Citation: | GAO Fenglin, WANG Chengxi, SONG Yan, JIANG Zhenxue, LI Zhuo, LIU Qingxin, LIANG Zhikai, ZHANG Xinxin. Pore evolution of organic maceral in Shahezi Formation shale of Changling fault depression, Songliao Basin[J]. GEOLOGY IN CHINA, 2021, 48(3): 948-958. DOI: 10.12029/gc20210321 |
As an important part of shale reservoir space, organic pores possess strong heterogeneity, which hinders the correct understanding and evaluation of shale reservoir quality. The heterogeneity is essentially affected by organic macerals and their pore evolution during hydrocarbon generation process. Through located observation based on the field emission scanning electron microscopy and optical microscopy for pore development of the specific macerals, combined with Image J digital process technique, the pore evolution law of different organic macerals was summarized by quantitative statistics of macerals at different evolutionary stages. The results show that the porosity with solid bitumen is first increased and then decreased with the increase of maturity. The solid bitumen porosity is the highest when SBRO rangs from 1.6% to 2.0%, while the porosity begins to decrease when SBRO exceeds 2.0%. The pore development models of vitrinite and inertinite are similar. The both porosity decreases first and then increases slightly as maturity rise. In the oil window stage, the porosity of vitrinite and and inertinite is the lowest, because the filling of inorganic minerals and solid bitumen in the primary cell lumen make the loss of pores more than 90%. In the high mature stage, pore development of solid bitumen makes the original cellular pore getting a certain degree of recovery, becoming the main contribution and accounting for 56.73% and 100% of residual pores of vitrinite and inertinite respectively. It can be seen that solid bitumen pores are of importantance to the shale reservoir. Combined with sedimentary diagenesis and hydrocarbon generation, the pores of shale reservoir are the most developed in the immature stage and the late stage of high maturity. The former is dominated by primitive cell pores, while the latter is dominated by solid bitumen pores. Clarification of the pore evolution pattern of organic macerals can provide a significant reference for favorable shale reservoir prediction and reconstruction of shale gas development.
Ambrose R J, Hartman R C, Diaz Campos M, Akkutlu Y I, Sondergeld C H. 2012. Shale gas-in-place calculations Part I: New pore-scale considerations[J]. SPE Journal, 17(1): 219-229. doi: 10.2118/131772-PA
|
Bai Jing, Xu Xingyou, Chen Shan, Liu Weibin, Liu Chang, Zhang Changsheng. 2020. Sedimentary characteristics and paleo-environment restoration of the first member of Qingshankou Formation in Qian'an area, Changling sag, Songliao Basin: A case study of Jiyeyou 1 Well[J]. Geology in China, 47(1): 220-235(in Chinese with English abstract).
|
Bernard S, Wirth R, Schreiber A, Schulz H M, Horsfield B. 2012. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 103: 3-11. doi: 10.1016/j.coal.2012.04.010
|
Chalmers G R L, Bustin R M. 2008. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity[J]. Bulletin of Canadian Petroleum Geology, 56(1): 1-21. doi: 10.2113/gscpgbull.56.1.1
|
Chalmers G R, Bustin R M, Power I M. 2012. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units Characterization of Gas Shale Pore Systems[J]. AAPG Bulletin, 96(6): 1099-1119. doi: 10.1306/10171111052
|
Cheng Keming, Wang Tieguan, Zhao Shiqing. 1989. Geochemistry and its Evolution Characteristics of Source Rocks[R]. Beijing: Scientific Research Institute of Petroleum Exploration and Development, 18-37.
|
Song Yan, Gao Fenglin, Tang Xianglu, Chen Lei, Wang Xingmeng. 2021. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J]. Acta Petrolei Sinica, 41(12): 1501-1512(in Chinese with English abstract).
