• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
ZHAO Liangjie, YANG Yang, CAO Jianwen, XIA Riyuan, WANG Zhe, LUAN Song, LIN Yushan. Groundwater resources evaluation and problem analysis in Pearl River Basin[J]. GEOLOGY IN CHINA, 2021, 48(4): 1020-1031. DOI: 10.12029/gc20210403
Citation: ZHAO Liangjie, YANG Yang, CAO Jianwen, XIA Riyuan, WANG Zhe, LUAN Song, LIN Yushan. Groundwater resources evaluation and problem analysis in Pearl River Basin[J]. GEOLOGY IN CHINA, 2021, 48(4): 1020-1031. DOI: 10.12029/gc20210403

Groundwater resources evaluation and problem analysis in Pearl River Basin

Funds: 

the project of China Geological Survey DD20190342

the Groundwater Resources Survey, Monitoring and Evaluation of Guangdong Province 0835-210Z22803141

the General Project of Guangxi Natural Science Foundation 2018GXNSFAA294015

More Information
  • Author Bio:

    ZHAO Liangjie, born in 1986, male, doctor, assistant researcher, engaged in karst water circulation and water resources evaluation; E-mail: zhaoliangjie@mail.cgs.gov.cn

  • Corresponding author:

    YANG Yang, born in 1988, female, assistant researcher, engaged in the investigation, monitoring and evaluation of karst water resources; E-mail: yangyang_a@mail.cgs.gov.cn

  • Received Date: March 23, 2021
  • Revised Date: May 23, 2021
  • Available Online: September 25, 2023
  • On the basis of the current situation and history of groundwater resources evaluation in the Pearl River Basin, the water resources evaluation methods and zoning principles were discussed, and 129 four level groundwater systems are divided. Taking the groundwater system as the evaluation unit, based on the full consideration of different hydrogeological parameters, this paper analyzes and evaluates the amount of groundwater resources and the existing problems, discusses the characteristics of different flow movement in the three terraces of the Pearl River Basin, and expounds the accuracy of the evaluation and the influence of water conservancy projects on groundwater circulation. Through this evaluation, the natural groundwater resources in the Pearl River Basin are 137.416 billion m3, the exploitable amount is 57.87 billion m3, and the development and utilization rate is only 9.8%. The Pearl River Basin has a large span, and its hydrodynamic characteristics are quite different, characterized by the deep valley area in the upper reaches of Yunnan-Guizhou Plateau, the peak cluster depression area in the middle reaches of Guangxi, and the alluvial proluvial plain area in the lower reaches. According to incomplete statistics, there are 32 reservoirs in the Pearl River basin with a storage capacity of more than 1 million m3. The construction of water conservancy projects and the regulation and distribution of water resources by reservoirs bring some difficulties to the evaluation of groundwater resources. The main problems are the inconsistency of the basin boundaries between surface water and groundwater caused by the differences in the concepts of surface water and groundwater between different ministries and commissions. Therefore, the countermeasures and methods to solve the problems are put forward, so as to provide reference for the development, utilization, control and protection of groundwater.

