Citation: | HUANG Changsheng, ZHOU Yun, ZHANG Shengnan, WANG Jietao, LIU Fengmei, GONG Chong, YI Chengyun, LI Long, ZHOU Hong, WEI Liangshuai, PAN Xiaodong, SHAO Changsheng, LI Yiyong, HAN Wenjing, YIN Zhibin, LI Xiaozhe. Groundwater resources in the Yangtze River Basin and its current development and utilization[J]. GEOLOGY IN CHINA, 2021, 48(4): 979-1000. DOI: 10.12029/gc20210401 |
In order to improve the cognition of hydrogeology and groundwater resources in the Yangtze River Basin and break through the limitations of previous evaluation from the point of view of surface water or groundwater, the hydrogeology survey project in the Yangtze River Basin was guided by the earth system science theory and water cycle theory. Based on the full consideration of the transformation relationship between surface water and groundwater, hydrogeology unit and surface water basin were organically combined to divide groundwater evaluation units in the Yangtze River Basin. A new round of groundwater resource evaluation in the Yangtze River basin was carried out through the establishment of typical groundwater resource evaluation model. The evaluation results show that the spatial and temporal distribution of water cycle elements in the Yangtze River basin is uneven, with the highest precipitation in the middle reaches and decreasing from southeast to northwest. Surface runoff is mainly concentrated in summer, the north bank is higher than the south bank in summer concentration surface runoff. Evapotranspiration is generally higher in the east than in the west, and the maximum value is concentrated in the middle reaches of the Yangtze River. The groundwater level in the Yangtze River basin remains stable on the whole, and the water level changes little in the peak and dry seasons, generally less than 2 m. The area of groundwater funnel in the Yangtze River Delta over-exploitation area has been significantly reduced, and the related environmental geological problems have been effectively controlled. In 2020, the total groundwater resources in the Yangtze River Basin was 242.170 billion m3/a, including 209.279 billion m3/a in hilly areas and 33.135 billion m3/a in plain areas. Compared with 2019, the groundwater storage increased slightly, especially in Sichuan Basin, with a total increase of 2.372 billion m3. The water quality in the upper reaches of the Yangtze River basin is better than that in the lower reaches, and the high-quality groundwater is mainly distributed in southern Jiangxi and the western foothills of Dabie Mountains. The main reason for poor water quality in some areas is the widespread distribution of primary inferior water. The development and utilization level of groundwater in the Yangtze River Basin is very low as a whole. The environmental geological problems caused by unreasonable development in some areas have been greatly solved, and karst collapse and land subsidence have been well controlled. It is suggested that high-quality bedrock fissure water should be properly developed and utilized in southern Jiangxi and south Dabie Mountains.
Cao Jianwen, Xia Riyuan, Tang Zhonghua, Zhao Liangjie, Wang Zhe, Luan Song, Wang Song. 2021. Groundwater resources in Guangdong-Hong Kong-Macao Greater Bay Area and its development potential[J]. Geology in China, 48(4)1075-1093(in Chinese with English abstract).
|
Changjiang Water Resources Commission, Ministry of Water Resources. 2018. Water resources bulletin of Yangtze River Basin and Southwest Rivers (1998-2018). Wuhan: Changjiang Water Resources Commission(in Chinese).
|
Chen Fan, Chen Li, Zhang Wei, Han Jianqiao, Wang Junzhou. 2019. Responses of channel morphology to flow-sediment variations after dam construction: A case study of the Shashi Reach, middle Yangtze River[J]. Hydrology Research, 50(5): 1359-1375. doi: 10.2166/nh.2019.066
|
Fan Kexu, Xu Changjiang, Zhang Jing. 2011. Evaluation of Water Resources Quality in Yangtze River Basin[J]. Yangtze River, 42(18): 62-64, 72 (in Chinese).
|
Gao Yu, Chen Li, Zhang Wei, Li Xin, Xu Quanxi. 2021. Spatiotemporal variations in characteristic discharge in the Yangtze River downstream of the Three Gorges Dam[J]. The Science of the Total Environment, 785: https://doi.org/10.1016/j.scitotenv.2021.147343.
|
Ge Jianzhong, Zhang Jingsi, Chen Changsheng, Ding Pingxing. 2021. Impacts of fluvial flood on physical and biogeochemical environments in estuary-shelf continuum in the East China Sea[J]. Journal of Hydrology, 598: https://doi.org/10.1016/j.jhydrol.2021.126441.