|
Curtis M E, Cardott B J, Sondergeld C H, Chandra S R. 2012. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 103: 26-31. doi: 10.1016/j.coal.2012.08.004
|
Gao Fenglin, Song Yan, Li Zhuo, Xiong Fengyang, Chen Lei, Zhang Xinxin, Chen Zhiyuan, Joachim Moortgate. 2018a. Quantitative characterization of pore connectivity using NMR and MIP: A case study of the Wangyinpu and Guanyintang shales in the Xiuwu basin, Southern China[J]. International Journal of Coal Geology, 197: 53-65. doi: 10.1016/j.coal.2018.07.007
|
Gao Fenglin, Song Yan, Li Zhuo, Xiong Fengyang, Chen Lei, Zhang Yinghan, Liang Zhikai, Zhang Xinxin, Chen Zhiyuan, Moortgat Joachime. 2018b. Lithofacies and reservoir characteristics of the Lower Cretaceous continental Shahezi Shale in the Changling Fault Depression of Songliao Basin, NE China[J]. Marine and Petroleum Geology, 98: 401-421. doi: 10.1016/j.marpetgeo.2018.08.035
|
Gao Fenglin, Song Yan, Liang Zhikai, Li Zhuo, Yuan Yuan, Zhang Yinghan, Chen Lei, Guo Wang. 2019. Organic pore development characteristics of continental shale and its genetic mechanism: Acase study of the Lower Cretaceous Shahezi shale in the Changling fault depression of Songliao Basin[J]. Acta Petrolei Sinica, 40(9): 1030-1044(in Chinese with English abstract).
|
Gao Fenglin, Wang Chengxi, Song Yan, Chen Zhenhong, Liu Qingxin, Li Zhuo, Jiang Zhenxue, Zhang Xinxin. 2021. Ar-ion polishing FE-SEM analysis of organic maceral identification[J]. Petroleum Geology & Experiment, 43(2): 360-367(in Chinese with English abstract).
|
Guo Huijuan, He Ruliang, Jia Wanglu, Peng Ping'an, Lei Yuhong, Luo Xiaorong, Wang Xiangzeng, Zhang Lixia, Jiang Chengfu. 2018. Pore characteristics of lacustrine shale within the oil window in the upper Triassic Yanchang Formation, southeastern Ordos Basin, China[J]. Marine and Petroleum Geology, 91: 279-296. doi: 10.1016/j.marpetgeo.2018.01.013
|
Hu Haiyan. 2013. Prosity evolution of the organic-rich shale thermal maturity increasing[J]. Acta Petrolei Sinica, 34(5): 820-825(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201305002.htm
|
Jiao Shujing, Zhang Hui, Xie Dongchuan, Huang Zhilong, Liu Guoheng. 2018. Morphological structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 37(2): 137-144(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXV201802007.htm
|
Klaver J, Desbois G, Urai J L, Littke F. 2012. BIB-SEM study of the pore space morphology in early mature Posidonia shale from the Hils area Germany[J]. International Journal of Coal Geology, 103 (23): 12-25. http://www.ncbi.nlm.nih.gov/pubmed/7205543
|
Klaver J, Desbois G, Littke R, Urai J, 2015. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and bossier shales[J]. Marine and Petroleum Geology, 59: 451-466. doi: 10.1016/j.marpetgeo.2014.09.020
|
Loucks R G, Reed R M, Ruppel S C, Hammes U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 96: 1071-1098. doi: 10.1306/08171111061
|
Ma Zhongliang, Zheng Lunju, Xu Xuhui, Bao Fang, Yu Xiaolu, 2017. Thermal simultion experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 38(1): 23-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201701003.htm
|
Mastalerz M, Drobniaka A, Stankiewicz A B. 2018. Origin properties and implications of solid bitumen in source-rock reservoirs: A review[J]. International Journal of Coal Geology, 195: 14-36. doi: 10.1016/j.coal.2018.05.013
|
Maver M, Barnett. 2003. Shale gas-in-place volume including sorbed and free gas volume(abs)[C]//Fort Worth Geological Society. Southwest Section AAPG Convention. Fort Worth, Texas: AAPG Datapages: 213-220.
