• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
WANG Dongsheng, ZHANG Jinchuan, LI Zhen, TONG Zhongzheng, NIU Jialiang, DING Wang, ZHANG Cong. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions[J]. GEOLOGY IN CHINA, 2022, 49(1): 36-50. DOI: 10.12029/gc20220103
Citation: WANG Dongsheng, ZHANG Jinchuan, LI Zhen, TONG Zhongzheng, NIU Jialiang, DING Wang, ZHANG Cong. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions[J]. GEOLOGY IN CHINA, 2022, 49(1): 36-50. DOI: 10.12029/gc20220103

Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions

Funds: 

the National Science and Technology Major Project 2016ZX05034-002-001

the National Natural Science Foundation of China 41927801

More Information
  • Author Bio:

    WANG Dongsheng, male, born in 1989, doctor candidate, engaged in mineral survey and exploration research; E-mail: 3006190042@cugb.edu.cn

  • Corresponding author:

    ZHANG Jinchuan, male, born in 1964, professor, doctoral supervisor, engaged in teaching and research in unconventional natural gas geology, oil and gas accumulation mechanism and resource evaluation; E-mail: zhangjc@cugb.edu.cn

  • Received Date: August 17, 2020
  • Revised Date: November 03, 2020
  • Available Online: September 25, 2023
  • This paper is the result of mineral exploration engineering.

    Objective 

    Framboidal pyrite are widespread in modern sediments and sedimentary rocks, widely considered organic or inorganic genesis. Although both formation mechanisms have theoretical and experimental support, a formation mechanism with general significance has not yet been established well.

    Methods 

    This paper systematically and comprehensively studies the formation mechanism of framboidal pyrite, the application of redox conditions, and the influence of later environmental changes.

    Results 

    The size and texture of pyrite framboids and the sulfur isotopes between framboids have fluctuated with the oxygen level. Therefore, framboidal pyrite is used as a reconstruct paleoenvironment proxy commonly. Although the microcrystallines of framboidal pyrite are correlated to the particle size positively, their (Morphological evolution sequence), growth patterns, (aggregation factors), as well as the relationship with paleo-redox are still poorly understood. The redox condition inverse from particle sizes of pyrite framboids and chromium reduction-determined sulfur isotope has certain limitations. Therefore, a comprehensive analysis of redox indicators is expected, which requiring further studies on links between in-situ sulfur isotope and particle sizes of framboidal pyrite. Although the framboidal surface chemistry can be modified as changes in late oxidation conditions, the size distribution of framboidal pyrite is still meaningful as a redox indicator.

    Conclusions 

    In brief, experimental simulations, theoretical systems, and interdisciplinary studies on framboidal pyrite are still challenging and require further research.

