• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
GONG Yunyun, JIANG Hanlu, NI Shengli. Sedimentary characteristics of the bioherm in Cambrian Changshan Formation in Jinzhou area, Liaoning Province[J]. GEOLOGY IN CHINA, 2018, 45(6): 1271-1288. DOI: 10.12029/gc20180616
Citation: GONG Yunyun, JIANG Hanlu, NI Shengli. Sedimentary characteristics of the bioherm in Cambrian Changshan Formation in Jinzhou area, Liaoning Province[J]. GEOLOGY IN CHINA, 2018, 45(6): 1271-1288. DOI: 10.12029/gc20180616

Sedimentary characteristics of the bioherm in Cambrian Changshan Formation in Jinzhou area, Liaoning Province

Funds: 

China Geological Survey Program 1212011121268

National Natural Science Foundation of China 41472090

National Natural Science Foundation of China 40472065

More Information
  • Author Bio:

    GONG Yunyun, female, born in 1989, doctor, mainly engages in the study of sedimentology and stratigraphy; E-mail:yunyungong@sina.com

  • Received Date: September 24, 2016
  • Revised Date: February 18, 2017
  • Available Online: September 25, 2023
  • A bioherm 15m in thickness is exposed at the top of Cambrian Changshan Formation in Jinzhou area, Liaoning Province. Macroscopically, the bioherm is made up of thrombolite and leiolite, and microscopically, it is mainly composed of dense micrites and different kinds of grains. There are different types of grains, such as calcified microbes, benthic oolites, oncolites, bioclasts and clots, in the inner part of the bioherm, which indicates complex microfabric of the bioherm. The surface of trilobite skeletal clastics encrusted by micrites shows constructive and destructive micritization. Bioclasts dispersedly distributed within the dense micrite reflect relatively strong binding during the development of the bioherm. Large quantities of pyrite crystals existent in the dense micrites demonstrate that the formation of dense micrite was genetically related to heterotrophy-bacteria activities. Together with pyrite crystals, all kinds of grains within the bioherm reflect complex microbial activities during the formation of the bioherm, which provides not only prerequisite for the study of microbial sedimentation but also an important example and clue for the research on different types of grains within the bioherm.