|
Reed R M, Loucks R G, Ruppel S C. 2014. Commment on "Formation of nanoprous pyrobitumen residues during maturation maturation of the Barnett Share (Fort Worth Basin)" by Bernard, et al. (2012)[J]. International Journal of Coal Geology, 127: 111-1113. doi: 10.1016/j.coal.2013.11.012
|
Ross D J K, Bustin R M. 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 26: 916-927. doi: 10.1016/j.marpetgeo.2008.06.004
|
Shang Fei, Zhou Haiyan, Liu Yong, Zhou Xuexian, Wang Lan, Bi He, Wang Guochang, Song Li, Chen Ruiqian. 2020. A discussion on the organic matter enrichment model of the Nenjiang Formation, Songliao Basin: A case study of oil shale in the 1st and 2nd members of the Nenjiang Formation[J]. Geology in China, 47(1): 236-248(in Chinese with English abstract).
|
Wang Feiyu, Fu Jiamo, Liu Dehan. 1994. Organic petrological characteristics of coal and terrestrial organic matter and their assessment as a oil source rock[J]. Petroleum Exploration and Development, 21(4): 30-35(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SKYK404.021.htm
|
Wang Xiangzeng, Zhang Lixia, Lei Yuhong, Yu Yuxi, Jiang Chengfu, Luo Xiaorong, Gao Chao, Yin Jintao, Cheng Ming. 2018. Characteristics of migrated solid organic matters and organic pores in low maturity Lacustrine shale: A case study of the shale in Chang 7 oil-bearing formation of Yanchang Formation, southerastern Ordos Basin[J]. Acta Petroleum Sinica, 39(2): 141-151(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201802002.htm
|
Wang Yudan, Yang Yushuang, Liu Keyu, Ren Yuqi, Tan Hai, Deng Biao, Du Guohao, Xie Honglan, Xiao Tiqiao. 2015. Quantitative and multi-scale characterization of pore connections in tight reservoirs with micro-CT and DCM[J]. Bulletin of Mineralogy Petrology and Geochemistry, 34 (1): 86-92(in Chinese with English abstract). http://www.researchgate.net/publication/278021328_feichangguiyouqichujikongxiduochiduliantongxingdedingliangxianweiCTyanjiu_Quantitative_and_multi-scale_characterization_of_pore_connections_in_tight_reservoirs_with_micro-CT_and_DCM
|
Wu Songtao, Zhu Rukai, Cui Jinggang, Cui Jingwei, Bai Bin, Zhang Xiangxiang, Jin Xu, Zhu Desheng, You Jianchang, Li Xiaohong. 2015. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleun Exploration and Development, 42(2): 167-176(in Chinese with English abstract). doi: 10.1016/S1876-3804(15)30003-3
|
Xue Lianhua, Yang Wei, Zhong Jiaai, Xu Yong, Chen Guojun. 2015. Porous evolution of the organic-rich shale fram simulated experiment with geological constrains, samples from yanchang Formation in Ordos Basin[J]. Acta Geologica Sinica, 89(5): 970-978(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252703134.html
|
Yang Jin, Hou Hesheng, Fu Wei, Guo Rui, Pan Zongdong, Zhang Jiaodong, Zhang Huitao. 2020. 3D microscopic CT imaging and significance of SK-2 deep mudstone of Shahezi Group[J]. Geological Bulletion of China, 39(7): 1006-1014(in Chinese with English abstract).
|
Zhang Hui, Jiao Shujing, Pang Qifa, Li Ning, Lin Bowei. 2015. SEM observation of organic matters in the Eopaleozoic shale in South China[J]. Oil & Gas Geology, 36(4): 675-680(in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=665899349
|
白静, 徐兴友, 陈珊, 刘卫彬, 刘畅, 张昌盛. 2020. 松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复——以吉页油1井为例[J]. 中国地质, 47(1): 220-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001019.htm
|
程克明, 王铁冠, 赵师清. 1989. 烃源岩的地球化学及演化特征[R]. 北京: 石油勘探开发科学研究院, 18-37.
