• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
GUO Pan, CHEN Chao, WU Bo, CHEN Xiaolong, KONG Lingyao, LIU Chengxin. The discovery of ~2.0 Ga metamorphosed granite in western Dabie Mountains and its Hf isotopic characteristics[J]. GEOLOGY IN CHINA, 2021, 48(4): 1267-1279. DOI: 10.12029/gc20210421
Citation: GUO Pan, CHEN Chao, WU Bo, CHEN Xiaolong, KONG Lingyao, LIU Chengxin. The discovery of ~2.0 Ga metamorphosed granite in western Dabie Mountains and its Hf isotopic characteristics[J]. GEOLOGY IN CHINA, 2021, 48(4): 1267-1279. DOI: 10.12029/gc20210421

The discovery of ~2.0 Ga metamorphosed granite in western Dabie Mountains and its Hf isotopic characteristics

Funds: 

the project of China Geological Survey DD20160030-09

scientific research project of Hubei Natural Resources Department ETZ2017A04

scientific research project of Hubei Natural Resources Department ETZ201807A04

Hubei Geological Bureau science and technology project KJ2019-2

More Information
  • Author Bio:

    GUO Pan, male, born in 1989, engineer, engaged in basic geological survey and research; E-mail: 450057590@qq.com

  • Received Date: May 03, 2019
  • Revised Date: May 05, 2020
  • Available Online: September 25, 2023
  • Geochronological data of 2.10-1.90 Ga tectonic thermal events in the Yangtze block are widely documented, but the magmatic rocks of this period in the Dabie area have not been reported. On the basis of field geological survey, the geochronological and zircon Hf isotopes of the metamorphic granite from the Jinpan pluton in western Dabie Mountains were analyzed. U-Pb dating of magmatic zircons from the metamorphic granite yielded age of (2022±17)Ma (MSWD=2.3), which represents Paleoproterozoic magmatic event in the Dabie orogenic belt. The negative εHf(t) values (-10.6--7.6) and TDM2 ages (2.95-3.12 Ga) of zircons indicate that the Jinpan granite might be derived from the reconstruction of ancient continental crust. The previous Hf isotope results also indicate that the widely-distributed Archean continental crust (2.95-3.18 Ga) in the Yangtze Block provided material source for the magmatic evolution of the Jinpan metamorphic granite. The Jinpan pluton was formed in the period of Paleoproterozoic collisional orogeny (2.03-1.93 Ga), and it might be the response to the convergent of Columbia supercontinent. The identification of the~2.0 Ga granite provides a new evidence for the evolution of Precambrian tectonic-magmatic events in the Dabie orogenic belt.