  • Adachi N, Nakai T, Ezaki Y, Liu J. 2014. Late Early Cambrian archaeocyath reefs in Hubei Province, South China:Modes of construction during their period of demise[J]. Facies, 60:703-717. doi: 10.1007/s10347-013-0376-y
    Arp G, Reimer A, Reitner J. 2002. Calcification of cyanobacterial filaments:Girvanella and the origin of lower Paleozoic lime mud:Comment and Reply[J]. Geology, 30(6):579-580. doi: 10.1130/0091-7613(2002)030<0579:COCFGA>2.0.CO;2
    Bahniuk A M, Anjos S, França A B, Matsuda N, Eiler J, Mckenzie J A, Vasconcelos C. 2015. Development of microbial carbonates in the Lower Cretaceous Codó Formation (north-east Brazil):Implications for interpretation of microbialite facies associations and palaeoenvironmental conditions[J]. Sedimentology, 62:155-181. doi: 10.1111/sed.12144
    Bosence D, Gibbons K, Le Heron D P, Morgan W A, Pritchard T, Vining B A. 2015. Microbial carbonates in space and time: introduction[C]//Bosence D W J, Gibbons K A, Le Heron D P, Morgan W A, Pritchard T, Vining B A (eds.). Microbial Carbonates in Space and Time: Implications for Global Exploration and Production. London: Geological Society Special Publications, 418: 1-15.
    Brasier M D. 1995. The basal Cambrian transition and Cambrian bioevents (from terminal Proterozoic extinctions to Cambrian biomeres)[C]//Walliser O H (ed.). Global Events and Event Stratigraphy in the Phanerozoic. Berlin & Heidelberg: Springer-Verlag, 113-138.
    Brock T D, Madigan M T, Martinko J M, Parker J. 1994. Biology of Microorganisms[M]. New Jersey:Prentice Hall, 271-282.
    Castanier S, Le Métayer-Levrel G, Perthuisot J P. 1999. Cacarbonates precipitation and limestone genesis——the microbiogeologist point of view[J]. Sedimentary Geology, 126(1):9-23. http://www.sciencedirect.com/science/article/pii/S0037073899000287
    Chafetz H S, Buczynski C. 1992. Bacterially induced lithification of microbial mats[J]. Palaios, 7:277-293. doi: 10.2307/3514973
    Chafetz H S, Guidry S A. 1999. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs:Bacterial vs. abiotic precipitation[J]. Sedimentary Geology, 126(1):57-74 doi: 10.1016-S0037-0738(99)00032-9/
    Chen J, Lee J H, Woo J. 2014. Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 414:246-259. doi: 10.1016/j.palaeo.2014.09.004
    Cumings E R, Shrock R R. 1928. Niagaran coral reefs of Indiana and adjacent states and their stratigraphic relations[J]. Geological Society of America Bulletin, 39(2):579-620. doi: 10.1130/GSAB-39-579
    Défarge C, Trichet J, Coute A. 1994. On the appearance of cyanobacterial calcification in modern stromatolites[J]. Sedimentary Geology, 94(1/2):11-19. http://www.sciencedirect.com/science/article/pii/0037073894901449
    Dong Xiping, Hao Weicheng, Wang Renhou, Wei Xi, Zhang Fang, Li Yan. 2001. Conodont biostratigraphy of Late Cambrian and Early Ordovician in the East Part of Liaohe Fault Basin[J]. Acta Micropalaeontologica Sinica, 18(3):219-228 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtgswxb200103001
    Dupraz C, Visscher P T, Baumgartner L K, Reid R P. 2004. Microbemineral interactions:early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)[J]. Sedimentology, 51(4):745-765. doi: 10.1111/sed.2004.51.issue-4
    Dupraz C, Reid R P, Braissant O, Decho A W, Norman R S, Visscher P T. 2009. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 96(3):141-162. doi: 10.1016/j.earscirev.2008.10.005
    Fan Junxuan, Peng Shanchi, Hou Xudong, Chen Dongyang. 2015.Official website of the International Commission on Stratigraphy and the release of the International Chronostratigraphic Chart(v2015/01)[J]. Journal of Stratigraphy, 39(2):125-134 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201502001.htm
    Flügel E. 2004. Microfacies of carbonate rocks:analysis, interpretation and application[M]. Berlin & Heidelberg:Springer-Verlag, 73-571.
    Gerdes G, Dunajtschik-Piewak K, Riege H, Taher A G, Krumbein W E, Reineck H E. 1994. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology, 41(6):1273-1294. doi: 10.1111/sed.1994.41.issue-6
