• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
YIN Yueping, WANG Wenpei, ZHANG Nan, YAN Jingkai, WEI Yunjie, YANG Longwei. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. GEOLOGY IN CHINA, 2017, 44(5): 827-841. DOI: 10.12029/gc20170501
Citation: YIN Yueping, WANG Wenpei, ZHANG Nan, YAN Jingkai, WEI Yunjie, YANG Longwei. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. GEOLOGY IN CHINA, 2017, 44(5): 827-841. DOI: 10.12029/gc20170501

Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province

Funds: 

Geological Hazard Detailed Investigation Project of China Geological Survey DD20179609

More Information
  • Author Bio:

    YIN Yueping, male, born in 1960, doctor, engages in the study of geological hazard prevention and treatment; E-mail: yinyp@mail.cigem.gov.cn

  • Received Date: September 18, 2017
  • Revised Date: October 17, 2017
  • Available Online: September 25, 2023
  • In recent years, a typical type of catastrophic ridge-top (or high-position) rockslide often occur in the strong earthquakes such as the Wenchuan earthquake. It exits out from the upper part of the steep slope and forms a volley fall with impact and crushing effect and dynamic erosion effect, causing the slide body to disintegrate and fragment, which transforms into rapid and long run-out avalanche debris or debris flow, and entraining the lower part of rock and soil mass, so that the volume increased significantly. The Xinmo landslide is this typical, it occurred at Maoxian County, Sichuan Province on June 24, 2017. The elevation of the crown of the Xinmo landslide was about 3450 m and the front edge was about 2250m. The height difference of landslide was 1200m, and the horizontal distance was about 2800 m. Its volume was up to 16.37 million m3. The landslide buried the Xinmo Village, leading to the death of 83 people. The Xinmo landslide was located on the western wing of the Jiaochang arc-shaped tectonics. Its parent rocks were the medium to thick layered metamorphic sandstone intercalated with slate in the Middle Triassic. The region was not only the epicenter area of the Diexi earthquake with magnitude 7.5 in 1933 (the intensity of the earthquake was X) but also the strong earthquake-affected area of the Wenchuan Ms8.0 earthquake in 2008 (the intensity was IX). The mountains, especially the ridge-top rockmass, were fractured/cracked due to the strong earthquakes. There were multiple groups of discontinuous structural planes in the sliding source zone, and hence the thick blocky rock mass was cracked into fragmented blocks, and the bugling area was formed at the elevation varying from 3150 to 3450 meter. In particular, there were two sets of anti-dip large joints in the sliding source area, indicating a typical failure mechanism "locked-section". Rockslide with a volume of 3.9 million m3 exited and continuously accumulated at the back of previous residual landslide. The "overload effect" triggered the slope instability under the exit and transferred into long runout channeled avalanche debris. Because the terrain was wide and the slope angle gradually decreased, avalanche debris converted to diffused one and then to scattered accumulation. The Xinmo landslide presents a typical disaster mode of the rapid and long runout initialed due to rockslide at ridge-top in strong earthquake area. A new method should be established to recognize this type of landslides. Wherever there are large-scale rockslides in steep ridge-top region, the "dynamic erosion effect" and the "overloading effect" on the previous accumulation and the talus of slope due to impact processes should be considered. Especially in the place where there is abundant groundwater along the gully, the possibility of a rapid and long runout rockslide-avalanche debris will increase. Therefore, in conducting the investigation of geological disaster, the town, village or other populated areas should be zoned as risk area on the previous landslide accumulation of slope below the exit of the rockslide at the ridge-top. The authors emphasize that, in the strong earthquake mountainous regions, the static balance method for the landslide stability should be considered, and the dynamic research on the landslide runout processes and the disaster mode should be strengthened.

