• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
XU Peng, TAN Hongbing, ZHANG Yanfei, ZHANG Wenjie. Geochemical characteristics and source mechanism of geothermal water in Tethys Himalaya belt[J]. GEOLOGY IN CHINA, 2018, 45(6): 1142-1154. DOI: 10.12029/gc20180605
Citation: XU Peng, TAN Hongbing, ZHANG Yanfei, ZHANG Wenjie. Geochemical characteristics and source mechanism of geothermal water in Tethys Himalaya belt[J]. GEOLOGY IN CHINA, 2018, 45(6): 1142-1154. DOI: 10.12029/gc20180605

Geochemical characteristics and source mechanism of geothermal water in Tethys Himalaya belt

Funds: 

National Natural Science Foundation of China 91747203

National Natural Science Foundation of China 4117304

National Natural Science Foundation of China 41872074

Fundamental Research Funds for the Central Universities 2017B19614

More Information
  • Author Bio:

    XU Peng, male, born in 1994, master, majors in geochemistry; E-mail: xupenghhu@foxmail.com

  • Corresponding author:

    TAN Hongbing, male, born in 1972, professor, supervisor of doctor candidates, majors in mineral resources and hydrology as well as water resources; E-mail:tan815@sina.com

  • Received Date: September 28, 2017
  • Revised Date: September 04, 2018
  • Available Online: September 25, 2023
  • Geothermal resources are very abundant in Tibet. A very active geothermal zone called the Tethys Himalaya geothermal belt has been developed in the southern part of the Tibetan Plateau. This belt is one of the most intense geothermal zones in modern as well as in ancient period in China's mainland, accounting for over 80 percent of the geothermal resources in Tibet. Through field investigations and sampling analyses for 10 typical hot springs from the geothermal area, the hydrochemical characteristics and source mechanisms are discussed. According to the thermal reservoir temperature, the hydrochemical type and the concentration of typical rare and dispersed elements dissolved in the water, the hot springs can be classified into two types:one type includes Kawu, Qucangang, Chabaquzhen and Gudui hot springs, their thermal reservoir temperatures are higher than 120℃ and they belong to NaCl-HCO3 type; some rare and dispersed elements such as Li, B and As are obviously enriched. The other type includes Xinqin, Zhegu and Quguo hot springs, their geothermal reservoir temperatures are relatively low (60-110℃); these springs show lower concentrations of elements of Li, B and As with water chemistry dominated by Ca-Na-HCO3 and Na-HCO3 type. The high concentration of water chemical composition in the first group is closely related to the deeper water circulation and the higher thermal reservoir temperature, and abnormal enrichment of Li, B and As in the hot springs are more likely to be related to the source of residual magmatic fluids. In contrast, the second group of hot springs mainly denotes a shallower water circulation depth and frequent cold groundwater replenishment and mixing. The formation and evolution of chemical compositions of water are mainly related to water/rock interactions.

