• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Wang Qian, Huang Yongjian, Zhang Zhifeng, Wang Changhong, Li Xiang, Liu Wei. 2024. High resolution chemical sequence stratigraphy analysis of Wufeng Formation and Lower Longmaxi Formation in the Well Xindi 1, Upper Yangtze region[J]. Geology in China, 51(4): 1355−1367. DOI: 10.12029/gc20200906001
Citation: Wang Qian, Huang Yongjian, Zhang Zhifeng, Wang Changhong, Li Xiang, Liu Wei. 2024. High resolution chemical sequence stratigraphy analysis of Wufeng Formation and Lower Longmaxi Formation in the Well Xindi 1, Upper Yangtze region[J]. Geology in China, 51(4): 1355−1367. DOI: 10.12029/gc20200906001

High resolution chemical sequence stratigraphy analysis of Wufeng Formation and Lower Longmaxi Formation in the Well Xindi 1, Upper Yangtze region

Funds: Supported by National Science and Technology Major Project (No.2016ZX05029-001).
More Information
  • Author Bio:

    WANG Qian, female, born in 1990, doctor, engaged in sedimentology and geochemistry; E-mail: 944085175@qq.com

  • Corresponding author:

    HUANG Yongjian, male, born in 1974, doctor, associate professor, engaged in sedimentology and geochemistry; E-mail: haungyj@cugb.edu.cn.

  • Received Date: September 05, 2020
  • Revised Date: December 12, 2020
  • This paper is the result of geological survey engineering.

    Objective 

    The purpose of this paper is to synthesize the theories and methods of comprehensive geochemistry and high resolution sequence stratigraphy. The high−precision chemical sequence stratigraphic framework of Wufeng Formation and Lower Longmaxi Formation in Xindi 1 Well, Upper Yangtze region was established to provide scientific basis for shale gas exploration in the study area.

    Methods 

    We use the core, logging and sample analysis data of Well Xindi 1 in Upper Yangtze region to optimize the indicators system which can divide the chemical sequence stratigraphic. The indicators system contains three elements assemblages: the terrigenous input intensity(TII), the autogenetic precipitation intensity(API), and the organic matter adsorption and deoxidation intensity(ODI). Then the fourth−order chemical sequence stratigraphy is divided by these three elements assemblages.

    Results 

    Based on the above indicators system, Wufeng Formation of Liutang section is divided into LCW sequence, the lower part of Longmaxi Formation is divided into MCL1−1, MCL1−2, MCL1−3, MCL1−4 fourth−order sequences upwardly. The total amount of elements assemblages related to TII is relatively high near the sequence boundary, but relatively low near the maximum oceanic flooding surface. However, the total amount of element assemblages related to API and ODI are generally lower near the sequence boundary and higher near the maximum flooding surface.

    Conclusions 

    Representing different genetic significance, the cyclic variation of element assemblages is respond to regional sea level change, and has regional consistency. The sedimentary environment with smaller TII, smaller API and larger ODI is conducive to organic matter enrichment in shale. So it can be used as the basis for regional stratigraphic correlation.