|
Gong Lei, Wang Xinfeng, Song Mian, Li Hongyan, Xiao Zeyou, Hu Qifeng, Wang Jin, Wu Linwei, Wang Lei, Miu Sai. 2019.1: 50000 hydrogeological survey data set of Xingguo and Ningdu in Southern Jiangxi[J]. Geology in China, 46(S1): 11-17 (in Chinese).
|
Han Yufang, Lu Chuanteng. 2019. Characteristics of water and sediment changes and riverbed evolution in the Yangtze River after the Three Gorges Project[C]//The 19th China Symposium on Ocean (Shore) Engineering, Chongqing, China (in Chinese with English abstract).
|
Hu Baoyi, Wang Lei. 2021. Terrestrial water storage change and its attribution: A review and perspective[J]. Water Resources and Hydropower Engineering, 52(5): 13-25(in Chinese with English abstract).
|
Hu Peng, Tao Junyu, Ji Aofei, Li Wei, He Zhiguo. 2021. A computationally efficient shallow water model for mixed cohesive and non-cohesive sediment transport in the Yangtze Estuary[J]. Water, 13(10): https://doi.org/10.3390/w13101435.
|
Jiang Yuehua, Lin Liangjun, Chen Lide, Yi Huayong, Ge Weiya, Cheng Hangxin, Zai Gangyi, Wang Guiling, Ban Yizhong, Li Yuan, Lei Mingtang, Tan Cheng. 2017. Research on conditions of resources and environment and major geological problems in the Yangtze River Economic Zone[J]. Geology in China, 44(6): 1045-1061(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201706002.htm
|
Jiang Yuehua, Zhou Quanping, Chen Lide, Ni Huayong, Lei Mingtang. Cheng Heqin, Shi Bin. Ma Teng. Ge Weiya. Su Jingwen, Li Yun. Tan Jianming. 2019. Progress and main achievements of geological environment comprehensive investigation project in Yangtze River Economic Belt[J]. Geological Survey of China, 6(5): 1-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDC201905001.htm
|
Jing Jiajun, Guan Zhen, Shan Yuyang, Jing Jiayuan. 2019. Present situation of groundwater exploitation and utilization and analysis of potential water sources in abundant plain area[J]. Geological Survey of China, 6(3): 87-91 (in Chinese with English abstract).
|
Li Haitao, Feng Wei, Wang Kailin, Zhao Kai, Li Gang, Zhang Yuan, Li Muzi, Sun Lu, Chen Yichao, You Bing. 2021. Background, characteristics, and exploitation potential of groundwater resources in Xiong'an New Area[J]. Geology in China, 48(4): 1112-1126(in Chinese with English abstract).
|
Li Shengpin, Li Wenpeng, Yin Xiulan. 2019. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology and Engineering Geology, 46(6): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201906002.htm
|
Li Xiaoqian, Gan Yiqun, Zhou Aiguo, Liu Yunde. 2015. Relationship between water discharge and sulfate sources of the Yangtze River inferred from seasonal variations of sulfur and oxygen isotopic compositions[J]. Journal of Geochemical Exploration, 153: 30-39. doi: 10.1016/j.gexplo.2015.02.009
|
Meng Xianmeng, Zhang Pengju, Leng Ao, Zhou Bo, Liu Dengfeng. 2019. Fractal structure characteristics and development stage division of water system in Yangtze River basin[J]. Yangtze River, 50(3): 94-100 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-RIVE201903017.htm
|
Qin Yang, Li Jingyi, Gong Kangjia, Wu Zhijun, Chen Mindong, Qin Momei, Huang Lin, Hu Jianlin. 2021. Double high pollution events in the Yangtze River Delta from 2015 to 2019: Characteristics, trends, and meteorological situations[J]. The Science of The Total Environment, 792(12): DOI: 10.1016/j.scitotenv.2021.148349
|
Qi Jia, Wang Lei, Zhou Jing, Song Lei, Li Xiuping, Zeng Tian. 2019. Coupled snow and frozen ground physics improves cold region hydrological simulations: An evaluation at the upper Yangtze River Basin (Tibetan Plateau)[J]. Journal of Geophysical Research Atmospheres, 124(23): 12985-13004. doi: 10.1029/2019JD031622
|
Tang Jianhua, Liu Weiyi, Zhao Shengwei. 2011. Discussion on the relationship between Xuliujing discharge and Datong discharge in the Yangtze River estuary[J]. Water Resources and Power, 29(7): 4-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDNY201107001.htm
|
Wang Jielong, Chen Yi, Wang Zhanghui, Shang Pengfei. 2020. Drought evaluation over Yangtze River basin based on weighted water storage deficit[J]. Journal of Hydrology, 591: https://doi.org/10.1016/j.jhydrol.2020.125283.