  • Adji T N, Bahtiar I Y. 2016. Rainfall-discharge relationship and karst flow components analysis for karst aquifer characterization in Petoyan Spring, Java, Indonesia[J]. Environmental Earth Sciences 75(9), 735. doi: 10.1007/s12665-016-5553-1
    Cao Jianhua, Yang Hui, Zhang Chunlai, Wu Xia, Bai Bing, Huang Fen. 2018. Characteristics of structure and material cycling of the karst critical zone in Southwest China[J]. Geological Survey of China, 5(5): 1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDC201805001.htm
    Charlton M B, Arnell N W. 2011. Adapting to climate change impacts on water resources in England-An assessment of draft Water Resources Management Plans[J]. Global Environmental Change, 21(1): 238-248. doi: 10.1016/j.gloenvcha.2010.07.012
    Chen Fei, Xu Xiangyu, Yang Yan, Ding Yueyuan, Li Jianqiang, Li yuanyuan. 2020. Investigation on the evolution trends and influencing factors of groundwater resources in China[J]. Advances in Water Science, 31(6): 3-11 (in Chinese with English abstract).
    Chen Tegu, Shi Xiaojun, Yu Kefu. 2008. The impacts of climate warming on Sea-level rise trends at Pearl River rstuary during 1957-2006[J]. Guangdong Meteorology, 30(2): 1-3 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_guangdong-meteorology_thesis/0201253376172.html
    Estrela T, Pérez-Martin, M A, Vargas E. 2012. Impacts of climate change on water resources in Spain[J]. Hydrological Sciences Journal, 57(6): 1154-1167. doi: 10.1080/02626667.2012.702213
    Fiorillo F. 2014. The recession of spring hydrographs, focused on karst aquifers[J]. Water Resour Manage, 28(7): 1781-1805. doi: 10.1007/s11269-014-0597-z
    Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A. 2012. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico[J]. Hydrogeology Journal, 20(8): 1441-1461. doi: 10.1007/s10040-012-0897-4
    Jiang Guanghui, Guo Fang. 2009. Hydrological character of epikarst in Southwest China[J]. Hydrogeology & Engineering Geology, 36(5): 89-93 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200905022.htm
    Jiang Guanghui. 2016. The research progress and developing tendency of karst water[J]. Carsologica Sinica, 35(1): 1-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR201601001.htm
    Jiang Zhongcheng, Xia Riyuan, Shi Jian, Pei Jianguo, He Shiyi, Liang Binke. 2006. The application effects and exploitation capacity of karst underground water resources in southwest China[J]. Acta Geoscientica Sinica, 27(5): 495-502 (in Chinese with English abstract). http://www.oalib.com/paper/1559596
    Jiang Zhongcheng, Yuan Daoxian. 1999. Dynamics features of the epikarst zone and their significance in environments and resources[J]. Acta Geoscientia Sinica, 20(3): 302-308 (in Chinese with English abstract). http://www.oalib.com/paper/1559072
    Li Yuanyuan, Cao Jianting, Shen Fuxin, Xia Jun. 2014. Changes of renewable water resources in China from 1956 to 2010[J]. Scientia Sinica Terrae, 44(9): 2030-2038 (in Chinese with English abstract). doi: 10.1360/zd-2014-44-9-2030
    Liu Bingjun, Chen Xiaohong, Zeng Zhaofa. 2010. Spatial distribution law of rainfall in the lower reaches of The Pearl River Basin[J]. Journal of Natural Resources, 25(12): 2123-2131 (in Chinese with English abstract). http://www.jnr.ac.cn/en/article/showsupportinfo.do?id=605
    Liu Lüliu, Jiang Tong, Xujinge, Zhai Jianqing, Luo Yong. 2012. Responses of hydrological processes to the climate change in the Zhujiang River Basin in the 21st century[J]. Climate Change Research, 8 (1): 28-34 (in Chinese with English abstract). http://www.cqvip.com/QK/70812X/20122/42538014.html
    National Commission on Mineral Reserves. 1994. Groundwater resources classification and grading standards (GB 15218-94)[S]. Beijing: State Administration for Market Regulation (in Chinese).