    Highlights
    A new idea of chemical sequence stratigraphy in the development of isochronous fine division and correlation of shale segments is explored. A theoretical model of chemical sequence stratigraphy based on the combination of geochemical elements of different origin is established.
  • [1]
    Calvert S E, Pedersen T F. 1993. Geochemistry of recent oxic and anoxic sediments: Implications for the geological record[J]. Marine Geology, 113: 67−88. doi: 10.1016/0025-3227(93)90150-T
    [2]
    Catuneanu O, Abreu V, Bhattacharya J P, Blum M D, Dalrymple R W, Eriksson P G, Fielding C R, Fisher W L, Galloway W E, Gibling M R, Giles K A, Holbrook J M, Jordan R, Kendall C G, Macurda B, Martinsen O J, Miall A D, Neal J E, Nummedal D, Pomar L, Posamentier H W, Pratt B R, Sarg J F, Shanley K W, Steel R J, Strasser A, Tucker M E, Winker C. 2009. Towards the standardization of sequence stratigraphy[J]. Earth−Science Reviews, 92(1/2): 1−33. doi: 10.1016/j.earscirev.2008.10.003
    [3]
    Chen L, Lu Y C, Jiang S, Li J Q, Guo T L, Luo C. 2015. Heterogeneity of the Lower Silurian Longmaxi marine shale in the Southeast Sichuan Basin of China[J]. Marine and Petroleum Geology, 65: 232−246. doi: 10.1016/j.marpetgeo.2015.04.003
    [4]
    Cheng Wenbin, Gu Xuexiang, Hu Xiumian, Li Youhe, Dong Shuyi. 2008. Comparative element geochemistry of recent oceanic red clay and cretaceous oceanic red bed[J]. Acta Geologica Sinica, 82(1): 37−47 (in Chinese with English abstract).
    [5]
    Craigie N. 2018. Principles of Elemental Chemostratigraphy A Practical User Guide[M]. Springer, 1−177.
    [6]
    Filzmoser P, Hron K. 2008. Outlier detection for compositional data using robust methods[J]. Mathematical Geosciences, 40(3): 233−248. doi: 10.1007/s11004-007-9141-5
    [7]
    Guo Xusheng. 2017. Sequence stratigraphy and evolution model of the Wufeng−Longmaxi shale in the upper Yangtze area[J]. Earth Science, 42(7): 1069−1082 (in Chinese with English abstract).
    [8]
    Haq B U, Hardenbol J, Vail P R. 1988. Mesozoic and cenozoic chronostratigraphy and cycles of sea−level change[C]//Wilgus C K, Hastings B S, Kendall C, et al. (ed.). Sea Level Changes — An Integrated Approach. SEPM Special Publication, 42: 71−108.
    [9]
    Haq B U, Schutter S R. 2008. A chronology of paleozoic sea−level changes[J]. Science, 322: 64−68. doi: 10.1126/science.1161648
    [10]
    Jiang Zhenxue, Song Yan, Tang Xianglu, Li Zhuo, Wang Xingmeng, Wang Guozhen, Xue Zixin, Li Xin, Zhang Kun, Chang Jiaqi, Qiu Hengyuan. 2020. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 47(3): 1−12 (in Chinese with English abstract).
    [11]
    Li Guanqing, Gu Xuexiang, Cheng Wenbin, Zhang Yongmei, Zhang Yan, Dai Hongzhang, Lü Pengrui, Zhang Xingguo, Xia Baoben. 2014. Geochemical characteristics and their geologic significance of the Lower Jurassic Ridang Formation Host Strata from the Zhaxikang Sb−Pb−Zn−Ag polymetallic ore−concentrated district, South Tibet[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5): 598−608 (in Chinese with English abstract).
    [12]
    Li Yifan, Fan Tailiang, Gao Zhiqian, Zhang Jinchuan, Wang Xiaomin, Zeng Weite, Zhang Junpeng. 2012. Sequence stratigraphy of Silurian black shale and its distribution in southeastern area of Chongqing[J]. Natural Gas Geoscience, 23(2): 299−306 (in Chinese with English abstract).