  • Albarède F, Scherer E E, Blichert-Toft J, Rosing M, Simionovici A, Bizzarro M. 2006. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant[J]. Geochim. Cosmochim. Acta, 70: 1261-1270. doi: 10.1016/j.gca.2005.09.027
    Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth Planet. Sci. Lett., 148: 243-258. doi: 10.1016/S0012-821X(97)00040-X
    Bryant D L, Ayers J C, Gao Shan, F. Miller C, Zhang H F. 2004. Geochemical, age, and isotopic constraints on the location of the Sino-Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central[J]. Geol. Soc. Amer. Bull., 116. http://ci.nii.ac.jp/naid/30021243898
    Chen Chao, Yuan Jinling, Guo Pan, Li Fangyun, Kong Lingyao, Yang Jinxiang, Mao Xinwu. 2020. ~2.0 Ga regional metamorphic event in Yangtze block and its heuristic significance to the differences in geological evolutionary between north and south Huangling[J]. Geology in China, 47(4): 899-913 (in Chinese with English abstract).
    Chen K, Gao S, Wu Y B, Guo J L, Hu Z C, Liu Y S, Zong K Q, Liang Z W, Geng X L. 2013.2.6-2.7 Ga crustal growth in Yangtze craton, South China[J]. Precambrian Research, 224: 472-490. doi: 10.1016/j.precamres.2012.10.017
    Chen Z H, Xing G F. 2016. Geochemical and zircon U-Pb-Hf-O isotopic evidence for a coherent Paleoproterozoic basement beneath the Yangtze Block, South China[J]. Precambrian Research, 279: 81-90. doi: 10.1016/j.precamres.2016.04.002
    Deng Qi, Wang Zhengjiang, Wang Jian, Cui Xiaozhuang, Ma Long, Xiong Xiaohui. 2017. Dicovery of the Baiyu ~1.79 Ga A-type granite in the Beiba area of the northwestern margin of Yangtze block: Constrains on tectonic evolution of South China[J]. Acta Geologica Sinica, 91(7): 1454-1466(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252701281.html
    Gao S, Ling W L, Qiu Y M, Lian Z, Hartmann G, Simon K. 1999. Contrasting geochemical and Sm-Nd istopic compositions of Archen metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochim. Cosmochim. Acta, 63(s13/14): 2071-2088. http://www.sciencedirect.com/science/article/pii/S0016703799001532
    Gao S, Yang J, Zhou L, Li M, Hu Z C, Guo J L, Yuan H L, Gong H J, Xiao G Q, Wei J Q. 2011. Age and growth of the Archean Kongling terrain, south China, with emphasis on 3.3 Ga granitoid genisses[J]. American Journal of Science, 311(2): 153-182. doi: 10.2475/02.2011.03
    Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S, Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61: 237-269. doi: 10.1016/S0024-4937(02)00082-8
    Guo J L, Wu Y B, Gao S, Jin Z M, Zong K Q, Hu Z C, Chen K, Chen H H, Liu Y S. 2015. Episodic Paleoarchean-Paleoproterozoic (3.3~2.0 Ga) granitoid magmatism in Yangtze Craton, South China: Implications for late Archean tectonics[J]. Precambrian Research, 270: 246-266. doi: 10.1016/j.precamres.2015.09.007
    Han Q S, Peng S B, Kusky T, Polat A, Jiang X F, Cen Y, Liu S F, Deng H. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation[J]. Precambrian Research, 293: 13-38. doi: 10.1016/j.precamres.2017.03.004
    Han Q S, Peng S B, Polat A, Kusky T, Deng H, Wu T Y. 2018. A ca. 2.1 Ga Andean-type margin built on metasomatized lithosphere in the northern Yangtze craton, China: Evidence from high-Mg basalts and andesites[J]. Precambrian Research, 309: 309-324. doi: 10.1016/j.precamres.2017.05.015
    Hoskin P W O. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochim. Cosmochim. Acta, 69: 637-648. doi: 10.1016/j.gca.2004.07.006
    Huang Mingda, Cui Xiaozhuang, Cheng Aiguo, Ren Guangming, He Huzhuang, Chen Fenglin, Zhang Hengli, Zhang Jianqiang, Ren Fei. 2019. Late Paleproterozoic A-type granitic rocks in the northern Yangtze block: evidence for breakup of the Columbia supercontinent[J]. Acta Geologica Sinica, 93(3): 565-584(in Chinese with English abstract).
    Hu Juan, Liu Xiaochun, Qu Wei, Cui Jianjun. 2012. Zircon U-Pb ages of Paleoproterozoic metabasites from the Tongbai orogen and their geological significance[J]. Acta Geoscientica Sinica, 33(3): 305-315(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201203004.htm
    Kusky T, Li J H, Santosh M. 2007. The Paleoproterozoic North Hebei Orogen: North China craton's collisional suture with the Columbia super-continent[J]. Gondwana Res., 12: 4-28. doi: 10.1016/j.gr.2006.11.012