  • Catane S G, Cabria H B, Jr C P T, Jr R M S, Zarco M A H, Pioquinto W C.2007.Catastrophic rockslide-debris avalanche at St.Bernard, Southern Leyte, Philippines[J].Landslides, 4(1):85-90. doi: 10.1007/s10346-006-0050-3
    Chen Zuyu, Meng Xingmin, Yin Yueping, Dijkstra T, Winter M, Wasowski J.2016.Landslide research in China[J].Quarterly Journal of Engineering Geology & Hydrogeology, 49(1-4):qjegh2016-100. https://www.researchgate.net/.../310757610_Landslide_Research_in_China
    Fan Xuanmei, Xu Qiang, Scaringi G, Dai Lanxin, Li Weile, Dong Xiujun, Zhu Xing, Pei Xiangjun, Dai Keren, Havenith HansBalder.2017.Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China[J].Landslides, online DOI 10.1007/s10346-017-0907-7. doi: 10.1007/s10346-017-0907-7
    Huang Runqiu, Li Weile.2011.Formation, distribution and risk control of landslides in China[J].Journal of Rock Mechanics and Geotechnical Engineering, 3(2):97-116. doi: 10.3724/SP.J.1235.2011.00097
    Hungr O, McDougall S.2009.Two numerical models for landslide dynamic analysis[J].Comput Geosci, 35(5):978-92. doi: 10.1016/j.cageo.2007.12.003
    Sassa K, He B, Dang K, Nagai O, Takara K.2014.Plenary:progress in landslide dynamics[C]//Sassa K, Canuti P, Yin Y P (editors) Landslide science for a safer geoenvironment.Switzerland:Springer International Publishing; 37-67.
    Scheidegger A E.1973.On the prediction of the reach and velocity of catastrophic landslides[J].Rock Mech Rock Eng, 5:11-40. doi: 10.1007/BF01301796
    Su Lijun, Hu K H, Zhang W F, Wang J, Lei Y, Zhang CL, Cui P, Alessandro Pasuto, Zheng QH.2017.Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan, China[J].Journal of Mountain Science, 14(9):1689-1700. doi: 10.1007/s11629-017-4609-3
    Wen Mingsheng, Chen Hongqi, Zhang Mingzhi, Chu Hongliang, Wang Wenpei, Zhang Nan, Huang Zhe.2017.Characteristics and formation mechanism analysis of the "6·24" catastrophic landslide of the June 24 of 2017, at Maoxian, Sichuan[J].Chinese Journal of Geological Hazards and Control, 28(3):1-7(in Chinese with English abstract). doi: 10.1007/s11069-017-3026-9
    Xu Qiang, Li Weile, Dong Xiujun, Xiao Xianxuan, Fan Xuanmei, PeiXiangjun.The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan:characteristics and failure mechanism., 2017, 36(11):2612-2628. https://www.researchgate.net/publication/320318336_Failure...
    Xu Qiang, Li Weile, Dong Xiujun, Xiao Xianxuan, Fan Xuanmei, Pei Xiangjun.2018.The Xinmocun Landslide on June 24, 2017 in Diexi, Maoxian, Sichuan:Characteristics and Failure Mechanism[J].Chinese Journal of Rock Mechanics and Engineering, (in Press). doi: 10.1007/s11069-017-3026-9
    Xu Qiang, Zhang S, Li WL.2011.Spatial distribution of large-scale landslides induced by the 5.12 Wenchuan earthquake[J].Journal of Mountain Science, 8(2):246-260. doi: 10.1007/s11629-011-2105-8
    Xu Xiangning, Wang Lansheng.2012.Mountain hazard caused by earthquake in Songping branch, the Upper Min River and its controlling[J], The Chinese Journal of Geological Hazard and Control, 13(2):31-35(in Chinese with English abstract).
    Yin Yueping, Zheng Wamo, Li Xiaochun.2011a.Catastropic landslides associated with the M8.0 Wenchuan earthuqake[J].Bulletin of engineering Geology & the Environment, 70(1):15-32. doi: 10.1007/s10064-010-0334-7
    Yin Yueping, Sun Ping, Zhu Jiliang, Yang Shengyun.2011b.Research on catastrophic rock avalanche at Guanling, Guizhou, China[J].Landslides, 8(4):517-525. doi: 10.1007/s10346-011-0266-8
    Yin Yueping, Cheng Yuliang, Liang Jingtao, Wang Wenpei.2016.Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake[J].Landslides, 13(1):9-23. doi: 10.1007/s10346-015-0554-9
    Yin Yueping, Wang Wenpei, Zhang Nan, Yan Jingkai, Wei Yunjie.2017.The June 2017 Maoxian Landslide:Geological Disaster in An Earthquake Area after the Wenchuan Ms8.0 Earthquake[J].Sci China Tech.Sci., 2017, 60:doi: 10.1007/s11431-017-9148-2.
    Zhang Ming, McSaveney M J.2017.Rock avalanche deposits store quantitative evidence on internal shear during runout[J].Geophysical Research Letters, 44:doi: 10.1002/2017GL073774.
    Zhang Yongshuang, Cheng Yuliang, Yin Yueping, Lan Hengxing.2014.High-position debris flow:a long-term active geohazard after the wenchuan earthquake.Engineering Geology, 180(180):45-54. https://www.sciencedirect.com/science/article/pii/S0013795214001227
    Zhao Yong.2017.Analysis of movement process of Maoxian landslide, Sichuan[R].Beijing:China Earthquake Networks Center (in Chinese).
    温铭生, 陈红旗, 张鸣之, 褚宏亮, 王文沛, 张楠, 黄喆.2017.四川茂县"6.24"特大滑坡特征与成因机制分析[J].中国地质灾害与防治学报, 28(3):1-7.
    许强, 李为乐, 董秀军, 肖先煊, 范宣梅, 裴向军.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 36(11):2612-2628. http://www.cnki.com.cn/Journal/B-B3-YSLX-2017-11.htm
    许强, 李为乐, 董秀军, 肖先煊, 范宣梅, 裴向军.2018.四川茂县叠溪镇新磨村滑坡特征与成因机理初步研究[J].岩石力学与工程学报, (待刊). http://bianke.cnki.net/Home/Corpus/14112.html
    许向宁, 王兰生.2002.岷江上游松坪沟地震山地灾害与生态环境保护[J].中国地质灾害与防治学报, 13(2):31-35. http://www.cqvip.com/QK/98314X/200202/6521123.html
    赵永. 2017. 四川6. 24茂县滑坡过程分析[R]. 北京: 中国地震台网中心.
  • Related Articles