    [13]
    Li Y H, Schoonmaker J E. 2003. Chemical composition and mineralogy of marine sediments[C]//Rudnick R L(ed. ). Sediments, Diagenesis, and Sedimentary Rocks. Treatise on Geochemistry, New York: Elsevier Sciences, 1−35.
    [14]
    Liang Xing, Wang Gaocheng, Xu Zhengyu, Zhang Jiehui, Chen Zhipeng, Xian Chenggang, Lu Huili, Liu Chen, Zhao Chunduan, Xiong Shaoyun. 2016. Comprehensive evaluation technology forshale gas sweet spots in the complex marine mountains, South China: A case study from Zhaotong national shale gas demonstration zone[J]. Natural Gas Industry, 36(1): 33−42.
    [15]
    Liang Xing, Zhang Tingshan, Shu Honglin, Min Huajun, Zhang Zhao, Zhang Lei. 2020. Evaluation of shale gas resource potential of Longmaxi Formation in Zhaotong National Shale Gas Demonstration Area in the Northern Yunnan−Guizhou[J]. Geology in China, 47(1): 72−87
    [16]
    Lin Changsong, Zhang Yanmei, Liu Jingyan, Pang Baocheng. 2000. High resolution sequence stratigraphy and reservoir prediction[J]. Earth Science Frontiers, 7(3): 111−117 (in Chinese with English abstract).
    [17]
    Lu Yangbo, Ma Yiquan, Wang Yuxuan, Lu Yongchao. 2017. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation−Longmaxi Formation in the Upper Yangtze Area[J]. Earth Science, 42(7): 1169−1184 (in Chinese with English abstract).
    [18]
    Ma Xinhua, Xie Jun. 2018. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 45(1): 161−169 (in Chinese with English abstract).
    [19]
    Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2018. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 45(4): 561−574 (in Chinese with English abstract).
    [20]
    Martín-Fernández J, Barceló−Vidal C, Pawlowsky−Glahn V. 2003. Dealing with zeros and missing values in compositional data sets using nonparametric imputation[J]. Mathematical Geology, 35(3): 253−278. doi: 10.1023/A:1023866030544
    [21]
    Martín-Fernández J, Barceló−Vidal C, Pawlowsky−Glahn V. 2005. Subcompositional patterns in Cenozoic volcanic rocks of Hungary[J]. Mathematical Geology, 37(7): 729−752. doi: 10.1007/s11004-005-7377-5
    [22]
    Palarea−Albaladejo J, Martín−Fernández J. 2008. A modified EM alr−algorithm for replacing rounded zeros in compositional data sets[J]. Computers & Geosciences, 34: 902−917.
    [23]
    Palarea−Albaladejo J, Martín−Fernández J, Gómez−García J. 2007. A parametric approach for dealing with compositional rounded zeros[J]. Mathematical Geology, 39(7): 625−645. doi: 10.1007/s11004-007-9100-1
    [24]
    Pan S Q, Zou C N, Yang Z, Dong D Z, Wang Y M, Wang S F, Wu S T, Huang J L, Liu Q, Wang D L, Wang Z Y. 2015. Methods for shale gas play assessment: A comparison between Silurian Longmaxi Shale and Mississippian Barnett Shale[J]. Journal of Earth Science, 26(2): 285−294. doi: 10.1007/s12583-015-0524-0
    [25]
    Pearce T J, Martin J H, Cooper D. 2010. Chemostratigraphy of upper carboniferous (Pennsylvanian) sequences from the southern North Sea (United Kingdom)[C]//Ratcliffe K T, Zaitlin B A (ed. ). Modern Alternative Stratigraphic Techniques, Theory and Case Histories, SEPM Special Publication No. 94, 109–129.
    [26]
    Pison G, Rousseeuw P, Filzmoser P. 2003. Robust factor analysis[J]. Journal of Multivariate Analysis, 84: 145−172. doi: 10.1016/S0047-259X(02)00007-6
    [27]