|
Wang Jun. 2018. Status and its research on water resources in the Yangtze River Basin[J]. Journal of Water Resources Research, 7(1): 1-9(in Chinese with English abstract). doi: 10.12677/JWRR.2018.71001
|
Wang Qi, Yu Shi, Jiang Pingping, Sun Pingan. 2021. Water chemical characteristics and influence of exogenous acids in the Yangtze River Basin[J]. Environmental Science: 1-17. [2021-07-10]. https://doi.org/10.13227/j.hjkx.202012040 (in Chinese with English abstract).
|
Wang Zhengxiang, Guo Haijin, Ding Zhili. 2008. Analysis of water resources and utilization status of Yangtze River and Southwest Rivers in recent 10 years[J]. Yangtze River, (17): 85-87 (in Chinese).
|
Wang Zhengxiang, Xu Gaohong, Ding Zhili. 2011. Evaluation of water resources in Yangtze River Basin[J]. Yangtze River, 42(18): 58-61(in Chinese).
|
Wu Shuqi, Hu Zhuowei, Wang Zhiheng, Cao Shisong, Yang Yang, Qu Xinyuan, Zhao Wenji. 2021. Spatiotemporal variations in extreme precipitation on the middle and lower reaches of the Yangtze River Basin (1970-2018)[J]. Quaternary International, 592(10): 80-96. http://www.sciencedirect.com/science/article/pii/S1040618221002305
|
Xia Jun, Chen Jin. 2021. Viewing flood control strategy in the new era from defending the Yangtze River flood in 2020[J]. Scientia Sinica(Terrae), 51(1): 27-34(in Chinese).
|
Xia Xuejin, Xu Jian, Feng Wenjing. 2016. Discussion on the trend of Yangtze River discharge into the sea and the relationship between Datong and Xuliujing discharge[J]. China Water Transport, (6): 71-73(in Chinese with English abstract).
|
Xu Jing, Wang Yonggui, Chen Yan, Tong Hongjin, Wei Yao, Bai Hui. 2020. Characteristics on spatiotemporal variations of surface water environmental quality in Tuojiang River in Upper Reaches of Yangtze River Basin[J]. Earth Science, 45(6): 1937-1947(in Chinese with English abstract).
|
Yan Jiabao, Jia Shaofeng, Lu Aifeng. 2016. Changes of land water reserves and their temporal and spatial distribution in China in recent ten years[J]. South-to-North Water Transfers and Water Science and Technology, 14(4): 21-28 (in Chinese).
|
Yang Chengfan, Yang Shouye, Song Jiaze, Vigier Nathalie. 2019. Progressive evolution of the Changjiang (Yangtze River) sediment weathering intensity since the three gorges dam operation[J]. Journal of Geophysical Research: Earth Surface, 124(10): 2402. doi: 10.1029/2019JF005078
|
Yang Huifeng, Meng Ruifang, Li Wenpeng, Li Zeyan, Zhi Chuanshun, Bao Xilin, Li Changqing, Liu Haifu, Wu Haiping, Ren Yu. 2021. Characteristics and utilization potential of groundwater resources in the Haihe River Basin[J]. Geology in China, 48(4): 1032-1051(in Chinese with English abstract).
|
Yang Yuandong. 1984. Analysis of three elements of water balance in Yangtze River Basin[J]. Scientia Geographica Sinica, (4): 312-320. (in Chinese).
|
Yin Jian, Qiu Yuanhong, Ou Zhaofan. 2020. Remote sensing estimation and temporal and spatial distribution of actual evapotranspiration in Yangtze River Basin[J]. Journal of Beijing Normal University(Natural Science), 56(1): 86-95. (in Chinese with English abstract).
|
Yin Lichang, Tao Fulu, Chen Yi, Liu Fengshan, Hu Jian. 2021. Improving terrestrial evapotranspiration estimation across China during 2000-2018 with machine learning methods[J]. Journal of Hydrology, 600: DOI: 10.1016/j.jhydrol.2021.126538.
|
Zha Gang, Zhou Jianzhong, Yang Xin, Fang Wei, Dai Ling, Wang Quansen, Ding Xiaoling, 2020. Modeling and solving of joint flood control operation of large-scale reservoirs: A case study in the Middle and Upper Yangtze River in China[J]. Water, 13(1).