    Shi Jiansheng, Li Guomin, Liang Xing, Chen Zongyu, Shao Jingli, Song Xianfang. 2014. Evolution Mechanism and Control of Groundwater in the North Plain[J]. Acta Geoscientica Sinica, 35 (5): 527-534 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqxb201405001
    Tang Hongxia, Zhu Xueyu. 1998. Groundwater resources evaluation and Utilization-planning in the complex hilly region-A case study in Yiyuan[J]. Journal of Nanjing University (Natural Sciences), 34(6): 677-684 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NJDZ199806005.htm
    Wang Li, Zhu Yuansheng, Ma Haitao, Li Gengyu. 2015. Study on groundwater, development, utilization and management in the Pearl River Basin[J]. Pearl River, 36(5): 1-3 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RMZJ201505002.htm
    Wang Yu. 2002. Classification, features of karst water system and key point for the evaluation to karst water exploration in southwest china karst area[J]. Carsologica Sinica, 21(2): 44-49 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZGYR200202009.htm
    Wang Yu. 2019. Study on watershed boundary division for unified evaluation of surface water and groundwater resources and environment in karst areas[J]. Carsologica Sinica, 38(6): 823-830 (in Chinese with English abstract).
    Wang Yu. 2020. Evaluation status and problems of groundwater resource potential in Yunnan Province[J]. Carsologica Sinica, 39(2): 137-146 (in Chinese with English abstract).
    Xia Riyuan, Zhao Liangjie, Wang Zhe. 2020. Study on Water Circulation Mechanism of Typical Karst Underground River System[M]. Beijing: Science Press, 25-31 (in Chinese with English abstract).
    Xia Riyuan. 2018. Investigation, Evaluation and Exploitation Model of Groundwater Resources in Karst Rock Mountains in Southwest China[M]. Beijing: Science Press, 106-119(in Chinese with English abstract).
    Xu Yan, Wang Shijie, Bai Xiaoyong, Li Xiongyao, Shi Xiaoming, Tian Yichao, Wu Luhua. 2018. Simulation of future scenarios of climate change in the middle and upper reaches of the Peal River using the Statistical Down Scaling Model (SDSM)[J]. Carsologica Sinica, 37(2): 228-237 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR201802009.htm
    Yuan Binghua, Mao Yu. 2001. Groundwater resources in karst rock mountain area in southwest China[J]. Hydrogeology & Engineering Geology, 28(5): 46-55 (in Chinese with English abstract).
    Zhang Cheng, Jiang Zhongcheng, Worakul M, Pu Junbing, Lü Yong. 2014. Karst topography and hydro-geochemical characteristics in western Thailand and their correlation to that in southwestern China[J]. Carsologica Sinica, 33(1): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR201401002.htm
    Zhang Jangyun, He Ruimin, Qi Jing, Liu Cuishan, Wang Guoqing, Jin Junliang. 2013. A new perspective on water issues in North China[J]. Advances in Water Science, (3): 303-310 (in Chinese with English abstract).
    Zhao Liangjie, Xia Riyuan, Yang Yang, Shao Jingli, Yi Lianxing, Wang Zhe. 2017. Discussion and application of simulation methods for karst conduit flow based on Modflow[J]. Carsologica Sinica, 36(3): 346-351 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201703008.htm
    Zhao Liangjie. 2019. Study of Water Exchange Mechanism of Karst Matrix and Conduit Medium[D]. Beijing: China University of Geosciences (Beijing), 50-67 (in Chinese with English abstract).
    Zhu Xiudi, Wang Zhigang, Zhang Xinchuan, Zhang Pingcang. 2017. Small watershed divisionutilization and hydrological characteristics of karst area in southwest of China[J]. Soil and Water Conservation in China, (2): 25-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGSB201702010.htm