    Posamentier H W, Vail P R. 1988. Eustatic controls on clastic deposition II — sequence and systems tract models[C]// Wilgus C K, Hastings B S, Kendall C, et al. (eds. ). Sea Level Changes — An Integrated Approach. Society of Economic Paleontologists and Mineralogists (SEPM), Special Publication, 42, 125–154.
    [28]
    Pu Boling, Dong Dazhong, Wang Fengqin, Wang Yuman, Huang Jinliang. 2020. The effect of sedimentary facies on Longmaxi shale gas in southern Sichuan Basin[J]. Geology in China, 47(1): 111−120.
    [29]
    Qiu Zhen, Zou Caineng, Wang Hongyan, Dong Dazhong, Lu Bin, Chen Zhenhong, Liu Dexun, Li Guizhong, He Jianglin, Wei Lin. 2019. Discussion on characteristics and controlling factors of differential enrichment of Wufeng−Longmaxi shale gas in South China[J]. Natural Gas Geoscience, 31(2): 163−175 (in Chinese with English abstract).
    [30]
    Ramkumar M. 2015. Chemostratigraphy: Concepts, Techniques, and Applications[M]. Elsevier, 1−432.
    [31]
    Ratcliffe K T, Wilson A, Payenberg T, Rittersbacher A, Hildred G V, Flint S S. 2015. Ground trothing chemostratigraphic correlations in fluvial systems[J]. AAPG Bulletin, 99: 155−180. doi: 10.1306/06051413120
    [32]
    Reiman C, Filmoser P. 1999. Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data[J]. Environmental Geology, 39: 1001−1014.
    [33]
    Sandford R F, Pierson C T, Crovelli R A. 1993. An objective replacement method for censored geochemical data[J]. Mathematical Geology, 25(1): 59−80. doi: 10.1007/BF00890676
    [34]
    Sano J L, Ratcliffe K T, Spain D. 2013. Chemostratigraphy of the Haynesville Shale[C]// Hammes U, Gale J (ed.). Geology of the Haynesville Gas Shale in East Texas and West Louisiana. USA: AAPG Memoir 105, 137–154.
    [35]
    Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 232: 12−32. doi: 10.1016/j.chemgeo.2006.02.012
    [36]
    Turgeon S, Brumsack H J. 2006. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria−Marche Basin of central Italy[J]. Chemical Geology, 234: 321−339. doi: 10.1016/j.chemgeo.2006.05.008
    [37]
    Wang Tong, Yang Keming, Xiong Liang, Shi Hongliang, Zhang Quanlin, Wei Limin, He Xianli. 2015. Shale sequence stratigraphy of Wufeng−Longmaxi Formation in Southern Sichuan and their control on reservoirs[J]. Acta Petrolei Sinica, 36(8): 915−925 (in Chinese with English abstract).
    [38]
    Wang Y M, Dong D Z, Li X J, Huang J L, Wang S F, Wu W. 2015. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Natural Gas Industry B, 2(2/3): 222−232.
    [39]
    Wang Yuman, Li Xinjing, Dong Dazhong, Zhang Chenchen, Wang Shufang. 2017. Main factors controlling the sedimentation of high−quality shale in Wufeng–Longmaxi Fm, Upper Yangtze region[J]. Natural Gas Industry, 37(4): 9−20 (in Chinese with English abstract).
    [40]
    Wedepohl K H. 1991. The composition of the upper Earth’s crust and the natural cycles of selected metals[C]//Merian E (ed.). Metals and their Compounds in the Environment. VCH−Verlagsgesellschaft, Weinheim, 3−17.
    [41]
    Yang Ping, Wang Zhengjiang, Yu Qian, Liu Wei, Liu Jiahong, Xiong Guoqing, He Jianglin, Yang Fei. 2019. An resources potential analysis of Wufeng−Longmaxi Formation shale gas in the southwestern margin of Sichuan Basin[J]. Geology in China, 46(3): 601−614 (in Chinese with English abstract).
    [42]