  • Berner R A. 1967. Thermodynamic stability of sedimentary iron sulfides[J]. American Journal of Science, 265: 773-785. doi: 10.2475/ajs.265.9.773
    Berner R A. 1969. Migration of iron and sulfur within anaerobic sediments during early diagenesis[J]. American Journal of Science, 267(1): 19-42. doi: 10.2475/ajs.267.1.19
    Berner R A, Raiswell R. 1983. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time A new theory[J]. Geochimica et Cosmochimica Acta, 47(5): 855-862. doi: 10.1016/0016-7037(83)90151-5
    Berner R A. 1984. Sedimentary pyrite formation: An update[J]. Geochimica et Cosmochimica Acta, 48(4): 605-615. doi: 10.1016/0016-7037(84)90089-9
    Bond D P G, Wignall P B W. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin, 122(7-8): 1265-1279. doi: 10.1130/B30042.1
    Bryant R N, Jones C, Raven M R, Owens J D, Fike D A. 2020. Shifting modes of iron sulfidization at the onset of OAE-2 drive regional shifts in pyrite δ34S records[J]. Chemical Geology, 553: 119808. doi: 10.1016/j.chemgeo.2020.119808
    Butler I B, Rickard D. 2000. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide[J]. Geochimica et Cosmochimica Acta, 64(15): 2665-2672. doi: 10.1016/S0016-7037(00)00387-2
    Canfield D E, Raiswell R, Westrich J T, Reaves C M, Berner R A. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology, 54(1/2): 149-155. https://www.sciencedirect.com/science/article/pii/0009254186900781
    Canfield D E, Thamdrup B. 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 266: 1973-1975. doi: 10.1126/science.11540246
    Canfield D E, Habicht K S, Thamdrup B. 2000. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 288: 658-661. doi: 10.1126/science.288.5466.658
    Chang Huajin, Chu Xuelei, Feng Lianjun, Huang Jing. 2009. Framboidal pyrites in cherts of the Laobao Formation, South China: Evidence for anoxic deep ocean in the terminal Ediacaran[J]. Acta Petrologica Sinica, 25(4): 1001-1007(in Chinese with English abstract).
    Chang Xiaolin, Huang Yuangen, Chen Zhongqiang, Hou Mingcai. 2020. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 38(1): 150-165(in Chinese with English abstract).
    Chen X, Rong J Y, Li A, Boucot J. 2004. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3/4): 353-372. https://www.sciencedirect.com/science/article/pii/S0031018203007363
    Cutter G A, Velinsky D J. 1988. Temporal variations of sedimentary sulfur in a Delaware salt marsh[J]. Marine Chemistry, 23: 311-327. doi: 10.1016/0304-4203(88)90101-6
    Degens E T, Okada H, Honjo S, Hathaway J C. 1972. Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa[J]. Mineralium Deposita, 7(1): 1-12.
    Donald R, Southam G. 1999. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite[J]. Geochimica et Cosmochimica Acta, 63: 2019-2023. doi: 10.1016/S0016-7037(99)00140-4
    England B M, Ostwald J. 1993. Framboid-derived structures in some Tasman fold belt base-metal sulphide deposits, New South Wales, Australia[J]. Ore Geology Reviews, 7(5): 381-412. doi: 10.1016/0169-1368(93)90002-G
    Fan Hongrui, Li Xinghui, Zuo Yabin, Chen Lei, Liu Wei, Hu Fangfang, Feng Kai. 2018. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 34(12): 3479-3496. (in Chinese with English abstract).
    Farina M, Esquivel D, Henrique G P, Barros L D. 1990. Magnetic iron-sulphur crystals from a magnetotactic microorganism[J]. Nature, 343: 256-258. doi: 10.1038/343256a0
    Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle[J]. Science, 289(5480): 756-759. doi: 10.1126/science.289.5480.756
    Farquhar J, Savarino J, Airieau S, Mark H, Thiemens M H. 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere[J]. Journal of Geophysical Research: Planets, 106(E12): 32829-32839. doi: 10.1029/2000JE001437
    Farrand M. 1970. Framboidal sulphides precipitated synthetically[J]. Mineralium Deposita, 5(3): 237-247. doi: 10.1007%2FBF00201990
