Citation: | LIU Hongwei, DU Dong, XU Jingbo, MA Zhen, ZHAO Qingsong, PEI Yandong, HU Yunzhuang, MIAO Jinjie, BAI Yaonan, ZHANG Jing. Characteristics and affecting factors of land subsidence identification based on PSInSAR measures in Shandong Peninsula Blue-Yellow Overlapping Economic Zone[J]. GEOLOGY IN CHINA, 2018, 45(6): 1116-1127. DOI: 10.12029/gc20180603 |
The study area is located along the overlapping zone of the Shandong Peninsula Blue Economic Zone and the Yellow River Delta Highly Efficient Ecological Economic Zone, showing important location advantages. The occurrence of land subsidence disasters has posed threats to the planning and construction of the city and the tide dike height of the port. Therefore, it is utmost important to fully recognize the characteristics of land subsidence and, in particular, to identify the main factors affecting land subsidence. Previous researches have been mainly focused on partial area using GPS and leveling survey methods without covering the whole area, which cannot support the regional city planning efficiently. Based on previous researches, the authors used PSInSAR measuring to analyze the land subsidence rate and its variation in the whole region in comparison with the leveling survey results. The results show that land subsidence has been evidently covering 75 percent of the area in recent years where there have appeared several flat districts at the junctions of Shouguang-Guangrao, northern location of Shouguang-Binhai Development Zone, northwestern Shouguang downtown, and northern location of Changyi-Binhai Development Zone, and there is an increasing trend for the harm degree of land subsidence. There are 16 settlement centers whose maximum settlement rate has reached 29-168 mm/a, and the rates of 62 percent of centers exceed 40mm/a, which are distributed in the west and northwest of the study area. Fault structure, stratigraphic structure, groundwater exploitation and ground load are the influencing factors of land subsidence, among which groundwater exploitation is the main factor of regional land subsidence, and the ground load enhances the uneven settlement of local sections, while the fault structure and stratigraphic structure provide geological background conditions for the development of land subsidence.
Bawden G W, Thatcher W, Stein R S, Hudnut K W, Peltzer G. 2001. Tectonic contraction across Los Angeles after removal of groundwater pumping effects[J]. Nature, 412(6849):812-815. doi: 10.1038/35090558
|
China Geological Survey. 2016. Geological Environment Carrying Capacity Evaluation and Early Monitoring Warning Indicator System and Technical Method[S]. (in Chinese).
|
Ferretti A, Prati C, Rocca F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 38(5):2202-2212. doi: 10.1109/36.868878
|
Fang Hao, He Qingcheng, Xu Bin, Wang Meihua, Li Xia. 2016. A study of risk assessment of the land subsidence in Cangzhou[J]. Hydrogeology & Engineering Geology, 43(4):159-164(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201604026
|
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2006. Spicificaitons for the First and Second Order Leveling (GB/T 12897-2006)[S].(in Chinese).
|
Galloway D L, Hudnut K W, Ingebritsen S E, Phillips S P, Peltzer G, Rogez F, Rosen P A. 1998. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California[J].Water Resources Research, 34(10):2573-2585. doi: 10.1029/98WR01285
|
Ge Daqing, Wang Yan, Guo Xiaofang, Liu Shengwei, Fan Jinghui. 2007. Surface deformation monitoring with multi-baseline DInSAR based on coherent point target[J]. Journal of Remote Sensing, 11(4):574-580 (in Chinese with English abstract). doi: 10.1007/s00024-007-0192-9
|
Guo Haipeng, Bai Jinbin, Zhang Youquan, Wang Liya, Shi Jusong, Li Wenpeng, Zhang Zuochen, Wang Yunlong, Zhu Juyan, Wang Haigang. 2017. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J]. Geology in China, 44(6):1115-1127(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201706008
|
Liu Hongwei. 2017. Investigation and Evaluation of Geological Environment in Laizhou Bay[R]. Tianjin: Tianjin Center, China Geological Survey (in Chinese).
|
Li Hongchun, Li Xiaolong, Zhang Yagang. 2015. On the main environmental engineering geological problems and countermeasures in the coastal area of northern Weifang[J]. Value Engineering, 34(23):97-99 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzgc201523036
|
Liu Hongwei, Ma Zhen, Chen Sheming, Guo Xu, Su Yongjun, Du Dong, Hu Yunzhuang. 2015. Saltwater intrusion measurement in Laizhou Bay southern area based on hydro-chemical and geophysical methods[J]. Geoscience, 29(2):337-343 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201502018.htm
|
Lei Kunchao, Luo Yong, Chen Beibei, Guo Gaoxuan, Zhou Yi. 2016. Distribution characteristics and influence factors of land subsidence in Beijing area[J]. Geology in China, 43(6):2216-2225 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201606029
|
Li Man, Ge Daqing, Zhang Ling, Liu Bin, Guo Xiaofang, Wang Yan. 2016. Characteristics and influencing factors of land subsidence in Caofeidian newly-developed area based on PSInSAR technique[J]. Remote Sensing for Land and Resources, 28(4):119-126 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg201604021
|
Ministry of Natural Resources of the People's Republic of China. 2015. Specificaiton of Risk Assessment for Geological Hazard(DZ/T 0286-2015)[S]. (in Chinese).