    [1]LI Honglei, GUO Zhijun, YI Tongsheng, QIN Yong, YANG Tongbao, JIN Jun. Optimization and evaluation of favorable CBM areas in the Upper Peimian of the Northwest Guizhou[J]. GEOLOGY IN CHINA. DOI: 10.12029/gc20220612002
    [2]SONG Danhui, HAN Runsheng, WANG Feng, WANG Mingzhi, HE Zhi, ZHOU Wei, LUO Da. Structural ore−controlling mechanism of the Qingshan lead−zinc deposit in northwestern Guizhou, China and its implications for deep prospecting[J]. GEOLOGY IN CHINA, 2024, 51(2): 399-425. DOI: 10.12029/gc20200828002
    [3]ZHANG Wei, ZENG Zhaoguang, ZHOU Jun, JI Guosong, XU Xuegui, LIU Guanglei, LU Jianbao. Broadband magnetotelluric (BMT) detecting blind gold deposits with interface-type: A case of deep prospecting in the Getang area, southwestern Guizhou[J]. GEOLOGY IN CHINA, 2023, 50(2): 359-375. DOI: 10.12029/gc20200207001
    [4]WAN Xin, HAN Runsheng, LI Bo, XIAO Xianguo, HE Zhiwei, WANG Jingteng, WEI Qingxi. Tectono-geochemistry and deep prospecting prediction in the Lekai lead-zinc deposit, Northwestern Guizhou Province, China[J]. GEOLOGY IN CHINA, 2022, 49(6): 1875-1892. DOI: 10.12029/gc20220613
    [5]WEI Hongxia, WANG Jujie, ZENG Pusheng, WANG Shuangqing. Micropore structure characteristics of Wufeng-Longmaxi Formation black shale along Qilongcun section in northwest Guizhou[J]. GEOLOGY IN CHINA, 2018, 45(2): 274-285. DOI: 10.12029/gc20180205
    [6]LI Kun, WU Chang-xiong, TANG Chao-yang, DUAN Qi-fa, YU Yu-shuai. Carbon and oxygen isotopes of Pb-Zn ore deposits in western Hunan and eastern Guizhou provinces and their implications for the ore-forming process[J]. GEOLOGY IN CHINA, 2014, 41(5): 1608-1619. DOI: 10.12029/gc20140516
    [7]LI Kun, LIU Kai, TANG Chao-yang, DUAN Qi-fa. Characteristics of zinc geochemical blocks and assessment of zinc resource potential in western Hunan and eastern Guizhou Province[J]. GEOLOGY IN CHINA, 2013, 40(4): 1270-1277. DOI: 10.12029/gc20130423
    [8]TANG Zhao-yang, DENG Feng, LI Kun, DUAN Qi-fa, ZOU Xian-wu, DAI Ping-yun. Stratigraphic characteristics of the Cambrian Qingxudong Formation in relation to lead-zinc mineralization in western Hunan-eastern Guizhou area[J]. GEOLOGY IN CHINA, 2012, 39(4): 1034-1041. DOI: 10.12029/gc20120419
    [9]NIU Cui-yi, WAND Ke-qiang, LI Shao-ru. Prediction and evaluation of gold resources in the Yunnan-Guizhou-Guangxi metallogenic area[J]. GEOLOGY IN CHINA, 2011, 38(6): 1576-1583. DOI: 10.12029/gc20110617
    [10]WANG Shang-yan, YIN Hong-fu. Characteristics of claystone at the continental Permian-Triassic boundary in the eastern Yunnan-western Guizhou region[J]. GEOLOGY IN CHINA, 2002, (2): 155-160. DOI: 10.12029/gc20020209
  • Cited by