|
Zhang Guanghui, Liu Shaoyu, Zhang Cuiyun, Chen Zongyu, Lie Zhenlong, Shen Jianmei, Wang Jinzhe, Wang Zhao. 2004. Study on the regularity of groundwater circulation and evolution in Heihe River Basin[J]. Geology in China, (3): 289-293 (in Chinese with English abstract).
|
Zhang Guanghui, Yan Mingjiang, Yang Lizhi, Liu Zhongpei. 2008. Relationship between sustainable exploitation of groundwater and evaluation of groundwater function[J]. Geological Bulletin of China, (6): 875-81 (in Chinese with English abstract).
|
Zhao Liangjie, Yang Yang, Cao Jianwen, Xia Riyuan, Wang Zhe, Luan Song, Lin Yushan. 2021. Groundwater resources evaluation and problem analysis in Pearl River Basin[J]. Geology in China, 48(4): 1020-1031(in Chinese with English abstract).
|
Zhan Mingyue, Wang Guojie, Lu Jiao, Chen Liqin, Zhu Chenxia, Jiang Tong, Wang Yanjun. 2020. Evapotranspiration prediction and influencing factors in Yangtze River Basin based on CMIP6 multi-model[J]. Transactions of Atmospheric Sciences, 43(6): 1115-26 (in Chinese with English abstract).
|
Zhan Yunjun, Zhang Wen, Yan Yan, Wang Chenxing, Rong Yuejing, Zhu Jieyuan, Zheng Tianchen. 2021. Analysis of actual evapotranspiration evolution and influnceing factors in the Yangtze River Basin[J]. Acta Ecologica Sinica, 17: 1-12(in Chinese with English abstract).
|
Zhang Yongqiang, Kong Dongdong, Gan Rong, Chiew Francis H S, McVicar Tim R, Zhang Qiang, Yang Yuting. 2019. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017[J]. Remote Sensing of Environment, 222: 165-182. doi: 10.1016/j.rse.2018.12.031
|
Zeng Zhaohua. 1994. Formation and distribution of iron and manganese in groundwater in the middle and lower reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin, (4): 326-329 (in Chinese).
|
曹建文, 夏日元, 唐仲华, 赵良杰, 王喆, 栾崧, 王松. 2021. 粤港澳大湾区地下水资源特征及开发潜力[J]. 中国地质, 48(4): 1075-1093. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20210407&flag=1
|
范可旭, 徐长江, 张晶. 2011. 长江流域水资源质量评价[J]. 人民长江, 42(18): 62-64, 72. doi: 10.3969/j.issn.1001-4179.2011.18.017
|
龚磊, 王新峰, 宋绵, 李红燕, 肖则佑, 胡啟锋, 王进, 吴琳伟, 王磊, 缪赛. 2019. 赣南兴国和宁都脱贫攻坚1: 50000水文地质调查数据集[J]. 中国地质, 46(S1): 11-17. doi: 10.12029/gc2019Z102
|
韩玉芳, 路川藤. 2019. 三峡工程后长江口水沙变化及河床演变特征[C]//第十九届中国海洋(岸)工程学术讨论会(重庆).
|
胡宝怡, 王磊. 2021. 陆地水储量变化及其归因: 研究综述及展望[J]. 水利水电技术(中英文), 52(5): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202105002.htm
|
姜月华, 林良俊, 陈立德, 倪化勇, 葛伟亚, 成杭新, 翟刚毅, 王贵玲, 班宜忠, 李媛, 雷明堂, 谭成轩, 苏晶文, 周权平, 张泰丽, 李云, 刘红樱, 彭柯, 王寒梅. 2017. 长江经济带资源环境条件与重大地质问题[J]. 中国地质, 44(6): 1045-1061. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170601&flag=1
|
姜月华, 周权平, 陈立德, 倪化勇, 雷明堂, 程和琴, 施斌, 马腾, 葛伟亚, 苏晶文, 李云, 谭建民. 2019. 长江经济带地质环境综合调查工程进展与主要成果[J]. 中国地质调查, 6(5): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201905001.htm
|
景佳俊, 管祯, 单雨阳, 景佳媛. 2019. 丰沛平原区地下水开采利用现状及潜在水源地分析[J]. 中国地质调查, 6(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201903012.htm
|
李海涛, 凤蔚, 王凯霖, 赵凯, 李刚, 张源, 李木子, 孙璐, 陈一超, 尤冰. 2021. 雄安新区地下水资源概况、特征及可开采潜力[J]. 中国地质, 48(4): 1112-1126. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20210409&flag=1
|
李圣品, 李文鹏, 殷秀兰, 金爱芳. 2019. 全国地下水质分布及变化特征[J]. 水文地质工程地质, 46(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201906002.htm
|
孟宪萌, 张鹏举, 冷傲, 周波, 刘登峰. 2019. 长江流域水系分形结构特征及发育阶段划分[J]. 人民长江, 50(3): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201903017.htm
|
水利部长江水利委员会. 2018. 长江流域及西南诸河水资源公报(1998-2018)[Z]. 武汉: 长江水利委员会.