  • Arnórsson S, Andrésdóttir A. 1995. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta, 59(20):4125-4146. doi: 10.1016/0016-7037(95)00278-8
    Arnórsson S. 2003. Arsenic in surface-and up to 90℃ ground waters in a basalt area, N-Iceland:processes controlling its mobility[J]. Applied Geochemistry, 18(9):1297-1312. doi: 10.1016/S0883-2927(03)00052-0
    Barbier E. 2002. Geothermal energy technology and current status:an overview[J]. Renewable & Sustainable Energy Reviews, 6(1):3-65. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230943360/
    Chinese Academy of Sciences Comprehensive Survey Team of Qinghai Tibet Plateau. 1981. Tibet Hot Spring[M]. Beijing:Science Press (in Chinese).
    Duo ji. 2003. The basic characteristics of the Yangbajing geothermal field-A typical high temperature geothermal system[J]. Engineering Sciences, 5(1):42-47(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKX200301007.htm
    Delgado-Outeiriño I, Araujo-Nespereira P, Cid-Fernández J A, Mejuto J C, Martínez-Carballo E, Simal-Gándara J. 2009. Behaviour of thermal waters through granite rocks based on residence time and inorganic pattern[J]. Journal of Hydrology, 373(3):329-336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef43f8183683cd01f0a57a964bcd8151
    Grimaud D, Huang S, Michard G, Zheng K. 1985. Chemical study of geothermal waters of central Tibet (China)[J]. Geothermics, 14(1):35-48. doi: 10.1016/0375-6505(85)90092-6
    Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52(12):2749-2765. doi: 10.1016/0016-7037(88)90143-3
    Gupta H K, Roy S. 2007. Geothermal Energy:An Alternative Resource for the 21 st Century[M]. Elsevier.
    Guo Q, Wang Y, Liu W. 2007. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology & Geothermal Research, 166(3):255-268. doi: 10.1016-j.jvolgeores.2007.08.004/
    Guo Q, Cao Y, Li J, Zhang X, Wang Y. 2015. Natural attenuation of geothermal arsenic from yangbajain power plant discharge in the Zangbo River, Tibet, China[J]. Applied Geochemistry, 62:164-170. doi: 10.1016/j.apgeochem.2015.01.017
    Guo Q, Liu M, Li J, Zhou C. 2017. Geochemical Genesis of arsenic in the geothermal waters from the Rehai hydrothermal system, southwestern China[J]. Procedia Earth & Planetary Science, 17:49-52. https://www.sciencedirect.com/science/article/pii/S187852201630056X
    Huh Y, Chan, L H, Zhang, L, Edmond J M. 1998. Lithium and its isotopes in major world rivers:implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta, 62(12):2039-2051. doi: 10.1016/S0016-7037(98)00126-4
    Li Zhenqing, Hou Zengqian, Nie Fengjun, Meng Xiangjin. 2005. Characteristic and distribution of the partial melting layers in the upper crust:Evidence from active hydrothermal fluid in the South Tibet[J]. Acta Geologica Sinica, 79(1):68-77(in Chinese with English abstract). doi: 10.1007/3-540-27946-6_317
    Li Zhenqing, Hou Zengqian, Nie Fengjun, Yang Zhusen. 2006. Enrichment of element cesium during modern geothermal action in Tibet, China[J]. Acta Geologica Sinica, 80(9):1457-1464(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609019