    Li L M, Lin S F, W. Davis D, Xiao W J, Xing G F, Yin C Q. 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block[J]. Precambrian Research, 255: 30-47. doi: 10.1016/j.precamres.2014.09.009
    Li Q W, Zhao J H, Wang W. 2019. Ca. 2.0 Ga mafic dikes in the Kongling Complex, South China: Implications for the reconstruction of Columbia[J]. Journal of Asian Earth Sciences, 169: 323-335. doi: 10.1016/j.jseaes.2018.09.022
    Liu F L, Zhang J, Liu C H. 2017. Archean to Paleoproterozoic Evolution of the North China Craton: Preface[J]. Precambrian Research, 303: 1-9. doi: 10.1016/j.precamres.2017.11.011
    Liu, X C, Jahn B M, Dong S W, Lou Y X, Cui J J. 2008a. High-pressure metamorphic rocks from Tongbaishan, central China: U-Pb and 40Ar/39Ar age constraints on the provenance of protoliths and timing of metamorphism[J]. Lithos, 105 (3/4): 301-318. http://www.sciencedirect.com/science/article/pii/S0024493708000789
    Liu, X C, Jahn B M, Cui J J, Li S Z, Wu Y B, Li X H. 2010a. Triassic retrograded eclogites and Cretaceous gneissic granites in the Tongbai Complex, central China: Implications for the architecture of the HP/UHP Tongbai-Dabie-Sulu collision zone[J]. Lithos, 119(3/4): 211-237. http://www.sciencedirect.com/science/article/pii/S0024493710001672
    Liu Xiaochun, Li Sanzhong, Jiang Boming. 2015. Tectonic evolution of the Tongbai-Hong'an orogen in central China: From oceanic subduction/accretion to continent-continent collision[J]. Science China: Earth Sciences, 58: 1477-1496(in Chinese with English abstract). doi: 10.1007/s11430-015-5145-z
    Liu X M, Gao S, Diwu C R, Ling W L. 2008b. Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies[J]. American Journal of Science, 308(4): 421-468. doi: 10.2475/04.2008.02
    Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537-571.
    Liu Y S, Hu Z C, Zong, K Q, Gao C G, Gao S, Xu J, Chen H H. 2010c. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
    Ludwig Kennethr R. 2008. User's Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center.
    Pelleter E, Cheilletz A, Gasquet D, Mouttaqi A, Annich M, Hakour A E, Deloule E, Féraud G. 2007. Hydrothermal zircons: A tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit-Morocco)[J]. Chem. Geol., 245: 135-161. doi: 10.1016/j.chemgeo.2007.07.026
    Peng M, Wu Y B, Gao S, Zhang H F, Wang J, Liu X C, Gong H J, Zhou L, Hu Z C, Liu Y S, Yuan H L. 2012. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications[J]. Gondwana Research, 22: 140-151. doi: 10.1016/j.gr.2011.08.012
    Qiu Xiaofei, Zhao Xiaoming, Yang Hongmei, Wei Yunxu, Wu Nianwen, Lu Shansong, Jiang Tuo, Penglian. 2017. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton: Evidence from U-Pb geochronology of the metamorphic zircons from the khondalite[J]. Geological Bulletin of China, 36(5): 706-714(in Chinese with English abstract). http://www.researchgate.net/publication/319008951_Paleoproterozoic_metamorphic_event_in_the_nucleus_of_the_Yangtze_craton_Evidence_from_U-Pb_geochronology_of_the_metamorphic_zircons_from_the_khondalite
    Qiu Y M, Gao S, McNaughton N J, Groves D I. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 28: 11. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
    She Zhengbing. 2007. Detrital Zircon Geochronology of the Upper Proterozoic-Mesozoic Clastic Rocks in the Mid-Upper Yzangtze Region[D]. Wuhan: China University of Geosciences (in Chinese with English abstract).
    Sun M, Chen N S, Zhao G C, A. Wilde S, Ye K, Guo J H, Chen Y, Yuan C. 2008. U-Pb Zircon and Sm-Nd isotopic study of the Huangtuling granulite, Dabie-Sulu belt, China: implication for the Paleoproterozoic tectonic history of the Yangtze craton[J]. American Journal of Science, 308(4): 469-483. doi: 10.2475/04.2008.03
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    Vavra G, Gebauer D, Schmid R, Compston W. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulitesof the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study[J]. Contrib. Mineral. Petrol., 122: 337-358. doi: 10.1007/s004100050132
    Vervoort J, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochim. Cosmochim. Acta, 63: 533-556. doi: 10.1016/S0016-7037(98)00274-9