    Gong Yunyun. 2016. Sedimentary Fabrics for Cambrian thrombolytic bioherm:An example from the Zhangxia Formation in Werstern Shandong Province[J]. Geoscience, 30(2):436-444 (in Chinese with English abstract).
    Hong J, Cho S H, Choh S J, Woo J, Lee D J. 2012. Middle Cambrian siliceous sponge-calcimicrobe buildups (Daegi Formation, Korea):Metazoan buildup constituents in the aftermath of the Early Cambrian extinction event[J]. Sedimentary Geology, 253:47-57. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226518840/
    Kah L C, Riding R. 2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria[J]. Geology, 35(9):799-802. doi: 10.1130/G23680A.1
    Kobluk D R, Risk M J. 1977. Micritization and carbonate-grain binding by endolithic algae[J]. AAPG Bulletin, 61(70):1069-1082.
    Krumbein W E. 1979. Calcification by bacteria and algae[C]//Trudinger P A, Swaine D J (eds.). Biogeochemical Cycling of Mineral-forming Elements. Amsterdam: Elsevier, 47-68.
    Lee J H, Lee H S, Chen J, Woo J, Chough S K. 2014. Calcified microbial reefs in Cambrian Series 2, North China Platform:Implications for the evolution of Cambrian calcified microbes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 403:30-42. doi: 10.1016/j.palaeo.2014.03.020
    Lee J H, Chen J, Chough S K. 2015. The middle-late Cambrian reef transition and related geological events:A review and new view[J]. Earth-Science Reviews, 145:66-84. doi: 10.1016/j.earscirev.2015.03.002
    Liu L, Wu Y, Yang H, Riding R. 2016. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin, Northwest China:systematics and significance[J]. Journal of Systematic Palaeontology, 14(3):183-210. doi: 10.1080/14772019.2015.1030128
    Lu Yanhao, Zhang Wentang, Zhu Zhaoling, Xiang Liwen, Lin Huanling, Zhou Zhiyi, Yuan Jingliang, Peng Shanchi, Qian Yi, Zhang Sengui, Li Shanji, Guo Hongjun, Luo Huilin. 1994. The suggestion of building stage about Cambrian in China[J]. Journal of Stratigraphy, 18(4):318 (in Chinese).
    Luchinina V A. 2009. Renalcis and Epiphyton as different stages in the life cycle of calcareous algae[J]. Paleontological Journal, 43(4):463-468. doi: 10.1134/S0031030109040169
    Maslov V P. 1954. On the Lower Silurian of eastern Siberia[C]//Shatskiy N S (ed.). Matters of Geology of Asia. Moscow: Academy of Sciences of SSSR, 495-529.
    Mei Mingxiang. 2001. A review on genetic-textural classification of limestones and the discussion of relative problems[J]. Geological Science and Technology Information, 20(4):12-18 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkq200104003.htm
    Mei Mingxiang. 2007a. Revised classification of microbial carbonates:complementing the classification of limestones[J]. Earth Science Frontiers, 14(5):222-234 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60044-X
    Mei Mingxiang. 2007b. Discussion on advances of microbial carbonates from the terminological change of thrombolites[J]. Geological Science and Technology Information, 26(6):1-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200706001
    Nealson K H. 1997. Sediment bacteria:who's there, what are they doing, and what's new?[J]. Annual Review of Earth and Planetary Sciences, 25(1):403-434. doi: 10.1146/annurev.earth.25.1.403
    Peng Shanchi, Babcock L E, Lin Huanling, Chen Yongan, Qi Yuiping, Zhu Xuejian. 2004. Global Standard Stratotype-section and Point for the Paibian Stage and Furongian Series of Cambrian System[J]. Journal of Stratigraphy, 28(2):104-113 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200402002
    Peng Shanchi. 2006. A new global framework with four series for Cambrian System[J]. Journal of Stratigraphy, 30(2):147-148 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200602010
    Peng S, Babcock L E, Cooper R A. 2012. The Cambrian Period[C]//Gradstein F M, Ogg J G, Schmitz M D, Ogg G (eds.). The Geologic Time Scale 2012. Amsterdam: Elsevier, 2: 437-488.
    Perry C T. 1999. Biofilm-related calcification, sediment trapping and constructive micrite envelopes:a criterion for the recognition of ancient grass-bed environments?[J]. Sedimentology, 46(1):33-45. doi: 10.1046/j.1365-3091.1999.00201.x
