Citation: | XUE Qiang, ZHANG Maosheng, GAO Bo. Hazard assessment of loess landslide based on soil moisture content and supported by slope unit in Qingjian City, Shaanxi Province[J]. GEOLOGY IN CHINA, 2020, 47(6): 1904-1914. DOI: 10.12029/gc20200624 |
Landslide hazard assessment is one of the important measures for disaster reduction and prevention. Field investigations show that 138 landslides are developed along the slopes around the city area in Qingjian, which seriously threaten the safety of the city. In order to accurately evaluate the hazard of landslides in Qingjian City, the authors divided the slope zone of Qingjian City and surrounding areas into 925 slope units according to the development of river valleys and the integrity of topography. The slope units were calculated according to different slope gradients, slope heights and slope patterns under different soil moisture values. The calculation results show that, with the gradual increase of the soil moisture content of slope, the area of the stable slope gradually decreases, and the area of the unstable slope gradually increases. According to the monitoring data of soil moisture content of loess slope in northern Shaanxi, the probabilities of occurrence of soil moisture content (w) were analyzed and calculated. The probability of occurrence of w ≤ 0.15 is 0.622 (very high probability), that of 0.15 < w ≤ 0.2 is 0.2963 (high probability), that of 0.2 < w ≤ 0.25 is 0.0816 (medium probability), and that of w>0.25 is 0 (low probability). The hazards of slope units were assessed in combination with the slope stability calculation results and the soil moisture content occurrence probability. The assessment results show that the very high hazard area is 3.27 km2, which includes 112 slope units and 92 landslides; the high hazard area is 4.19km2, which includes 128 slope units and 36 landslides; the medium hazard area is 8.75 km2, which includes 251 slope units and 6 landslides; the low hazard area is 15.20km2, which includes 434 slope units and 4 landslides.
Chang Jinyuan, Bao Han, Wu Faquan, Chang Zhonghua, Luo Hao. 2015. Discussion on stability of shallow landslide under rainfall[J]. Rock and Soil Mechanics, 36(4):995-1001(in Chinese with English abstract).
|
Grant A, Wartman J, Abou-Jaoude G. 2016. Multimodal method for coseismic landslide hazard assessment[J]. Engineering Geology, 212:146-160. doi: 10.1016/j.enggeo.2016.08.005
|
Gu Tianfeng, Wang Jiading, Fu xinping. 2013. Regional slope stability analysis method based on the slope unit[J]. Scientia Geographica Sinica, 33(11):1400-1405(in Chinese with English abstract).
|
Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M. 2006.Landslide hazard assessment in the Collazzone area, Umbria, Central Italy[J]. Natural Hazards and Earth System Sciences, 6:115-131. doi: 10.5194/nhess-6-115-2006
|
Hu Ruilin, Fan Linfeng, Wang Shanshan, Wang Lichao, Wang Xueliang. 2013. Theory and method for landslide risk assessmentcurrent status and future development[J]. Journal of Engineering Geology, 21(1):76-84(in Chinese with English abstract).
|
Huang Runqiu. 2007. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3):433-454(in Chinese with English abstract).
|
Jia N, Mitani Y, Xie M, Djamaluddin I. 2012. Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area[J]. Computers and Geotechnics, 45:1-10. doi: 10.1016/j.compgeo.2012.04.007
|
Martha T R, Westen C J, Kerle N, Jetten V, Kumar K V. 2013.Landslide hazard and risk assessment using semi-automatically created landslide inventories[J]. Geomorphology, 184:139-150. doi: 10.1016/j.geomorph.2012.12.001
|
Park H J, Lee J H, Woo I. 2013. Assessment of rainfall-induced shallow landslide susceptibility using a GIS-based probabilistic approach[J]. Engineering Geology, 161:1-15. doi: 10.1016/j.enggeo.2013.04.011
|
Peng Ling, Niu Ruiqing, Zhao Yannan, Deng Qinglu. 2013. Risk assessment of a regional landslide:A case of Zigui County territory in Three Gorges Reservoir[J]. Journal of Jilin University(Earth Science Edition), 43(3):891-901(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201303027.htm
|
Pradhan B, Lee S. 2010. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models[J]. Environmental Earth Sciences, 60:1037-1054. doi: 10.1007/s12665-009-0245-8
|
Shi Jusong, Shi Ling, Wu Shuren, Wang Tao. 2009. Difficulties and countermeasures in the practice of landslide risk assessment[J]. Geological Bulletin of China, 28(8):1020-1030(in Chinese with English abstract).
|
Wang Yunlong, Wen Baoping. 2011. Risk study of landslide geohazards in Lanzhou City[J]. Geology in China, 38(6):1593-1598(in Chinese with English abstract).
|
Xue Qiang, Tang Yaming, Sun Pingping, Bi Junbo. 2014. Temporalspatial distribution of soil water content in loess slope subjected to rainfall infiltration[J]. Bulletin of Soil and Water Conservation, 34(2):53-56(in Chinese with English abstract).
|
Xue Qiang, Zhang Maosheng, Bi Junbo, Wang Xiaofei, Lin Longchao. 2019. Exfoliation erosion and deformation failure of excavated loess slope[J]. Northwestern Geology, 52(2):158-166(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-XBDI201902020.htm
|
Xue Qiang, Zhang Maosheng, Gao Bo, Zhang Jianlong. 2018. Risk assessment of geological hazards in Suide City, Shaanxi Province[J]. Journal of Engineering Geology, 26(3):711-719(in Chinese with English abstract).