    Wan Y S, Song B, Liu D Y, Wilde S A, Wu J S, Shi Y R, Yin X Y, Zhou H Y. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event[J]. Precambrian Research, 149: 249-271. doi: 10.1016/j.precamres.2006.06.006
    Wang C M, He X Y, M. Carranza E J, Cui C M. 2019. Paleoproterozoic volcanic rocks in the southern margin of the North China Craton, central China: Implications for the Columbia supercontinent[J]. Geoscience Frontiers, 1-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy-e201904020
    Wang Yanbin, Liu Dunyi, Zeng Pusheng, Yang Zhusen, Meng Yifeng, Tian Shihong. 2004. SHRIMP U-Pb geochronology of Xiaotongguanshan quartz-dioritic intrusions in Tongling district and its petrogenetic implications[J]. Acta Petrologica et Mineralogica, 23(4): 298-304(in Chinese with English abstract). http://www.researchgate.net/publication/312749879_SHRIMP_U-Pb_geochronology_of_Xiaotongguanshan_quartz-dioritic_intrusions_in_Tongling_district_and_its_petrogenetic_implications
    Wang Z J, Wang J, Deng Q, Du Q D, Zhou X L, Yang F, Liu H. 2015. Paleoproterozoic I-type granites and their implications for the Yangtze block position in the Columbia supercontinent: Evidence from the Lengshui Complex, South China[J]. Precambrian Research, 263: 157-173. doi: 10.1016/j.precamres.2015.03.014
    Wei Junqi, Jing Minging. 2013. Chronology and geochemistry of amphibolites from the Kongling complex[J]. Chinese Journal of Geology, 48(4): 970-983(in Chinese with English abstract). http://www.researchgate.net/publication/285649824_Chronology_and_geochemistry_of_amphibolites_from_the_Kongling_complex
    Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671
    Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 234: 105-126. doi: 10.1016/j.chemgeo.2006.05.003
    Wu Yuanbao, Chen Daogong, Xia Qunke, Tu Xianglin, Cheng Hao, Yang Xiaozhi. 2003. In-situ trace element analyses and Pb-Pb dating of zircons in granulite from Huangtuling, Dabieshan by LAM-ICP-MS[J]. Science in China(Series D), 33(1): 20-28(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200311007.htm
    Wu Y B, Gao S, Gong H J, Xiang H, Jiao W F, Yang S H, Liu Y S. 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: Refining the timing of Palaeoproterozoic high-grade metamorphism[J]. Journal of Metamorphic Geology, 27: 461-477. doi: 10.1111/j.1525-1314.2009.00826.x
    Wu Y B, Gao S, Zhang H F, Zheng J P, Liu X C, Wang H, Gong H J, Zhou L, Yuan H L. 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 200-203: 26-37. doi: 10.1016/j.precamres.2011.12.015
    Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 23: 1402-1428. http://www.sciencedirect.com/science/article/pii/s1342937x12003103
    Wu Y B, Zheng Y F, Gao S, Jiao, W F, Liu, Y S. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen[J]. Lithos, 101: 308-322. doi: 10.1016/j.lithos.2007.07.008
    Wu Yuanbao, Zheng Yongfei. 2004. Mineral genesis of zircon and its constraint to the explain of U-Pb ages[J]. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
    Xia L Q, Xia Z C, Xu X Y, Li X M, Ma Z P. 2013. Late Paleoproterozoic rift-related magmatic rocks in the North China Craton: Geological records of rifting in the Columbia supercontinent[J]. Earth-Science Reviews, 125: 69-86. doi: 10.1016/j.earscirev.2013.06.004
    Xia Qunke, Zheng Yongfei, Ge Ningjie, Deloule E. 2003. U-Pb ages and oxygen isotope composition of zircons from gneiss of Huangtuling, northern Dabie: Old protolith and multi-stage evolution[J]. Acta Petrologica Sinica, 19(3): 506-512(in Chinese with English abstract). http://www.oalib.com/paper/1471393
    Yin C Q, Lin S F, W. Davis D, Zhao G C, Xiao W J, Li L M, He Y H. 2013.2.1-1.85 Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia[J]. Lithos, 182-183: 200-210. doi: 10.1016/j.lithos.2013.10.012
    Zhai M G, Liu W J. 2003. Palaeoproterozoic tectonic history of the North China craton: A review[J]. Precambrian Research, 122: 183-199。 doi: 10.1016/S0301-9268(02)00211-5
    Zhang Lijuan, Ma Changqian, Wang Lianxun, She Zhenbing, Wang Shiming. 2011. Discovery of Paleoproterozoic rapakivi granite on the northern margin of the Yangtze block and its geological significance[J]. Chinese Science Bulletin, 56(1): 44-57(in Chinese). doi: 10.1360/csb2011-56-1-44