    Pratt B R. 1982. Stromatolitic framework of carbonate mudmounds[J]. Journal of Sedimentary Research, 52(4):1203-1227.
    Pratt B R. 2000. Microbial contribution to reefal mud-mounds in ancient deep-water settings: evidence from the Cambrian[C]//Riding R E, Awramik S M (eds.). Microbial sediments. Berlin & Heidelberg: Springer-Verlag, 282-288.
    Pratt B R. 2001. Calcification of cyanobacterial filaments:Girvanella and the origin of Lower Paleozoic lime mud[J]. Geology, 29(9):763. doi: 10.1130/0091-7613(2001)029<0763:COCFGA>2.0.CO;2
    Reid R P, Macintyre I G, Browne K M, Steneck R S, Miller T. 1995.Modern marine stromatolites in the Exuma Cays, Bahamas:Uncommonly common[J]. Facies, 33(1):1-17. doi: 10.1007/BF02537442
    Reitner J. 1996. Globale und regionale Steuerungsfaktoren biogener Sedimentation: DFG-Schwerpunktprogramm[M]. Göttingen: Geologische Institute der Georg-August-Universität Göttingen, 1-428.
    Riding R. 1991. Calcified cyanobacteria[C]//Riding R (ed.).Calcareous Algae and Stromatolites. Berlin: Springer, 55-87.
    Riding R. 2000. Microbial carbonates:the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 47(1):179-214. doi: 10.1046-j.1365-3091.2000.00003.x/
    Riding R E, Awramik S M. 2000. Microbial Sediments[M]. Berlin:Springer Science & Business Media, 1-331.
    Riding R, Fan J. 2001. Ordovician calcified algae and cyanobacteria, northern Tarim Basin subsurface, China[J]. Palaeontology, 44(4):783-810. doi: 10.1111/pala.2001.44.issue-4
    Riding R. 2002a. Structure and composition of organic reefs and carbonate mud mounds:concepts and categories[J]. Earth-Science Reviews, 58(1):163-231. doi: 10.1016-S0012-8252(01)00089-7/
    Riding R. 2002b. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers[J]. Geology, 30(1):31-34. doi: 10.1130/0091-7613(2002)030<0031:BAOPCC>2.0.CO;2
    Riding R. 2006a. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 185(3):229-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c56d19de9a1d789e146a154c19b80e25
    Riding R. 2006b. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 4(4):299-316. doi: 10.1111/gbi.2006.4.issue-4
    Riding R. 2011a. Microbialites, stromatolites, and thrombolites[C]//Reitner J, Thiel V (eds.). Encyclopedia of Geobiology. Dordrecht: Springer, 635-654.
    Riding R. 2011b. Calcified cyanobacteria[C]//Reitner J, Thiel V (eds.). Encyclopedia of Geobiology. Dordrecht: Springer, 211-223.
    Rowland S M, Shapiro R S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician[J]. Phanerozoic Reef Patterns, 12:95-128.
    Sepkoski Jr J J. 1992. Proterozoic-Early Cambrian diversification of metazoans and metaphytes[C]//Schopf J K, Klein C (eds.). The Proterozoic Biosphere. Cambridge: Cambridge University Press, 553-564.Shapiro R S. 2000. A comment on the systematic confusion of thrombolites[J]. Palaios, 15(2): 166-169.
    Spincer B R. 1998. Oolitized fragments of filamentous calcimicrobes and the pseudofossil affinity of Nuia maslov from the Upper Cambrian rocks of central Texas[J]. Journal of Paleontology, 72(3):577-584. doi: 10.1017/S0022336000024355
    Sun Yunzhu. 1924. Cambrian Animals' Fossils in the Northern China[M]. Palaeontologia Sinica, B species, 1, 4. Beijing: Science Press, 1-109 (in Chinese).
    Thompson J B, Ferris F G. 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water[J]. Geology, 18(10):995-998. doi: 10.1130/0091-7613(1990)018<0995:CPOGCA>2.3.CO;2
    Thompson J B. 2000. Microbial whitings[C]//Riding R, Awramik S M (eds.). Microbial Sediments. Berlin: Springer-Verlag, 250-260.
    Toomey D F, Klement K W. 1966. A problematical micro-organism from the El Paso Group (Lower Ordovician) of west Texas[J]. Journal of Paleontology, 40(6):1304-1311. http://www.jstor.org/stable/1301946
    Turner E C, Narbonne G M, James N P. 1993. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada[J]. Geology, 21:259-262. doi: 10.1130/0091-7613(1993)021<0259:NRMFTL>2.3.CO;2
    Turner E C, James N P, Narbonne G M. 2000. Taphonomic control on microstructure in Early Neoproterozoic reefal stromatolites and thrombolites[J]. Palaios, 15(2):87-111. doi: 10.1669/0883-1351(2000)015<0087:TCOMIE>2.0.CO;2