|
Pacheco-martínez J, Hernandez-marín M, Burbey T J, GonzálezCervantes N, Ortíz-Lozano, JÁZermeño-De-Leon, M E, Solís-Pinto A. 2013. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, México[J]. Engineering Geology, 164:172-186. doi: 10.1016/j.enggeo.2013.06.015
|
Tomas R, Herrera G, Delgado J, Mallorquí J J, Mulas J. 2010. A ground subsidence study based on DInSAR data:Calibration of soil parameters and subsidence prediction in Murcia City(Spain)[J]. Engineering Geology, 111:19-30. doi: 10.1016/j.enggeo.2009.11.004
|
Tomas R, Romero R, Mulas J. 2014. Radar interferometry techniques for the study of ground subsidence phenomena:A review of practical issues through cases in Spain[J]. Environmental Earth Science, 71(1):163-181. doi: 10.1007/s12665-013-2422-z
|
Xiao Guoqiang. 2010. Environmental Geological Survey And Vulnerability Assessment of Key Areas in Bohai Region[R]. Tianjin: Tianjin Center, China Geological Survey (in Chinese).
|
Xu Junxiang, Shi Baoyu, Chen Xiuming. 2002. Study on major ecological environment problems and its survey method[J]. Shandong Geology, 18(4):95-99 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDDI2002Z1033.htm
|
Zhang Jinzhi, Huang Haijun, Liu Yanxia, Liu Yong, Ma Lijie. 2013. Monitoring and analysis of ground subsidence in the Modern Yellow River Delta Area based on PSInSAR technique[J]. Scientia Geographica Sinica, 33(7):831-836 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX201307009.htm
|
中华人民共和国国家质量监督检验检疫总局. 2006.国家一、二等水准测量规范(GB/T 12897-2006)[S].
|
中华人民共和国国土资源部. 2015.地质灾害危险性评估规范(DZ/T 0286-2015)[S].
|
中国地质调查局. 2016.地质环境承载能力评价与监测预警指标体系和技术方法[S].
|
房浩, 何庆成, 徐斌, 汪美华, 李霞. 2016.沧州地区地面沉降灾害风险评价研究[J].水文地质工程地质, 43(4):159-164. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201604026
|
葛大庆, 王艳, 郭小方, 刘圣伟, 范景辉.2007.基于相干点目标的多基线D-InSAR技术与地表形变监测[J].遥感学报, 11(4):574-580. http://d.old.wanfangdata.com.cn/Periodical/ygxb200704020
|
郭海朋, 白晋斌, 张有全, 王丽亚, 石菊松, 李文鹏, 张作辰, 王云龙, 朱菊艳, 王海刚. 2017.华北平原典型地段地面沉降演化特征与机理研究[J].中国地质, 44(6):1115-1127. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?flag=1&file_no=20170607&journal_id=geochina
|
刘宏伟. 2017.莱州湾地质环境调查评价[R].天津: 中国地质调查局天津地质调查中心.
|
李洪春, 李小龙, 张亚刚. 2015.浅析潍坊北部沿海区域主要环境工程地质问题及对策[J].价值工程, 34(23):97-99. http://d.old.wanfangdata.com.cn/Periodical/jzgc201523036
|
刘宏伟, 马震, 陈社明, 郭旭, 苏永军, 杜东, 胡云壮. 2015.基于水化学与地球物理法的莱州湾南岸海(咸)水入侵勘查[J].现代地质, 29(2):337-343. doi: 10.3969/j.issn.1000-8527.2015.02.017
|
雷坤超, 罗勇, 陈蓓蓓, 郭高轩, 周毅. 2016.北京平原区地面沉降分布特征及影响因素[J].中国地质, 43(6):2216-2225. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?flag=1&file_no=20160629&journal_id=geochina
|
李曼, 葛大庆, 张玲, 刘斌, 郭小芳, 王艳. 2016.基于PSInSAR技术的曹妃甸新区地面沉降发育特征及其影响因素分析[J].国土资源遥感, 28(4):119-126. http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201604021
|
肖国强. 2010.环渤海地区重点地段环境地质调查及脆弱性评价[R].天津: 中国地质调查局天津地质调查中心.
|
徐军祥, 石宝玉, 程秀明. 2002.山东省主要生态环境地质问题与调查方法探讨[J].山东地质, 18(4):95-99. http://d.old.wanfangdata.com.cn/Periodical/sddz200203033
|
张金芝, 黄海军, 刘艳霞, 刘勇, 马立杰. 2013.基于PSInSAR技术的现代黄河三角洲地面沉降监测与分析[J].地理科学, 33(7):831-836. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201307009.htm
|
1. |
陈瑞瑞,孙颢月,朱紫若,蒋雪中,陈沈良,陈静. 黄河三角洲地面沉降研究进展与未来展望. 海岸工程. 2024(01): 1-23 .
![]() | |
2. |
田苗壮,赵龙,崔文君,郭高轩,刘贺,孙爱华,王新惠,陈航,吴盼. 南水北调背景下地下水位上升对地面沉降控制与影响——以北京潮白河地下水系统为例. 中国地质. 2023(03): 872-886 .
![]() | |
3. |
李承航,张文春. 基于InSAR技术的监测应用及研究进展. 北方建筑. 2020(04): 15-19 .
![]() | |
4. |
王云龙,郭海朋,孟静,陈晔,臧西胜,朱菊艳,樊高栋. 沧州典型地面沉降区土体压缩与固结特征研究. 地质调查与研究. 2020(03): 246-250+278 .
![]() | |
5. |
韩红花. 黄河三角洲区域地表形变监测研究. 山东国土资源. 2020(11): 69-72 .
![]() | |
6. |
夏元平,陈志轩,张毅. 南昌市地面沉降InSAR监测及影响因子分析. 测绘科学. 2020(11): 115-122+129 .
![]() |