    Liao Zhongli, Mo Xuanxue, Pan Guitang, Zhu Dicheng, Wang Liquan, Zhao Zhidan, Geng Quanru, Dong Guochen. 2006. Tibet:Geochemical characteristics and geodynamic significance[J]. Acta Petrologica Sinica, 22(4):845-854(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gyqx200602023
    López D L, Bundschuh J, Birkle P, Armienta M A, Cumbal L, Sracek O, Cornejo L, Ormachea M. 2012. Arsenic in volcanic geothermal fluids of latin america[J]. Science of the Total Environment, 429(7):57-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4cf7859a384de5ccb9540f2cf7fd40c6
    Lu Yuanyuan, Zhao Ping, Xu Ronghua, Xie Liewen. 2012. Geochemical study on boron isotopes in the Yangbajing geothermal field, Tibet[J]. Chinese Journal of Geology, 47(1):251-264(in Chinese with English abstract).
    Li Jiexiang, Guo Qinghai, Xu Zhengyan. 2017. Impact of clay mineral formation in high-temperature geothermal system on Accuracy of Na-K and K-Mg geothermometers[J]. Earth Science——Journal of China University of Geosciences, 42(1):142-154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201701011
    Mou Baolei. 1999. Elemental Geochemistry[M]. Beijing:Peking University Press(in Chinese).
    Millot R, Hegan A, Négrel P. 2012. Geothermal waters from the Taupo Volcanic Zone, New Zealand:Li, B and Sr isotopes characterization[J]. Applied Geochemistry, 27(3):677-688. doi: 10.1016/j.apgeochem.2011.12.015
    Peiffer L, Wanner C, Spycher N, Sonnenthal E L, Kennedy B M, Iovenitti J. 2014. Optimized multicomponent vs. classical geothermometry:Insights from modeling studies at the dixie valley geothermal area[J]. Geothermics, 51(July 2014):154-169. http://www.sciencedirect.com/science/article/pii/S037565051300117X
    Robinson B, Outred H, Brooks R, Kirkman J. 1995. The distribution and fate of arsenic in the waikato river system, north island, new zealand[J]. Chemical Speciation & Bioavailability, 7(3), 89-96. doi: 10.1080/09542299.1995.11083250
    Reye A G, Trompetter W J. 2012. Hydrothermal water-rock interaction and the redistribution of Li, Bi and Cl in the taupo volcanic zone, new zealand[J]. Chemical Geology, 314-317(4):96-112. http://www.sciencedirect.com/science/article/pii/S0009254112002100
    Sorey M L, Colvard E M. 1997. Hydrologic investigations in the Mammoth Corridor, Yellowstone National Park and vicinity, U.S. A[J]. Geothermics, 26(2):221-249. doi: 10.1016/S0375-6505(96)00041-7
    Smedley P L, Kinniburgh D G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 17(5):517-568. doi: 10.1016/S0883-2927(02)00018-5
    Sun Hongli, Ma Feng, Ling Wenjing, Liu Zhao, Wang Guiling, Nan Dawa. 2015. Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet[J]. Geological Science and Technology Information, 34(3):171-177(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201503024.htm
    Tan H, Zhang W, Chen J, Jiang S, Kong N. 2012. Isotope and geochemical study for geothermal assessment of the Xining basin of the northeastern Tibetan plateau[J]. Geothermics, 42(2):47-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e4b17a0c3adef38be24743952c5c810f