    Wang Wenzhi, Yang Yueming, Wen Long, Luo Bing, Luo Wenjun, Xia Maolong, Sun Sainan. 2016. A study of sedimentary characteristics of microbial carbonate:A case study of the Sinian Dengying Formation in Gaomo area, Sichuan Basin[J]. Geology in China, 43(1):306-318 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DIZI201601023.htm
    Wood R. 1999. Reef Evolution[M]. Oxford:Oxford University Press, 413-414.
    Woods A D. 2013. Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA:Evidence for an Early Triassic microbial bloom in shallow depositional environments[J]. Global and Planetary Change, 105:91-101. doi: 10.1016/j.gloplacha.2012.07.011
    Wu Shuang, Ma Qingli, Hu Zhenghui. 2008. Study on paleontology and sedimentary environment of Cambrian sequences in East Liaodong Peninsula[J]. Resources and Industries, 10(1):119-123 (in Chinese with English abstract).
    Xiang Liwen, Zhu Zhaoling, Li Shanji, Zhou Zhiqiang. 2000.Stratigraphical Lexicon of China·Cambrian[M]. Beijing:Geological Publishing House, 1-95 (in Chinese).
    Yang Renchao, Fan Aiping, Han Zuozhen, Chi Naijie. 2011. Status and prospect of studies on oncoid[J]. Advances in Earth Science, 26(5):465-474 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201105001
    Yang Xinde, Li Xingyun. 1997. A Correlation Study of Multiple Stratigraphic Division in China:the Rock Strata in Liaoning Province[M]. Beijing:China University of Geosciences Press, 58-85 (in Chinese).
    Zhu Zhaoling, Xiang Liwen, Liu Shucai, Luo Kunli, Du Shengxian, Liang Zongwei. 2005. New advance in the Study of the Upper Cambrian Kushanian Stage of North China[J]. Journal of Stratigraphy, 29(S1):462-466 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200501746392
    Zhuravlev A Y, Wood R A. 1996. Anoxia as the cause of the midEarly Cambrian (Botomian) extinction event[J]. Geology, 24:311-314. http://adsabs.harvard.edu/abs/1996Geo....24..311Z
    董熙平, 郝维城, 王仁厚, 魏喜, 张放, 李岩. 2001.辽河断陷东部晚寒武世至早奥陶世牙形石生物地层[J].微体古生物学报, 18(3):219-228. doi: 10.3969/j.issn.1000-0674.2001.03.001
    樊隽轩, 彭善池, 侯旭东, 陈冬阳. 2015.国际地层委员会官网与《国际年代地层表》 (2015/01版)[J].地层学杂志, 39(2):125-134. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DCXZ201502001&dbname=CJFD&dbcode=CJFQ
    贡云云. 2016.寒武系凝块石生物丘的沉积组构:以鲁西地区张夏组为例[J].现代地质, 30(2):436-444. doi: 10.3969/j.issn.1000-8527.2016.02.020
    卢衍豪, 张文堂, 朱兆玲, 项礼文, 林焕令, 周志毅, 袁金良, 彭善池, 钱逸, 章森贵, 李善姬, 郭鸿俊, 罗惠麟. 1994.关于我国寒武系建阶的建议[J].地层学杂志, 18(4):318. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ404.018.htm
    梅冥相. 2001a.灰岩成因——结构分类的进展及其相关问题讨论[J].地质科技情报, 20(4):12-18. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200104003
    梅冥相, 马永生. 2001b.华北北部晚寒武世层序地层及海平面变化研究——兼论与北美晚寒武世海平面变化的对比[J].地层学杂志, 25(3):201-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200103007
    梅冥相. 2007a.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J].地学前缘, 14(05):222-234. http://d.old.wanfangdata.com.cn/Periodical/dxqy200705022
    梅冥相. 2007b.从凝块石概念的演变论微生物碳酸盐岩的研究进展[J].地质科技情报, 26(6):1-9. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200706001
    彭善池, Babcock L E, 林焕令, 陈永安, 祁玉平, 朱学剑. 2004.寒武系全球排碧阶及芙蓉统底界的标准层型剖面和点位[J].地层学杂志, 28(02):104-113. doi: 10.3969/j.issn.0253-4959.2004.02.002
    彭善池. 2006.全球寒武系四统划分框架正式确立[J].地层学杂志, 30(02):147-148. doi: 10.3969/j.issn.0253-4959.2006.02.010
    孙云铸. 1924.中国北部寒武纪动物化石, 第四册[M].北京: 农商部地质调查所, 1-109.
    王文之, 杨跃明, 文龙, 罗冰, 罗文军, 夏茂龙, 孙赛男. 2016.微生物碳酸盐岩沉积特征研究——以四川盆地高磨地区灯影组为例[J].中国地质, 43(1):306-318. doi: 10.3969/j.issn.1000-3657.2016.01.023
    武爽, 麻清莉, 胡争辉. 2008.辽东半岛寒武纪地层古生物及沉积环境[J].资源与产业, 10(1):119-123. doi: 10.3969/j.issn.1673-2464.2008.01.031
    项礼文, 朱兆玲, 李善姬, 周志强. 2000.中国地层典·寒武系[M].北京:地质出版社, 1-95.
    杨仁超, 樊爱萍, 韩作振, 迟乃杰. 2011.核形石研究现状与展望[J].地球科学进展, 26(05):465-474. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105001
    杨欣德, 李星云. 1997.全国地层多重划分对比研究:辽宁省岩石地层[M].北京:中国地质大学出版社, 58-85.
    朱兆玲, 项礼文, 章森桂, 刘书才, 雒昆利, 杜圣贤, 梁宗伟. 2005.华北上寒武统崮山阶研究新进展[J].地层学杂志, 29(S1):462-466. http://d.old.wanfangdata.com.cn/Conference/7065166
  • Related Articles