    Zhang Shaobing, Zheng Yongfei. 2007. Growth and reworking of the Yangtze continental nucleus: Evidence from zircon U-Pb ages and Hf isotope[J]. Acta Petrologica Sinica, 23(2): 393-402(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702019.htm
    Zhang S B, Zheng, Y F, Wu, Y B, Zhao Z F, Gao S, Wu F Y. 2006a. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth Planet. Sci. Lett., 252 (1), 56-71.
    Zhang S B, Zheng, Y F, Wu, Y B, Zhao Z F, Gao S, Wu F Y. 2006b. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China[J]. Precambrian Research, 151: 265-288. doi: 10.1016/j.precamres.2006.08.009
    Zhang S B, Zheng, Y F, Wu, Y B, Zhao Z F, Gao S, Wu F Y. 2006c. Zircon isotope evidence for 3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 146 (1): 16-34. http://www.sciencedirect.com/science/article/pii/S0301926806000143
    Zhao G C, Cawood P. 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54. http://www.sciencedirect.com/science/article/pii/S030192681200232X
    Zhao Guochun. 2009. Metamorphic evolution of major tectonic unites in the basement of the North China Craton: Key issues and discussion[J]. Acta Petrologica Sinica, 25(8): 1772-1792(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200908006.htm
    Zheng J P, Griffin W L, O'Reilly S Y, Zhang M, Pearson N, Pan Y M. 2006. Widespread Archean basement beneath the Yangtze craton[J]. Geology, 34(6): 417-420. doi: 10.1130/G22282.1
    Zhou G Y, Wu Y B, Wang H, Qin Z W, Zhang W X, Zheng J P, Yang S H. 2017. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze Block[J]. Precambrian Research, 292: 57-74. doi: 10.1016/j.precamres.2017.02.005
    Zhou Liangliang, Wei Junqi, Wang Fang, Chou Xiumei. 2017. Optimizationof the working parameters of LA-ICP-MS and its application to zircon U-Pb dating[J]. Rock and Mineral Analysis, 36(4): 350-359(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS201704003.htm
    陈超, 苑金玲, 郭盼, 黎方云, 孔令耀, 杨金香, 毛新武. 2020. 扬子陆块~2.0 Ga的区域变质事件对南北黄陵古元古代差异演化的启示[J]. 中国地质, 47(4): 899-913 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20200401&flag=1
    邓奇, 汪正江, 王剑, 崔晓庄, 马龙, 熊小辉. 2017. 扬子地块西北缘碑坝地区白玉~1.79 Ga A型花岗岩的发现及其对构造演化的制约[J]. 地质学报, 91(7): 1454-1466. doi: 10.3969/j.issn.0001-5717.2017.07.004
    黄明达, 崔晓庄, 程爱国, 任光明, 何虎庄, 陈风霖, 张恒利, 张建强, 任飞. 2019. 扬子北缘晚古元古代A型花岗质岩: Columbia超大陆裂解的证据[J]. 地质学报, 93(3): 565-584. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201903004.htm
    胡娟, 刘晓春, 曲玮, 崔建军. 2012. 桐柏造山带古元古代变质基性岩的锆石U-Pb年龄及其地质意义[J]. 地球学报, 33(3): 305-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203004.htm
    刘晓春, 李三忠, 江博明. 2015. 桐柏-红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞[J]. 中国科学: 地球科学, 45: 1088-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508002.htm
    邱啸飞, 赵小明, 杨红梅, 魏运许, 吴年文, 卢山松, 江拓, 彭练红. 2017. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb同位素年龄的证据[J]. 地质通报, 36(5): 706-714. doi: 10.3969/j.issn.1671-2552.2017.05.003
    佘振兵. 2007. 中上扬子上元古界-中生界碎屑锆石年代学研究[D]. 武汉: 中国地质大学研究生院.
    王彦斌, 刘敦一, 曾普胜, 杨竹森, 蒙义峰, 田世洪. 2004. 铜陵地区小铜官山石英闪长岩锆石SHRIMP的U-Pb年龄及其成因指示[J]. 岩石矿物学杂志, 23(4): 298-304. doi: 10.3969/j.issn.1000-6524.2004.04.002
    魏君奇, 景明明. 2013. 崆岭杂岩中角闪岩类的年代学和地球化学[J]. 地质科学, 48(4): 970-983. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201304002.htm
    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
    吴元保, 陈道公, 夏群科, 涂湘林, 程昊, 杨晓志. 2003. 大别山黄土岭麻粒岩中锆石LAM-ICP-MS微区微量元素分析和Pb-Pb定年[J]. 中国科学(D辑), 33(1): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301002.htm
    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    夏群科, 郑永飞, 葛宁洁, Deloule E. 2003. 大别山北部黄土岭片麻岩的锆石U-Pb年龄和氧同位素组成: 古老的原岩和多阶段历史[J]. 岩石学报, 19(3): 506-512. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303014.htm
    张丽娟, 马昌前, 王连训, 佘振兵, 王世明. 2011. 扬子地块北缘古元古代环斑花岗岩的发现及其意义[J]. 科学通报, 56(1): 44-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201101008.htm
    张少兵, 郑永飞. 2007. 扬子陆核的生长和再造: 锆石U-Pb年龄和Hf同位素研究[J]. 岩石学报, 23(2): 393-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702019.htm
    赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 25(8): 1772-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908006.htm
    周亮亮, 魏均启, 王芳, 仇秀梅. 2017. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 36(4): 350-359. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201704003.htm
  • Related Articles