|
宋岩, 高凤琳, 唐相路, 陈磊, 王幸蒙. 2021. 海相和陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报, 41(12): 1501-1512.
|
高凤琳, 宋岩, 梁志凯, 李卓, 原园, 张瀛涵, 陈磊, 郭望. 2019. 陆相页岩有机质孔隙发育特征及其成因——以松辽盆地长岭断陷沙河子组页岩为例[J]. 石油学报, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm
|
高凤琳, 王成锡, 宋岩, 陈振宏, 刘庆新, 李卓, 姜振学, 张欣欣. 2021. 氩离子抛光-场发射扫描电镜分析方法在识别有机显微组分中的应用[J]. 石油实验地质, 43(2): 360-367.
|
胡海燕. 2013. 富有机质Woodford页岩孔隙演化的热模拟实验[J]. 石油学报, 34(5): 820-825. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305002.htm
|
焦淑静, 张慧, 薛东川, 徐勇, 陈国俊. 2018. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 37(2): 137-144. doi: 10.3969/j.issn.1000-6281.2018.02.006
|
马中良, 郑伦举, 徐旭辉, 鲍芳, 余晓露. 2017. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm
|
商斐, 周海燕, 刘勇, 周学先, 王岚, 毕赫, 王国昌, 宋力, 陈睿倩. 2020. 松辽盆地嫩江组泥页岩有机质富集模式探讨——以嫩江组一、二段油页岩为例[J]. 中国地质, 47(1): 236-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001020.htm
|
王飞宇, 傅家漠, 刘德汉. 1994. 煤和陆源有机质生油岩有机岩石学特点及评价[J]. 石油勘探与开发, 21(4): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK404.006.htm
|
王香增, 张丽霞, 雷裕红, 俞雨溪, 姜呈馥, 罗晓容, 高潮, 尹锦涛, 程明. 2018. 低熟湖相页岩内运移固体有机质和有机质孔特征——以鄂尔多斯盆地东南部延长组长7油层组页岩为例[J]. 石油学报, 39(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802002.htm
|
王玉丹, 杨玉双, 刘可禹, 任玉琦, 谭海, 邓彪, 杜国浩, 谢红兰, 肖体乔. 2015. 非常规油气储集孔隙多尺度连通性的定量显微CT研究[J]. 矿物岩石地球化学通报, 34(1): 86-92. doi: 10.3969/j.issn.1007-2802.2015.01.010
|
吴松涛, 朱如凯, 崔京钢, 崔景伟, 白斌, 张响响, 金旭, 朱德升, 游建昌, 李晓红. 2015. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 42(2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502006.htm
|
薛莲花, 杨巍, 仲佳爱, 徐勇, 陈国俊. 2015. 富有机质页岩生烃阶段孔隙演化——来自鄂尔多斯延长组地质条件约束下的热模拟实验证据[J]. 地质学报, 89(5): 970-978. doi: 10.3969/j.issn.0001-5717.2015.05.011
|
杨瑨, 侯贺晟, 符伟, 国瑞, 潘宗栋, 张交东, 张慧滔. 2020, 松科二井深层沙河子组泥岩三维显微CT成像及对深部油气预测的启示[J]. 地质通报, 39(7): 1006-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202007008.htm
|
张慧, 焦淑静, 庞起发, 李宁, 林伯伟. 2015. 中国南方早古生代页岩有机质的扫描电镜研究[J]. 石油与天然气地质, 36(4): 675-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504019.htm
|
1. |
邰文星,杨成富,靳晓野,邵云彬,刘光富,赵平,王泽鹏,谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用. 物探与化探. 2023(04): 856-867 .
![]() |