    Zou Shengzhang, Zhang Wenhui, Liang Bin, Chen Hongfeng, Liang Xiaoping. 2005. A discussion of the assessment of groundwater vulnerability in epikarst zone of the karst area, Southwest China[J]. Earth Science Frontiers, (S1): 152-158 (in Chinese with English abstract).
    Zou Shengzhang, Zhu Ming Qiu, Tang Jiansheng, Xia Riyuan. 2006. Water resources security in karst area of southwest China problems and counter measures[J]. Acta Geologica Sinica, 80(10): 1637-1642 (in Chinese with English abstract).
    曹建华, 杨慧, 张春来, 吴夏, 白冰, 黄芬. 2018. 中国西南岩溶关键带结构与物质循环特征[J]. 中国地质调查, 5(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201805001.htm
    陈飞, 徐翔宇, 羊艳, 丁跃元, 郦建强, 李原园. 2020. 中国地下水资源演变趋势及影响因素分析[J]. 水科学进展, 31(6): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202006001.htm
    陈特固, 时小军, 余克服. 2008. 近50年全球气候变暖对珠江口海平面变化趋势的影响[J]. 广东气象, 30(2): 1-3. doi: 10.3969/j.issn.1007-6190.2008.02.001
    姜光辉, 郭芳. 2009. 我国西南岩溶区表层岩溶带的水文动态分析[J]. 水文地质工程地质, 36(5): 89-93. doi: 10.3969/j.issn.1000-3665.2009.05.020
    姜光辉. 2016. 融合生态学和提升岩溶水数值模拟技术的国际前沿研究[J]. 中国岩溶, 35(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201601001.htm
    蒋忠诚, 夏日元, 时坚, 裴建国, 何师意, 梁彬蝌. 2006. 西南岩溶地下水资源开发利用效应与潜力分析[J]. 地球学报, 27(5): 495-502. doi: 10.3321/j.issn:1006-3021.2006.05.012
    蒋忠诚, 袁道先. 1999. 表层岩溶带的岩溶动力学特征及其环境和资源意义[J]. 地球学报, 20(3): 302-308. doi: 10.3321/j.issn:1006-3021.1999.03.014
    李原园, 曹建廷, 沈福新, 夏军. 2014.1956-2010年中国可更新水资源量的变化[J]. 中国科学: 地球科学, 44(9): 2030-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409016.htm
    刘丙军, 陈晓宏, 曾照发. 2010. 珠江流域下游地区降水空间分布规律研究[J]. 自然资源学报, 25(12): 2123-2131. doi: 10.11849/zrzyxb.2010.12.013
    刘绿柳, 姜彤, 徐金阁, 翟建青, 罗勇. 2012.21世纪珠江流域水文过程对气候变化的响应[J]. 气候变化研究进展, 8 (1): 28-34 doi: 10.3969/j.issn.1673-1719.2012.01.005
    全国矿产储量委员会. 1994. 地下水资源分类分级标准(GB 15218-94)[S]. 北京: 国家市场监督管理总局.
    石建省, 李国敏, 梁杏, 陈宗宇, 邵景力, 宋献方. 2014. 华北平原地下水演变机制与调控[J]. 地球学报, 35(5): 527-534. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201405001.htm
    唐红侠, 朱学愚. 1998. 复杂丘陵山区的地下水资源评价和开发利用规划——以沂源县为例[J]. 南京大学学报: 自然科学版, 34(6): 677-684. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ199806005.htm
    王丽, 朱远生, 马海涛, 李耕宇. 2015. 珠江地下水资源开发利用变化研究和管理建议[J]. 人民珠江, 36(5): 1-3. doi: 10.3969/j.issn.1001-9235.2015.05.001
    王宇. 2002. 西南岩溶地区岩溶水系统分类、特征及勘查评价要点[J]. 中国岩溶, 21(2): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200202009.htm
    王宇. 2019. 岩溶区地表水与地下水资源及环境统一评价的流域边界划分研究[J]. 中国岩溶, 38(6): 823-830. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201906002.htm
    王宇. 2020. 云南省地下水资源潜力评价现状与问题分析[J]. 中国岩溶, 39(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202002001.htm
    夏日元, 赵良杰, 王喆. 2020. 典型岩溶地下河系统水循环机理研究[M]. 北京: 科学出版社, 25-31.
    夏日元. 2018. 西南岩溶石山区地下水资源调查评价与开发利用模式[M]. 北京: 科学出版社, 106-119.
    许燕, 王世杰, 白晓永, 李雄耀, 史晓明, 田义超, 吴路华. 2018. 基于SDSM的珠江中上游气候模拟及未来情景预估[J]. 中国岩溶, 37(2): 228-237. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201802009.htm
    袁丙华, 毛郁. 2001. 西南岩溶石山地区地下水资源[J]. 水文地质工程地质, 28(5): 46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200105012.htm
    张建云, 贺瑞敏, 齐晶, 刘翠善, 王国庆, 金君良. 2013. 关于中国北方水资源问题的再认识[J]. 水科学进展, (3): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201303001.htm
    章程, 蒋忠诚, Mahippong Worakul, 蒲俊兵, 吕勇. 2014. . 泰国西部岩溶地貌和水文地球化学特征及其与中国西南岩溶的对比[J]. 中国岩溶, 33(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201401002.htm
    赵良杰, 夏日元, 杨杨, 邵景力, 易连兴, 王喆. 2017. 基于MODFLOW的岩溶管道水流模拟方法探讨与应用[J]. 中国岩溶, 36(3): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201703008.htm
    赵良杰. 2019. 岩溶裂隙-管道双重含水介质水流交换机理研究[D]. 北京: 中国地质大学(北京), 50-67.
    朱秀迪, 王志刚, 任斐鹏, 张昕川, 张平仓. 2017. 西南岩溶区小流域划分与水文特征分析[J]. 中国水土保持, (2): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB201702010.htm
    邹胜章, 张文慧, 梁彬, 陈宏峰, 梁小平. 2005. 西南岩溶区表层岩溶带水脆弱性评价指标体系的探讨[J]. 地学前缘, (S1): 152-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2005S100P.htm
    邹胜章, 朱明秋, 唐建生, 夏日元. 2006. 西南岩溶区水资源安全与对策[J]. 地质学报, 80(10): 1637-1642. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200610036.htm
  • Related Articles