|
Xue Qiang, Zhang Maosheng, Li Lin. 2015. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District[J]. Geological Bulletin of China, 34(11):2108-2115(in Chinese with English abstract). http://www.researchgate.net/publication/292463659_Loess_landslide_susceptibility_evaluation_based_on_slope_unit_and_information_value_method_in_Baota_District_Yan'an
|
Xue Qiang, Zhang Maosheng. 2018. Monitoring, early warning and deformation characteristics of Yantu' an landslide in Yan' an[J]. Northwestern Geology, 51(2):220-226(in Chinese with English abstract).
|
Yan Ge, Liang Shouyun, Zhao Hongliang. 2017. An approach to improving slope unit division using GIS technique[J]. Scientia Geographica Sinica, 37(11):1764-1770(in Chinese with English abstract).
|
Yin Yueping, WangWenpei, Zhang Nan, Yan Jingkai, Wei Yunjie, Yang Longwei. 2017. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area:A case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 44(5):827-841(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201705002.htm
|
Zhang Maosheng, Li Tonglu. 2011. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology, 19(4):530-540(in Chinese with English abstract).
|
Zhang Maosheng, Xiao Peixi, Wei Xingli. 2006. A preliminary discussion of the occurrence of landslide in the Baota district of Yan'an City[J]. Hydrogeology & Engineering Geology, 33(6):72-74(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200606017.htm
|
Zhang Maosheng, Xue Qiang, Jia Jun, Xu Jiwei, Gao Bo, Wang Jiayun. 2019. Methods and practices for the investigation and risk assessment of geo-hazards in mountains towns[J]. Northwestern Geology, 52(2):125-135(in Chinese with English abstract).
|
Zhang Shuxuan, Yang Weimin, Cheng Xiaojie, Tian You, Li Hao, Huang Xiao. 2017. Genetic mechanism and stability analysis of loess landslides group in Tianshui Hongqishan, Gansu Province[J]. Geology in China, 44(5):924-937(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201705008.htm
|
Zhao Liangjun, Chen Donghua, Li Hu, Liu Yufeng. 2017. A method to assess landslide susceptibility by using logistic regression model for Guozigou Region, Xinjinag[J]. Mountain Research, 35(2):203-211(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SDYA201702010.htm
|
Zhuang Jianqi, Peng Jianbing, Zhang Liyong. 2013. Risk assessment and prediction of the shallow landslide at different precipitation in Loess Plateau[J]. Journal of Jilin University(Earth Science Edition), 43(3):867-876(in Chinese with English abstract).
|
常金源, 包含, 伍法权, 常中华, 罗浩. 2015.降雨条件下浅层滑坡稳定性探讨[J].岩土力学, 36(4):995-1001.
|
谷天峰, 王家鼎, 付新平. 2013.基于斜坡单元的区域斜坡稳定性评价方法[J].地理科学, 33(11):1400-1405.
|
胡瑞林, 范林峰, 王珊珊, 王立朝, 王学良. 2013.滑坡风险评价的理论与方法研究[J].工程地质学报, 21(1):76-84.
|
黄润秋. 2007.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报, 26(3):433-454.
|
彭令, 牛瑞卿, 赵艳南, 邓清禄. 2013.区域滑坡灾害风险评估——以长江三峡库区秭归县为例[J].吉林大学学报(地球科学版), 43(3):891-901.
|
石菊松, 石玲, 吴树仁, 王涛. 2009.滑坡风险评估实践中的难点与对策[J].地质通报, 28(8):1020-1030.
|
王云龙, 文宝萍. 2011.兰州市滑坡地质灾害危险性研究[J].中国地质, 38(6):1593-1598. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20110619&flag=1
|
薛强, 唐亚明, 孙萍萍, 毕俊擘. 2014.降雨入渗对黄土斜坡土体含水率时空分布特性的影响[J].水土保持通报, 34(2):53-56.
|
薛强, 张茂省, 毕俊擘, 王晓飞, 林隆超. 2019.开挖型黄土边坡剥落侵蚀作用及变形破坏研究[J].西北地质, 52(2):158-166.
|
薛强, 张茂省, 高波, 张建龙. 2018.陕西省绥德县城区地质灾害风险评估[J].工程地质学报, 26(3):711-719.
|
薛强, 张茂省, 李林. 2015.基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J].地质通报, 34(11):2108-2115.
|
薛强, 张茂省. 2018.延安淹土安滑坡监测预警及变形特征[J].西北地质, 51(2):220-226.
|
颜阁, 梁收运, 赵红亮. 2017.基于GIS的斜坡单元划分方法改进与实现[J].地理科学, 37(11):1764-1770.
|
殷跃平, 王文沛, 张楠, 闫金凯, 魏云杰, 杨龙伟. 2017.强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J].中国地质, 44(5):827-841. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170501&flag=1
|
张茂省, 李同录. 2011.黄土滑坡诱发因素及其形成机理研究[J].工程地质学报, 19(4):530-540.
|
张茂省, 校培喜, 魏兴丽. 2006.延安市宝塔区崩滑地质灾害发育特征与分布规律初探[J].水文地质工程地质, 33(6):72-74.
|
张茂省, 薛强, 贾俊, 徐继维, 高波, 王佳运. 2019.山区城镇地质灾害调查与风险评价方法及实践[J].西北地质, 52(2):125-135.
|
张树轩, 杨为民, 程小杰, 田尤, 李浩, 黄晓. 2017.甘肃天水红旗山黄土滑坡群成因及稳定性分析[J].中国地质, 44(5):924-937. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170507&flag=1
|
赵良军, 陈冬花, 李虎, 刘玉锋. 2017.基于二元逻辑回归模型的新疆果子沟滑坡风险区划[J].山地学报, 35(2):203-211.
|
庄建琦, 彭建兵, 张利勇. 2013.不同降雨条件下黄土高原浅层滑坡危险性预测评价[J].吉林大学学报(地球科学版), 43(3):867-876.
|