    Tan H, Zhang Y, Zhang W, Kong N, Zhang Q, Huang J. 2014. Understanding the circulation of geothermal waters in the Tibetan plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 51(51):23-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ead00daae58fb412d742e5edc1193228
    Tong Wei, Zhang Zhifei, Zhang Mingtao, Liao Zhijie, You Maozheng, Zhu Meixiang, Guo Guoying, Liu Shibin. 1978. The Himalayan Geothermal Belt[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, (1):76-88, 157(in Chinese with English abstract). doi: 10.1016-S0377-0273(98)00018-3/
    Tong Wei, Zhu Meixiang, Chen Minyang. 1982. Sulfur-isotopic analysis and studies upon the Abyssal heat recharge of the Xizang's(Tibet's) hydrothermal activities[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, (2):81-87(in Chinese with English abstract). http://www.cabdirect.org/abstracts/19812608779.html
    Tong Wei, Liao Zhijie, Liu Shibin. 2000. Tibet Hot Spring[M]. Beijing:Science Press(in Chinese).
    Wang Shaoling. 1992. Palaeosinters and its significance in QingXizang Plateau[J]. Hydrogeology & Engineering Geology, (4):29-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG199204011.htm
    Xu Shiguang, Guo Yuansheng. 2009. Geothermal Foundation[M]. Science Press(in Chinese).
    Yoshiike Y. 2003. Variation in the chemical composition of Obuki Spring, Tamagawa Hot Springs (1951-2000)[J]. Geochemical Journal, 37(6):649-662. doi: 10.2343/geochemj.37.649
    Zhang Meng, Lin Wenjing, Liu Zhao, Liu Zhiming, Hu Xiancai, Wang Guiling. 2014. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), (3):382-392 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CDLG201403015.htm
    Zhang W, Tan H, Zhang Y, Wei H, Dong T. 2015. Boron geochemistry from some typical Tibetan hydrothermal systems:Origin and isotopic fractionation[J]. Applied Geochemistry, 63:436-445. doi: 10.1016/j.apgeochem.2015.10.006
    Zhang Xigen. 1998. Sulfur mineralization of modern geothermal system in Yangbajing Basin of Xizang[J]. Geology of Chemical Minerals, (1):1-10(in Chinese with English abstract).
    Zhao Ping, Duo ji, Liang Tinli, Jin Jian, Zhang Haizheng. 1998. Tibet Yangbajing geothermal field gas geochemical characteristics[J]. Chinese Science Bulletin, 20(7):691-696(in Chinese with English abstract).
    Zhao Ping, Jin Jian, Zhang Haizheng, Duo Ji, Liang Tinli. 1998. Chemical composition of thermal water in the Yangbajing Gerthermal Field, Tibet[J]. Scientia Geologica Sinica, (1):62-73(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX801.007.htm
    Zhao Yuanyi, Zhao Xitao, Ma Zhibang, Deng Jian. 2010. Chronology of the Gulu hot spring cesium deposit in Nagqu, Tibet and it geological significance[J]. Acta Geologica Sinica, 84(2):211-220(in Chinese with English abstract).
    Zheng Xiyu, Yang Shaoxiu. 1983. On the components of the saline lake water in Xizang[J]. Oceanologia Et Limnologia Sinica, 14(04):342-352(in Chinese with English abstract).