    Yu Yu, Lin Liangbiao, Lan Binheng, Hong Wei, Guo Yan. 2018. Sequence stratigraphic division and recognition based on wavelet analysis: Example from the Upper Permian Longtan Formation in eastern Sichuan Basin[J]. Northwestern Geology, 51(4): 43−52 (in Chinese with English abstract).
    [43]
    Zhai G Y, Li J, Jiao Y, Wang Y F, Liu G H, Xu Q, Wang C, Chen R, Guo X B. 2019. Applications of chemostratigraphy in a characterization of shale gas Sedimentary Microfacies and predictions of sweet spots: Taking the Cambrian black shales in Western Hubei as an example[J]. Marine and Petroleum Geology, 109: 547−560. doi: 10.1016/j.marpetgeo.2019.06.045
    [44]
    Zhao Quanmin, Zhang Jincheng, Liu Jinge. 2019. Status of Chinese shale gas revolution and development proposal[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 46(8): 1−9 (in Chinese with English abstract).
    [45]
    Zheng Rongcai, Wen Huaguo, Li Fengjie. 2010. High−resolution Sequence Stratigraphy[M]. Beijing: Geological Publishing House, 1−404 (in Chinese).
    [46]
    程文斌, 顾雪祥, 胡修棉, 李有核, 董树义. 2008. 现代大洋红色黏土与白垩纪大洋红层元素地球化学对比[J]. 地质学报, 82(1): 37−47. doi: 10.3321/j.issn:0001-5717.2008.01.005
    [47]
    郭旭升. 2017. 上扬子地区五峰组−龙马溪组页岩层序地层及演化模式[J]. 地球科学, 42(7): 1069−1082.
    [48]
    姜振学, 宋岩, 唐相路, 李卓, 王幸蒙, 王国臻, 薛子鑫, 李鑫, 张昆, 常佳琦, 仇恒远. 2020. 中国南方海相页岩气差异富集的控制因素[J]. 石油勘探与开发, 47(3): 1−12. doi: 10.11698/PED.2020.03.18
    [49]
    李关清, 顾雪祥, 程文斌, 章永梅, 张岩, 代鸿章, 吕鹏瑞, 张兴国, 夏抱本. 2014, 藏南扎西康Sb−Pb−Zn−Ag多金属矿集区下侏罗统日当组赋矿地层元素地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 33(5): 598−608.
    [50]
    李一凡, 樊太亮, 高志前, 张金川, 王小敏, 曾维特, 张俊鹏. 2012. 渝东南地区志留系黑色页岩层序地层研究[J]. 天然气地球科学, 23(2): 299−306.
    [51]
    梁兴, 王高成, 徐政语, 张介辉, 陈志鹏, 鲜成钢, 鲁慧丽, 刘臣, 赵春段, 熊绍云. 2016. 中国南方海相复杂山地页岩气储层甜点综合评价技术—以昭通国家级页岩气示范区为例[J]. 天然气工业, 36(1): 33−42. doi: 10.3787/j.issn.1000-0976.2016.01.004
    [52]
    梁兴, 张廷山, 舒红林, 闵华军, 张朝, 张磊. 2020. 滇黔北昭通示范区龙马溪组页岩气资源潜力评价[J]. 中国地质, 47(1): 72−87. doi: 10.12029/gc20200106
    [53]
    林畅松, 张燕梅, 刘景彦, 庞保成. 2000. 高精度层序地层学和储层预测[J]. 地学前缘, 7(3): 111−117. doi: 10.3321/j.issn:1005-2321.2000.03.012
    [54]
    陆扬博, 马义权, 王雨轩, 陆永潮. 2017. 上扬子地区五峰组−龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学, 42(7): 1169−1184.
    [55]
    马新华, 谢军. 2018. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 45(1): 161−169. doi: 10.11698/PED.2018.01.18
    [56]
    马永生, 蔡勋育, 赵培荣. 2018. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 45(4): 561−574. doi: 10.11698/PED.2018.04.03
    [57]
    蒲泊伶, 董大忠, 王凤琴, 王玉满, 黄金亮. 2020. 沉积相带对川南龙马溪组页岩气富集的影响[J]. 中国地质, 47(1): 111−120. doi: 10.12029/gc20200109
    [58]
    邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 何江林, 魏琳. 2019. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素探讨[J]. 天然气地球科学, 31(2): 163−175.
    [59]
    王同, 杨克明, 熊亮, 史洪亮, 张全林, 魏力民, 何显莉. 2015. 川南地区五峰组−龙马溪组页岩层序地层及其对储层的控制[J]. 石油学报, 36(8): 915−925. doi: 10.7623/syxb201508003
    [60]
    王玉满, 李新景, 董大忠, 张晨晨, 王淑芳. 2017. 上扬子地区五峰组—龙马溪组优质页岩沉积主控因素[J]. 天然气工业, 37(4): 9−20. doi: 10.3787/j.issn.1000-0976.2017.04.002
    [61]
    杨平, 汪正江, 余谦, 刘伟, 刘家洪, 熊国庆, 何江林, 杨菲. 2019. 四川盆地西南缘五峰—龙马溪组页岩气资源潜力分析[J]. 中国地质, 46(3): 601−614. doi: 10.12029/gc20190311
    [62]
    余瑜, 林良彪, 蓝彬桓, 洪薇, 郭炎. 2018. 基于小波分析的层序地层划分及识别—以川东地区上二叠统龙潭组为例[J]. 西北地质, 51(4): 43−52. doi: 10.3969/j.issn.1009-6248.2018.04.006
    [63]
    赵全民, 张金成, 刘劲歌. 2019. 中国页岩气革命现状与发展建议[J]. 探矿工程(岩土钻掘工程), 46(8): 1−9.
    [64]
    郑荣才, 文华国, 李凤杰. 2010. 高分辨率层序地层学[M]. 北京: 地质出版社, 1−404.
  • Related Articles