    [1]LI Wenyuan, ZHANG Zhaowei, GAO Yongbao, HONG Jun, CHEN Bo, ZHANG Zhibing. Tectonic transformation of the Kunlun Paleo-Tethyan orogenic belt and related mineralization of critical mineral resources of nickel, cobalt, manganese and lithium[J]. GEOLOGY IN CHINA, 2022, 49(5): 1385-1407. DOI: 10.12029/gc20220503
    [2]LI Lixin, ZHANG Fengyan, ZHANG Hengchun, WANG Wei, ZHANG Yi, HU Yule. A discussion on deep-well combined drill string technology for ultra-deep drilling engineering[J]. GEOLOGY IN CHINA, 2019, 46(5): 1200-1208. DOI: 10.12029/gc20190520
    [3]WANG Guan, XIONG Xiaosong, GAO Rui, CHEN Xuanhua. Experiment and analysis of the best acquisition parameters for deep seismic reflection profiles in Huahai Basin[J]. GEOLOGY IN CHINA, 2019, 46(5): 1146-1160. DOI: 10.12029/gc20190515
    [4]GUO Rui, HOU Hesheng, FU Wei, YANG Jin, FENG Xuan, LU Zhanwu, ZHOU Huailai. Q value analysis of deep seismic reflection data of Well SK-2 and its determination of gas-bearing stratum[J]. GEOLOGY IN CHINA, 2019, 46(5): 1137-1145. DOI: 10.12029/gc20190514
    [5]KANG Xiaoqian, FENG Xuan, HOU Hesheng, SUN Chengcheng, LIU Qian, YU Hailong. Carboniferous-Permian stratigraphic thickness in northern Songliao Basin: Evidence from deep reflection seismic data[J]. GEOLOGY IN CHINA, 2019, 46(5): 1116-1125. DOI: 10.12029/gc20190512
    [6]FAN Jun, GUO Yuanyang, CHENG Yongsheng. An introduction to Deep Resources Exploration and Mining, a special project of National Key R&D Program of China[J]. GEOLOGY IN CHINA, 2019, 46(4): 919-926. DOI: 10.12029/gc20190420
    [7]QIU Gengen, FANG Hui, Lü Qinyin, PENG Yan. Deep electrical structures and metallogenic analysis in the north section of Wuyishan Mountains and its adjacent areas: Based on three-dimensional magnetotelluric sounding results[J]. GEOLOGY IN CHINA, 2019, 46(4): 775-785. DOI: 10.12029/gc20190408
    [8]HOU Hesheng, WANG Chengshan, ZHANG Jiaodong, MA Feng, FU Wei, WANG Pujun, HUANG Yongjian, ZOU Changchun, GAO Youfeng, GAO Yuan, ZHANG Laiming, YANG Jin, GUO Rui. Deep continental scientific drilling engineering in Songliao Basin: Progress in earth science research[J]. GEOLOGY IN CHINA, 2018, 45(4): 641-657. DOI: 10.12029/gc20180401
    [9]LU Zhan-wu, GAO Rui, LI Hong-qiang, LI Wen-hui, XIONG Xiao-song, XU Tai-ran. Crustal thickness variation from Northern Lhasa terrane to Southern Qiangtang terrane revealed by deep seismic reflection data[J]. GEOLOGY IN CHINA, 2016, 43(5): 1679-1687. DOI: 10.12029/gc20160516
    [10]WANG Deng-hong. A discussion on some problems concerning deep exploration of mineral resources in South China[J]. GEOLOGY IN CHINA, 2016, 43(5): 1585-1598. DOI: 10.12029/gc20160509

Catalog

    Article views (3102) PDF downloads (4387) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return