    Periodical cited type(9)

    1. 邵坤,余滔,龚大兴. 高压密闭消解-ICP-AES法测定沉积型稀土矿中La、Ce、Pr、Nd、Y、Nb、Zr. 稀土. 2024(01): 87-94 .
    2. 罗香建,覃英,卢树藩,张嘉玮,黄庆,王彪,龚大兴,田恩源,刘国栋. 黔西恰西地区晚二叠世富稀土岩系地球化学特征及物源分析. 高校地质学报. 2024(04): 418-430 .
    3. 周伟,祁晓鹏,张嘉升,徐磊,杨杰,王璐,高景民. 扬子板块北缘镇巴地区吴家坪组富Li-REE-Nb-V黏土岩地球化学特征及其地质找矿意义. 地质与勘探. 2023(06): 1145-1156 .
    4. 罗香建,覃英,卢树藩,符宏斌,黄庆,刘国栋. 贵州西部晚二叠世富稀土岩系沉积相分析. 矿物学报. 2023(06): 735-745 .
    5. 王彪,黄庆,何良伦,吕绍玉,徐莺,熊兴宇,赵婷. 黔西北麻乍地区沉积型稀土矿稀土元素赋存状态研究. 矿物学报. 2023(06): 786-798 .
    6. 王晓慧,颜世强,梁友伟,龚大兴,惠博,徐璐. 黔西北地区沉积型稀土资源回收稀土研究现状及选矿实验探讨. 矿产综合利用. 2022(02): 135-141 .
    7. 薛洪富,向震中,吴林,肖宪国,叶霖,曾道国,黄威虎. 黔西北玉龙地区Nb-REE富集层中稀土赋存形式. 矿物学报. 2022(04): 555-556 .
    8. 明添学,唐忠,包从法,李蓉,詹冬琴,杨清标,郝学峰,余海军. 云南省稀土矿分布特征、研究进展与展望. 中国稀土学报. 2022(04): 577-590 .
    9. 刘兵,孙载波,陈棵,周家喜,马进华,张虎,段向东,王敏,宋冬虎,肖高强,包佳凤,方雄. 滇西遮放盆地西缘芒棒组稀土元素富集特征及其地质意义. 大地构造与成矿学. 2022(06): 1075-1089 .

    Other cited types(3)

Catalog

    Article views (5904) PDF downloads (5590) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return