    [1]LI Honglei, GUO Zhijun, YI Tongsheng, QIN Yong, YANG Tongbao, JIN Jun. Optimization and evaluation of favorable CBM areas in the Upper Peimian of the Northwest Guizhou[J]. GEOLOGY IN CHINA. DOI: 10.12029/gc20220612002
    [2]SONG Danhui, HAN Runsheng, WANG Feng, WANG Mingzhi, HE Zhi, ZHOU Wei, LUO Da. Structural ore−controlling mechanism of the Qingshan lead−zinc deposit in northwestern Guizhou, China and its implications for deep prospecting[J]. GEOLOGY IN CHINA, 2024, 51(2): 399-425. DOI: 10.12029/gc20200828002
    [3]ZHANG Wei, ZENG Zhaoguang, ZHOU Jun, JI Guosong, XU Xuegui, LIU Guanglei, LU Jianbao. Broadband magnetotelluric (BMT) detecting blind gold deposits with interface-type: A case of deep prospecting in the Getang area, southwestern Guizhou[J]. GEOLOGY IN CHINA, 2023, 50(2): 359-375. DOI: 10.12029/gc20200207001
    [4]WAN Xin, HAN Runsheng, LI Bo, XIAO Xianguo, HE Zhiwei, WANG Jingteng, WEI Qingxi. Tectono-geochemistry and deep prospecting prediction in the Lekai lead-zinc deposit, Northwestern Guizhou Province, China[J]. GEOLOGY IN CHINA, 2022, 49(6): 1875-1892. DOI: 10.12029/gc20220613
    [5]WEI Hongxia, WANG Jujie, ZENG Pusheng, WANG Shuangqing. Micropore structure characteristics of Wufeng-Longmaxi Formation black shale along Qilongcun section in northwest Guizhou[J]. GEOLOGY IN CHINA, 2018, 45(2): 274-285. DOI: 10.12029/gc20180205
    [6]LI Kun, WU Chang-xiong, TANG Chao-yang, DUAN Qi-fa, YU Yu-shuai. Carbon and oxygen isotopes of Pb-Zn ore deposits in western Hunan and eastern Guizhou provinces and their implications for the ore-forming process[J]. GEOLOGY IN CHINA, 2014, 41(5): 1608-1619. DOI: 10.12029/gc20140516
    [7]LI Kun, LIU Kai, TANG Chao-yang, DUAN Qi-fa. Characteristics of zinc geochemical blocks and assessment of zinc resource potential in western Hunan and eastern Guizhou Province[J]. GEOLOGY IN CHINA, 2013, 40(4): 1270-1277. DOI: 10.12029/gc20130423
    [8]TANG Zhao-yang, DENG Feng, LI Kun, DUAN Qi-fa, ZOU Xian-wu, DAI Ping-yun. Stratigraphic characteristics of the Cambrian Qingxudong Formation in relation to lead-zinc mineralization in western Hunan-eastern Guizhou area[J]. GEOLOGY IN CHINA, 2012, 39(4): 1034-1041. DOI: 10.12029/gc20120419
    [9]NIU Cui-yi, WAND Ke-qiang, LI Shao-ru. Prediction and evaluation of gold resources in the Yunnan-Guizhou-Guangxi metallogenic area[J]. GEOLOGY IN CHINA, 2011, 38(6): 1576-1583. DOI: 10.12029/gc20110617
    [10]WANG Shang-yan, YIN Hong-fu. Characteristics of claystone at the continental Permian-Triassic boundary in the eastern Yunnan-western Guizhou region[J]. GEOLOGY IN CHINA, 2002, (2): 155-160. DOI: 10.12029/gc20020209
  • Cited by

