020(03): 153-168 .
    13. Zhao-wei Zhang,Ya-lei Wang,Chi-yuan Wang,Bing Qian,Wen-yuan Li,Jiang-wei Zhang,Min-xin You. Mafic-ultramafic magma activity and copper-nickel sulfide metallogeny during Paleozoic in the Eastern Kunlun Orogenic Belt, Qinghai Province, China. China Geology. 2019(04): 467-477 .

    Other cited types(7)

Catalog

    Article views (9654) PDF downloads (18653) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return