    Gao Yongwei, Wang Zhihua, Li Weiliang, Zhang Zhenliang. 2019. A review of pyrite mineralogy research in hydrothermal gold deposits[J]. Northwestern Geology, 52(3): 58-69(in Chinese with English abstract).
    Goldhaber M B, Kaplan I R. 1975. Controls and consequences of sulfate reduction rates in recent marine sediments[J]. Soil Sci., 119: 42-55. doi: 10.1097/00010694-197501000-00008
    Gomes M L, Fike D A, Bergmann K D, Jones C, Knoll A H. 2018. Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures[J]. Geobiology, 16(1): 17-34. doi: 10.1111/gbi.12265
    Habicht K S, Canfield D E. 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J]. Geochimica et Cosmochimica Acta, 61(24): 5351-5361. doi: 10.1016/S0016-7037(97)00311-6
    Habicht K S, Gade M, Thamdrup B, Berg P, Canfield D E. 2002. Calibration of sulfate levels in the archean ocean[J]. Science, 298(5602): 2372-2374. doi: 10.1126/science.1078265
    Huang Fei, Gao Shang, Chen Lei, Su Limin, Li Yongli, Meng Lin, Liu Kaijun, Chai Chenwei, Qi Xinyi. 2020. Micro-texture and in situ sulfur isotope of pyrite from the Baiyunpu Pb-Zn deposit in central Hunan, South China: Implications for the growth mechanism of colloform pyrite aggregates[J]. Journal of Asian Earth Science, 193(15).
    Hartman P, Perdok W G. 1955. On the relations between structure and morphology of crystal1[J]. Acta Crystallographica(Section A), 8(1): 49-52. doi: 10.1107/S0365110X55000121
    Horiuchi S, Wade H, Moori T. 1974. Morphology and imperfection of hydrothermally synthesized greigite (Fe3S4)[J]. Journal of Crystal Growth, 24: 624-626.
    Hu Yongliang, Wang wei, Zhou Chuanming. 2020. Morphologic and Isotopic Characteristics of Sedimentary Pyrite: A case study from deepwater facies, Ediacaran Lantian Formation in South China[J]. Acta Sedimentologica Sinica, 38(1): 138-149(in Chinese with English abstract).
    Huang Y, Chen Z, Algeo T J, Zhao L, Baud A, Bhat G M. 2019. Two-stage marine anoxia and biotic response during the Permian-Triassic transition in Kashmir, northern India: Pyrite framboid evidence[J]. Global and Planetary Change, 172: 124-139. doi: 10.1016/j.gloplacha.2018.10.002
    Kalliokoski J, Cathles L. 1969. Morphology, mode of formation, and diagenetic changes in framboids[J]. Bulletin of the Geological Society of Finland, 41: 125-133. doi: 10.17741/bgsf/41.014
    Konhauser K O. 1997. Bacterialiron biomineralisation in nature[J]. FEMS Micrology Review, 20: 315-326. doi: 10.1111/j.1574-6976.1997.tb00317.x
    Lin M, Huang F, Wang X Q, Gao W Y, Zhang B M, Song D, Li G L, Zhang B Y. 2020. An experimental study of the morphological evolution of pyrite under hydrothermal conditions and its implications[J]. Journal of Geochemical Exploration, 219. https://www.sciencedirect.com/science/article/pii/S0375674219306533
    Lin Z, Sun X, Peckmann J, Lu Y, Xu L, Strauss H, Zhou H, Gong J, Lu H, Teichert B M A. 2016. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea[J]. Chemical Geology, 440: 26-41. doi: 10.1016/j.chemgeo.2016.07.007
    Liu Bin, Chen Weifeng, Fang Qichun, Tang Xiangsheng, Mao Yufeng, Sun Liqiang, Gao Shuang, Yan Yongjie, Wei Xin, Ling Hongfei. 2020. Study on in-situ sulfur isotope compositions of sulfides: Implication for the source of Pb-Zn mineralized body of Niutoushan in the Xiangshan Area[J]. Earth Science, 45(2): 389-399(in Chinese with English abstract). https://www.researchgate.net/publication/250130914_Sulfur_Isotope_Geochemistry_of_Sulfide_Minerals
    Liu Dameng, Yang Qi, Zhou Chunguang, Tang Dazhen, Kang Xidong. 1999. Occurrence and geological gensis of pyrite in Late Paleozoic coals in north china[J]. Geochimica, 28(4): 340-350(in Chinese with English abstract).
    Love L G. 1957. Mircro-organisms and the presence of syngenetic pyrite[J]. Quarterly Journal of the Geological Society, 113: 429-440. doi: 10.1144/GSL.JGS.1957.113.01-04.18