    Periodical cited type(9)

    1. 邵坤,余滔,龚大兴. 高压密闭消解-ICP-AES法测定沉积型稀土矿中La、Ce、Pr、Nd、Y、Nb、Zr. 稀土. 2024(01): 87-94 .
    2. 罗香建,覃英,卢树藩,张嘉玮,黄庆,王彪,龚大兴,田恩源,刘国栋. 黔西恰西地区晚二叠世富稀土岩系地球化学特征及物源分析. 高校地质学报. 2024(04): 418-430 .
    3. 周伟,祁晓鹏,张嘉升,徐磊,杨杰,王璐,高景民. 扬子板块北缘镇巴地区吴家坪组富Li-REE-Nb-V黏土岩地球化学特征及其地质找矿意义. 地质与勘探. 2023(06): 1145-1156 .
    4. 罗香建,覃英,卢树藩,符宏斌,黄庆,刘国栋. 贵州西部晚二叠世富稀土岩系沉积相分析. 矿物学报. 2023(06): 735-745 .
    5. 王彪,黄庆,何良伦,吕绍玉,徐莺,熊兴宇,赵婷. 黔西北麻乍地区沉积型稀土矿稀土元素赋存状态研究. 矿物学报. 2023(06): 786-798 .
    6. 王晓慧,颜世强,梁友伟,龚大兴,惠博,徐璐. 黔西北地区沉积型稀土资源回收稀土研究现状及选矿实验探讨. 矿产综合利用. 2022(02): 135-141 .
    7. 薛洪富,向震中,吴林,肖宪国,叶霖,曾道国,黄威虎. 黔西北玉龙地区Nb-REE富集层中稀土赋存形式. 矿物学报. 2022(04): 555-556 .
    8. 明添学,唐忠,包从法,李蓉,詹冬琴,杨清标,郝学峰,余海军. 云南省稀土矿分布特征、研究进展与展望. 中国稀土学报. 2022(04): 577-590 .
    9. 刘兵,孙载波,陈棵,周家喜,马进华,张虎,段向东,王敏,宋冬虎,肖高强,包佳凤,方雄. 滇西遮放盆地西缘芒棒组稀土元素富集特征及其地质意义. 大地构造与成矿学. 2022(06): 1075-1089 .

    Other cited types(3)

Catalog

    Article views (3314) PDF downloads (4325) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return