|
唐建华, 刘玮祎, 赵升伟. 2011. 长江口徐六泾流量与大通流量间关系的探讨[J]. 水电能源科学, 29(7): 4-7. doi: 10.3969/j.issn.1000-7709.2011.07.002
|
王俊. 2018. 长江流域水资源现状及其研究[J]. 水资源研究, 7: 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHC201802004.htm
|
王琪, 于奭, 蒋萍萍, 孙平安. 2021. 长江流域主要干/支流水化学特征及外源酸的影响[J]. 环境科学: 1-17[2021-07-10]. https://doi.org/10.13227/j.hjkx.202012040.
|
王政祥, 郭海晋, 丁志立. 2008. 长江和西南诸河近10年水资源及利用状况分析[J]. 人民长江, 39(17): 85-87. doi: 10.3969/j.issn.1001-4179.2008.17.029
|
王政祥, 徐高洪, 丁志立. 2011. 长江流域水资源评价[J]. 人民长江, 42(18): 58-61. doi: 10.3969/j.issn.1001-4179.2011.18.016
|
夏军, 陈进. 2021. 从防御2020年长江洪水看新时代防洪战略[J]. 中国科学: 地球科学, 51(1): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202101003.htm
|
夏雪瑾, 徐健, 冯文静, 李琦. 2016. 长江入海流量趋势及大通-徐六泾流量关系探讨[J]. 中国水运, (6): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG201606032.htm
|
许静, 王永桂, 陈岩, 佟洪金, 魏峣, 白辉. 2020. 长江上游沱江流域地表水环境质量时空变化特征[J]. 地球科学, 45(6): 1937-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006007.htm
|
严家宝, 贾绍凤, 吕爱锋, 朱文彬. 2016. 近十年中国陆地水储量变化及其时空分布规律[J]. 南水北调与水利科技, 14(4): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201604004.htm
|
杨会峰, 孟瑞芳, 李文鹏, 李泽岩, 支传顺, 包锡麟, 李长青, 柳富田, 吴海平, 任宇. 2021. 海河流域地下水资源特征和开发利用潜力[J]. 中国地质, 48(4): 1032-1051. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20210404&flag=1
|
杨远东. 1984. 长江流域水平衡三要素分析[J]. 地理科学, (4): 312-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX198404002.htm
|
尹剑, 邱远宏, 欧照凡. 2020. 长江流域实际蒸散发的遥感估算及时空分布研究[J]. 北京师范大学学报(自然科学版), 56(1): 86-95. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ202001014.htm
|
詹明月, 王国杰, 陆姣, 陈丽琴, 朱晨霞, 姜彤, 王艳君. 2020. 基于CMIP6多模式的长江流域蒸散发预估及影响因素[J]. 大气科学学报, 43(6): 1115-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202006016.htm
|
詹云军, 章文, 严岩, 王辰星, 荣月静, 朱捷缘, 卢慧婷, 郑天晨. 2021. 长江流域实际蒸散发演变趋势及影响因素分析[J]. 生态学报, (17): 1-12[2021-07-10]. http://kns.cnki.net/kcms/detail/11.2031.q.20210610.1550.050.html.
|
张光辉, 刘少玉, 张翠云, 陈宗宇, 聂振龙, 申建梅, 王金哲. 2004. 黑河流域地下水循环演化规律研究[J]. 中国地质, (3): 289-293. doi: 10.3969/j.issn.1000-3657.2004.03.008
|
张光辉, 严明疆, 杨丽芝, 刘中培. 2008. 地下水可持续开采量与地下水功能评价的关系[J]. 地质通报, (6): 875-881. doi: 10.3969/j.issn.1671-2552.2008.06.016
|
赵良杰, 杨杨, 曹建文, 夏日元, 王喆, 栾崧, 林玉山. 2021. 珠江流域地下水资源评价及问题分析[J]. 中国地质, 48(4): 1020-1031. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20210403&flag=1
|
曾昭华. 1994. 长江中下游地区地下水中铁锰元素的形成及其分布规律[J]. 长江流域资源与环境, (4): 326-329. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY404.005.htm
|