    Love L G, Amstutz G C. 1966. Review of microscopic pyrite from the Devonian chattanooga shale and rammelserg banderz[J]. Fortschr Mineral, 43: 273-309.
    Love L G, Brockley H. 1973. Peripheral radial texture in framboids of polyframboidal pyrite[J]. Fortschr. Miner, 50: 264-269.
    Lowenstam H. 1981. Minerals formed by organisms[J]. Science, 211(4487): 1126-1131. doi: 10.1126/science.7008198
    MacLean L C, Tyliszczak T, Gilbert P U, Zhou D, Pray T J, Onstott T C, Southam G. 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm[J]. Geobiology, 6(5): 471-480. doi: 10.1111/j.1472-4669.2008.00174.x
    Magnall J M, Gleeson S A, Stern R A, Newton R J, Poulton S W, Paradis S. 2016. Open system sulphate reduction in a diagenetic environment-Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada[J]. Geochimica et Cosmochimica Acta, 180: 146-163. doi: 10.1016/j.gca.2016.02.015
    Merinero R, Lunar R, Frias J M, Somoza L, Diaz-del-Rio V d. 2008. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula)[J]. Marine and Petroleum Geology, 25(8): 706-713. doi: 10.1016/j.marpetgeo.2008.03.005
    Meyer K M, Alonso R M, Morrissey S, Jones C. 2019. Sulfur Isotope Measurements of Framboidal Pyrites from the Sediments and Water Column of a Stratified Euxinic Lake[C]//American Geophysical Union.
    Moore R A, Lieberman B S. 2009. Preservation of early and Middle Cambrian soft-bodied arthropods from the Pioche shale, Nevada, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(1/2): 57-62. https://www.sciencedirect.com/science/article/pii/S0031018209000856
    Morse J, Wang W Q. 1997. Pyrite formation under conditions approximating those in anoxic sediments: II. Influence of precursor iron minerals and organic matter[J]. Marine Chemistry, 57: 187-193. doi: 10.1016/S0304-4203(97)00050-9
    Muramoto J Honjo A S B F, Hay B J, Howarth R W, Cisne J L. 1991. Sulfur, iron and organic carbon fluxes in the Black Sea: Sulfur isotopic evidence for origin of sulfur fluxes[J]. Deep Sea Research Part A. Oceanographic Research Papers, 38: S1151-S1187. doi: 10.1016/S0198-0149(10)80029-9
    Nozaki T, Nagase T, Ushikubo T, Shimizu K, Ishibashi J i, the D/V Chikyu Expedition 909 Scientists. 2020. Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization[J]. Geology, 49(2): DOI: 10.1130/G47943.1.
    Ohfuji H D Rickard. 2005. Experimental syntheses of framboids-a review[J]. Earth-Science Reviews, 71(3/4): 147-170. https://www.sciencedirect.com/science/article/pii/S001282520500019X
    Popa R, Kinkle B K, Badescu A. 2004. Pyrite framboids as biomarkers for Iron-Sulfur Systems[J]. Geomicrobiology, 21(3): (193-206). doi: 10.1080/01490450490275497
    Raiswell R. 1982. Pyrite, texture isotopic composition and the availability of iron[J]. American Journal of Science, 282: 1244-1263. doi: 10.2475/ajs.282.8.1244
    Raiswell R, Berner R A. 1985. Pyrite formation in euxinic and semi-euxinic sediments[J]. American Journal of Science, 285(8): 710-724. doi: 10.2475/ajs.285.8.710
    Randolf A D, Larson W A. 1971. Theory of Particulate Processes. Analysis and Techniques of Continuous Crystallization[M]. Academic Press, New York and London.
    Rickard D. 2019. How long does it take a pyrite framboid to form[J]. Earth & Planetary Science Letters, 513: 64-68. https://www.sciencedirect.com/science/article/pii/S0012821X19301165
    Rickard D. 2019. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 522: 62-75. doi: 10.1016/j.palaeo.2019.03.010
    Rickard D T. 1970. The origin of framboids[J]. Lithos, 3(3): 269-293. doi: 10.1016/0024-4937(70)90079-4
    Rust G W. 1935. Colloidal primary copper ores at Cornwall mines, Southeastern Missouri[J]. The Journal of Geology, 43(4): 398-426. doi: 10.1086/624318
    Sawlowicz Z. 1993. Pyrite framboids and their development: A new conceptual mechanism[J]. Geologische Rundschau, 82(1): 148-156. doi: 10.1007/BF00563277