    Zheng Mianping, Xiang Jun, Wei Xinjun. 1989. Saline Lake in Qinghai-Tibet Plateau[M]. Beijing:Beijing Science & Technology Press (in Chinese)
    Zheng Mianping, Wang Qiuxia, Duo Ji. 1995. New Type of Hydrothermal Mineralization-Tibet Silicon Cesium Mine[M]. Beijing:Geological Publishing House(in Chinese).
    Zheng Mianping. 2001. Study advances in saline lake resources on the Qinghai-Tibet Pleteau[J]. Acta Geoscientia Sinica, 22(2):97-102(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200102001
    佟伟, 张知非, 章铭陶, 廖志杰, 由懋正, 朱梅湘, 过帼颖, 刘时彬. 1978.喜马拉雅地热带[J].北京大学学报(自然科学版), (1):76-88, 157. http://d.old.wanfangdata.com.cn/Thesis/Y267873
    佟伟, 朱梅湘, 陈民扬. 1982.西藏水热区硫同位素组成和深源热补给的研究[J].北京大学学报(自然科学版), (2):81-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001082910
    佟伟, 廖志杰, 刘时彬. 2000.西藏温泉志[M].北京:科学出版社.
    多吉. 2003.典型高温地热系统——羊八井热田基本特征[J].中国工程科学, 5(1):42-47. doi: 10.3969/j.issn.1009-1742.2003.01.008
    廖忠礼, 莫宣学, 潘桂棠, 朱弟成, 王立全, 赵志丹, 耿全如, 董国臣. 2006.西藏曲珍过铝花岗岩地球化学特征及地球动力学意义[J].岩石学报, 22(4):845-854. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604008
    李振清, 侯增谦, 聂凤军, 孟祥金. 2005.藏南上地壳低速高导层的性质与分布:来自热水流体活动的证据[J].地质学报, 79(1):68-77. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200501008
    李振清, 侯增谦, 聂凤军, 杨竹森, 曲晓明, 孟祥金, 赵元艺. 2006.西藏地热活动中铯的富集过程探讨[J].地质学报, 80(9):1457-1464. doi: 10.3321/j.issn:0001-5717.2006.09.019
    吕苑苑, 赵平, 许荣华, 谢烈文. 2012.西藏羊八井地热田硼同位素地球化学特征初步研究[J].地质科学, 47(1):251-264. doi: 10.3969/j.issn.0563-5020.2012.01.021
    李洁祥, 郭清海, 余正艳. 2017.高温地热系统中粘土矿物形成对NaK和K-Mg地球化学温标准确性的影响[J].地球科学——中国地质大学学报, 42(1):142-154. http://d.wanfangdata.com.cn/Periodical/dqkx201701011
    牟保磊. 1999.元素地球化学[M].北京:北京大学出版社.
    孙红丽, 马峰, 蔺文静, 刘昭, 王贵玲, 男达瓦. 2015.西藏高温地热田地球化学特征及地热温标应用[J].地质科技情报, 34(3):171-177. http://www.cqvip.com/QK/93477A/201503/665056110.html
    王绍令. 1992.青藏高原古泉华及其意义[J].水文地质工程地质, (4):29-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002885589
    熊盛青, 杨海, 丁燕云, 李占奎. 2018.中国航磁大地构造单元划分[J].中国地质, 45 (4):658-680. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?flag=1&file_no=20180402&journal_id=geochina
    徐世光, 郭远生. 2009.地热学基础[M].科学出版社.
    中国科学院青藏高原综合科学考察队编. 1981.西藏地热[M].北京:科学出版社.
    赵平, 金建, 张海政, 多吉, 梁廷立. 1998.西藏羊八井地热田热水的化学组成[J].地质科学, (1):62-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069865
    赵平, 多吉, 梁廷立, 金建, 张海政. 1998.西藏羊八井地热田气体地球化学特征[J].科学通报, 20(7):691-696. doi: 10.3321/j.issn:0023-074X.1998.07.004
    赵元艺, 赵希涛, 马志邦, 邓坚. 2010.西藏谷露热泉型铯矿床年代学及意义[J].地质学报. 84(2):211-220. doi: 10.3969/j.issn.1004-9665.2010.02.010
    张锡根. 1998.西藏羊八井现代地下热水系统硫矿的成矿作用[J].化工矿产地质, (1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800229529
    张萌, 蔺文静, 刘昭, 刘志明, 胡先才, 王贵玲. 2014.西藏谷露高温地热系统水文地球化学特征及成因模式[J].成都理工大学学报(自然科学版), (3):382-392. doi: 10.3969/j.issn.1671-9727.2014.03.15
    郑绵平, 向军, 魏新俊. 1989.青藏高原盐湖[M].北京:科学技术出版社.
    郑绵平, 王秋霞, 多吉. 1995.水热成矿新类型——西藏铯硅华矿床[M].北京:地质出版社.
    郑绵平. 2001.青藏高原盐湖资源研究的新进展[J].地球学报, 22(2):97-102. doi: 10.3321/j.issn:1006-3021.2001.02.001
    郑喜玉, 杨绍修. 1983.西藏盐湖成分及其成因探讨[J].海洋与湖沼, 14(4):342-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005267084
  • Related Articles