    [1]LIU Lin, WANG Dazhao, CHEN Aizhang, CAI Xiongwei. Distribution, occurrence and exploration prospect of associated rare earth elements in Yichang phosphate deposit, Hubei Province[J]. GEOLOGY IN CHINA, 2024, 51(2): 525-546. DOI: 10.12029/gc20221027003
    [2]ZHANG Baomin, CHEN Xiaohong, CAI Quansheng, CHEN Lin, ZHANG Guotao, LI Peijun. Dominant shale lithofacies and gas generation potential analysis of the WufengLongmaxi Formation in the Yichang slope area, Western Hubei Province[J]. GEOLOGY IN CHINA, 2022, 49(3): 943-955. DOI: 10.2029/gc20220318
    [3]LIU Zi, HUANG Xingkai, XU Hongling, ZHANG Bin, PENG Qingsong, WANG Chensheng, WANG Heng, JIANG Hua. Migration characteristics of elements in the rock-soil system and suitability evaluation of orange planting in Yaqueling area, Yichang, Hubei Province[J]. GEOLOGY IN CHINA, 2020, 47(6): 1853-1868. DOI: 10.12029/gc20200620
    [4]JIANG Hua, TANG Xiaohua, YANG Liya, LIU Zhixiong, WANG Ningtao, LIU Lei. Suitability evaluation of land space development based on land resources: A case study of Yichang City in Hubei Province[J]. GEOLOGY IN CHINA, 2020, 47(6): 1776-1792. DOI: 10.12029/gc20200614
    [5]ZHANG Ao, SHAO Changsheng, WANG Cen, YANG Yanlin, LU Tao. Dataset of the Environmental Geological Survey on a Scale of 1∶50 000 in the Puqi County (Present Chibi City) Map Sheet, Hubei Province[J]. GEOLOGY IN CHINA, 2019, 46(S2): 50-59. DOI: 10.12029/gc2019Z205
    [6]CHEN Xiaohong, ZHANG Miao, WANG Chuanshang, LI Zhihong. Chitinozoan biostratigraphy of the Silurian Shamao Formation in Yichang of Hubei Province[J]. GEOLOGY IN CHINA, 2018, 45(6): 1259-1270. DOI: 10.12029/gc20180615
    [7]CHEN Xiaohong, WEI Kai, ZHANG Baoming, LI Peijun, LI Hai, LIU An, LUO Shengyuan. Main geological factors controlling shale gas reservior in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as well as its and enrichment patterns[J]. GEOLOGY IN CHINA, 2018, 45(2): 207-226. DOI: 10.12029/gc20180201
    [8]CHENG Long, YAN Chun-bo, CHEN Xiao-hong, ZENG Xiong-wei, MOTANI Ryosuke. Characteristics and significance of Nanzhang/Yuanan Fauna, Hubei Province[J]. GEOLOGY IN CHINA, 2015, 42(2): 676-684. DOI: 10.12029/gc20150225
    [9]QU Hong-ying, PEI Rong-fu, YAO Lei, WANG Yong-lei, WANG Hao-lin. 40Ar-39Ar biotite and hornblende dating of Tieshan quartz diorite related to the skarn-type deposits in Daye area, Hubei Province, and its geological significance[J]. GEOLOGY IN CHINA, 2012, 39(6): 1635-1646. DOI: 10.12029/gc20120613
    [10]LI Zhi-Hong, CHEN Xiao-Hong, WANG Chuan-Shang, Zeng Qing-luan, WANG Xiao-Feng, Stouge S.. Conodont zonation and correlation of upper part of Fuluoian of Lower Ordovician in Huanghuachang section,Yichang, Hubei[J]. GEOLOGY IN CHINA, 2010, 37(6): 1647-1058. DOI: 10.12029/gc20100611
  • Cited by

    Periodical cited type(1)

    1. 龚建涛,白艳军. 致密砂岩储层微观孔隙结构表征研究——以鄂尔多斯盆地东南部地区延长组为例. 地质与资源. 2024(05): 662-670 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return