    [1]ZHAO Zirui, ZHANG Wei, WANG Guiling, XING Linxiao, ZHANG Hanxiong, ZHAO Jiayi. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis[J]. GEOLOGY IN CHINA, 2025, 52(1): 246-263. DOI: 10.12029/gc20230226002
    [2]CAO Hui, SUN Dongsheng, YUAN Kun, LI Awei, ZHANG Guanghan. In-situ stress determination of 3 km oil-gas deep hole and analysis of the tectonic stress field in the southern Guizhou[J]. GEOLOGY IN CHINA, 2020, 47(1): 88-98. DOI: 10.12029/gc20200107
    [3]GU Zhi-xiang, PENG Yong-min, HE You-bin, HU Zong-quan, ZHAI Yu-jia. Geological conditions of Permian sea-land transitional facies shale gas in the Xiangzhong depression[J]. GEOLOGY IN CHINA, 2015, 42(1): 288-299. DOI: 10.12029/gc20150122
    [4]WANG Kai-ming. Shale gas accumulation conditions of Devonian strata in Guizhong depression[J]. GEOLOGY IN CHINA, 2013, 40(2): 430-438. DOI: 10.12029/gc20130207
    [5]HUANG Ling, XU Zheng-yu, WANG Peng-wan, XIONG Shao-yun. An analysis of resource potential of Upper Paleozoic shale gas in Guizhong depression[J]. GEOLOGY IN CHINA, 2012, 39(2): 497-506. DOI: 10.12029/gc20120220
    [6]WANG Peng-wan, YAO Gen-shun, CHEN Zi-liao, LI Xian-jing, XU Zhen-yu, MA Li-qiao, HE Xun-yun, DONG Yong, HUANG Ling. Hangzhou Institute of Petroleum Geology, PetroChina Exploration and Development Research Institute, Hangzhou 310023, Zhejiang, China[J]. GEOLOGY IN CHINA, 2011, 38(1): 170-179. DOI: 10.12029/gc20110118
    [7]WANG Qing-chun, HE Ping, BAO Zhi-dong. Sedimentary characteristics of the deep fault depression period of the lacustrine basin in northern Gaosheng, western Liaohe depression[J]. GEOLOGY IN CHINA, 2010, 37(6): 1618-1627. DOI: 10.12029/gc20100608
    [8]LUO Shun-she, WANG Kai-ming. The application of element geochemical characteristics to the recognition of carbonate sedimentary sequence boundary:A case study of the Mesoproterozoic Gaoyuzhuang Formation in northern Hebei depression[J]. GEOLOGY IN CHINA, 2010, 37(2): 430-437. DOI: 10.12029/gc20100216
    [9]JIANG Hui-chao, ZHANG Yong, REN Feng-lou, ZHANG Jiao-dong. Comparative analysis of Meso-Cenozoic tectonic evolutions of the Jiyang and Linqing depressions and Luxi area[J]. GEOLOGY IN CHINA, 2008, 35(5): 963-974. DOI: 10.12029/gc20080516
    [10]XU Ji-ren, ZHAO Zhi-xin. Characteristics of the regional stress field and tectonic movement on the Qinghai-Tibet Plateau and in its surrounding areas[J]. GEOLOGY IN CHINA, 2006, 33(2): 275-285. DOI: 10.12029/gc20060205

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return