    [1]JIAO Tianlong, LI Jinwen, GUO Xiangguo, SHE Hongquan, REN Chenghao, LI Changjian. Discussion on the ore−forming fluids, materials sources and genesis of Erdaohe Pb−Zn−Ag deposit, Inner Mongolia[J]. GEOLOGY IN CHINA, 2024, 51(2): 426-442. DOI: 10.12029/gc20200719003
    [2]CHEN Yuhong, GAN Tian, GUAN Shenjin, ZHAO Jianxing, KONG Zhigang, DENG Mingguo. Shuitoushan magmatic hydrothermal lead-zinc deposit in western Yunnan: Evidence from REE and C-O isotopes[J]. GEOLOGY IN CHINA, 2023, 50(3): 818-836. DOI: 10.12029/gc20200326002
    [3]ZHEN Shimin, ZHA Zhongjian, WANG Dazhao, LIU Jiajun, PANG Zhenshan, CHENG Zhizhong, XUE Jianling, WANG Jiang, BAI Haijun, LI Yang, CHEN Chao. Characteristics of ore-forming fluids of the Zhongshangou gold deposit, Zhangjiakou-Xuanhua area, Hebei Province: Limitation on the intrusive rock related telluride-gold deposits[J]. GEOLOGY IN CHINA, 2023, 50(2): 605-621. DOI: 10.12029/gc20190927002
    [4]ZHANG Geli, TIAN Tao, WANG Ruiting, GAO Weihong, CHANG Zongdong. S, Pb isotopic composition of the Dongtangzi Pb-Zn deposit in the Fengtai ore concentration area of Shaanxi Province for tracing sources of ore-forming materials[J]. GEOLOGY IN CHINA, 2020, 47(2): 472-484. DOI: 10.12029/gc20200214
    [5]WANG Wenyuan, GAO Jianguo, LIU Xinkai, NONG Yangxia, CHEN Xinbin. Rb-Sr isotopic geochronology and C-O-S-Pb isotope geochemical characteristics of the Huangtian Pb-Zn deposit, Central Yunnan[J]. GEOLOGY IN CHINA, 2018, 45(3): 528-543. DOI: 10.12029/gc20180308
    [6]WANG Xing-jun, WANG Zi-tong, WANG Gen-hou, ZHOU Jie, BI Li-sha, CUI Yin-liang, ZHANG Dao-hong, LI Wei-qing, FAN Liang-jun. Geochemical characteristics and ore-forming materials of bauxite deposits in southeast Yunnan Province[J]. GEOLOGY IN CHINA, 2015, 42(1): 248-264. DOI: 10.12029/gc20150119
    [7]LI Kun, WU Chang-xiong, TANG Chao-yang, DUAN Qi-fa, YU Yu-shuai. Carbon and oxygen isotopes of Pb-Zn ore deposits in western Hunan and eastern Guizhou provinces and their implications for the ore-forming process[J]. GEOLOGY IN CHINA, 2014, 41(5): 1608-1619. DOI: 10.12029/gc20140516
    [8]Wang Zili, Niu Shuyin, Guo Pengzhi, Duan Huanchun, Chen Zhiguo, Guo Zhong, Shen Lixia, Hu Jianyong, Wang Jun, Wang Baode, Chen Chao, Li Yingjie. Characteristics and geological significance of helium, argon, carbon, hydrogen, oxygen isotopes in ore-forming fluids of polymetallic deposits in Shihu area of western Hebei Province[J]. GEOLOGY IN CHINA, 2014, 41(2): 577-588. DOI: 10.12029/gc20140219
    [9]ZHENG Wei, CHEN Mao-hong, ZHAO Hai-jie, HAO Hong-da, LUO Da-lue, HU Yao-guo, ZHAO Xin-min. Characteristics of sulfides and S-Pb isotope composition in the Tiantang Cu-Pb-Zn polymetallic deposit of Guangdong Province and their Geological implications[J]. GEOLOGY IN CHINA, 2012, 39(6): 1830-1846. DOI: 10.12029/gc20120627
    [10]WU Kong-yun, GAO Li-peng. Geological characteristics and ore-forming material sources of the Pangjiahe gold deposit in Shaanxi Province[J]. GEOLOGY IN CHINA, 2011, 38(3): 716-723. DOI: 10.12029/gc20110319
  • Cited by

    Periodical cited type(4)

    1. 吕国森,章旭,张云辉,SAFONOVA Inna,黄豪擎,余中友,代倩. 川西鲜水河、安宁河和龙门山断裂带地热水的水文地球化学特征及成因模式的讨论. 中国地质. 2024(01): 341-359 . 本站查看
    2. 焦天龙,李进文,郭向国,佘宏全,任程昊,李长俭. 内蒙古二道河铅锌银矿床成矿流体、物质来源及成因探讨. 中国地质. 2024(02): 426-442 . 本站查看
    3. 马宏斌,陈欣彬,高建国. 滇中暮阳铅锌矿床成矿流体性质和成矿物质来源. 中国科技论文. 2024(08): 857-867+876 .
    4. 陈俞宏,甘甜,管申进,赵剑星,孔志岗,邓明国. 滇西水头山岩浆热液铅锌矿床:来自REE和C-O同位素的证据. 中国地质. 2023(03): 818-836 . 本站查看

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return