    Sawlowicz Z. 1987. Framboidal pyrite from the metamorphic Radzimowice Schists of Stara Gora(Lower Silesia, Poland)[J]. Mineral Polon, 18: 57-67.
    Steinike K. 1963. A further remark on biogenic sulfides: Inorganic pyrite spheres[J]. Econimic Geology, 58(6): 998-1000. doi: 10.2113/gsecongeo.58.6.998
    Sun G T, Zeng Q D, Zhou L L, Wang Y B, Chen P W. 2020. Trace element contents and in situ sulfur isotope analyses of pyrite in the Baiyun gold deposit, NE China: Implication for the genesis of intrusion-related gold deposits[J]. Ore Geology Reviews, 11810.10161j. oregeorev. 2020.103330. https://www.sciencedirect.com/science/article/pii/S0169136819306948
    Sweeney R E, Kaplan I R. 1973. Pyrite framboid formation laboratory synthesis and marine sediments[J]. Economic Geology, 68(5): 618-634. doi: 10.2113/gsecongeo.68.5.618
    Tauson V L, Abramovich M G, Akimov V V, Scherbakov V A. 1993. Thermodynamics of real mineral crystals: Equilibriumcrystal shape and phase size effect[J]. Geochimica et Cosmochimica Acta, 57: 815-821. doi: 10.1016/0016-7037(93)90170-2
    Taylor G R. 1982. A mechanism for framboid formation as illustrated by a volcanic exhalative sediment[J]. Mineralium Deposita, 17(1): 23-36. doi: 10.1007/BF00206374
    Tyson R V, Pearson T H. 1991. Modern and ancient continental shelf anoxia: An overview[J]. Geol. Soc. Spec. Pub., 58: 1-24. doi: 10.1144/GSL.SP.1991.058.01.01
    Wacey D, Kilburn M R, Saunders M, Cliff J B, Kong C, Liu A G, Matthews J J, Brasier M D. 2015. Uncovering framboidal pyrite biogenicity using nano-scale C/Norg mapping[J]. Geology, 43(1): 27-30. doi: 10.1130/G36048.1
    Wang Q, Morse J W. 1996. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology[J]. Marine Chemistry, 52(2): 99-121. doi: 10.1016/0304-4203(95)00082-8
    Wei H Y, Wei X M, Qiu Z, Song H Y, Guo S. 2016. Redox conditions across the G-L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 440: 1-14. doi: 10.1016/j.chemgeo.2016.07.009
    Wignall P B, Newton R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 298(7): 537-552. doi: 10.2475/ajs.298.7.537
    Wilkin R T. 1995. Size Distribution in Sediments, Synthesis, and Formation Mechanism of Framboidal[D]. PhD. Dissertation. The Pennsylvania State Universty,
    Wilkin R T, Barnes H L, Brantly S L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. doi: 10.1016/0016-7037(96)00209-8
    Wilkin R T, Barnes H L. 1997a. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 61(2): 323-339. doi: 10.1016/S0016-7037(96)00320-1
    Xiao Fan, Ban Yizhong, Fan Feipeng, Xu Naicen, Mao Guangwu, Li Fengchun. 2020. Research on zircon U-Pb, S-Pb isotopes and trace elements of pyrite from the Dongji Au(Ag) deposit in Zhenghe County, Fujian Province[J]. Geology in China, 47(2): 375-393(in Chinese with English abstract).
    Xu Nan, Wu Cailai, Li Shengrong, Xue Boqiang, He Xiang, Yu Yanlong, Liu Junzhuang. 2020. LA-ICP-MS in situ analyses of the pyrites in Dongyang gold deposit, Southeast China: Implications to the gold mineralization[J]. China Geology, 3: 230-246. https://www.sciencedirect.com/science/article/pii/S2096519220300744
    Yan D, Chen D, Wang Q, Wang J. 2012. Predominance of stratified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition[J]. Chemical Geology, 291: 69-78. doi: 10.1016/j.chemgeo.2011.09.015
    Yang R, He S, Wang X, Hu Q, Hu D, Yi J, Widory D. 2016. Paleo-ocean redox environments of the Upper Ordovician Wufeng and the first member in lower Silurian Longmaxi formations in the Jiaoshiba area, Sichuan Basin[J]. Canadian Journal of Earth Sciences, 53(4): 426-440. doi: 10.1139/cjes-2015-0210
    Yang Xueying, Gong Yiming. 2011. Pyrite framboid: Indicator of environments and life[J]. Earth Science, 36(4): 643-658(in Chinese with English abstract).
    Zhang Wei, Liu Congqiang, Liang Xiaobing. 2007. Biological function in sulfur isotope fractionation and environmental effect[J]. Acta Geochimica, 35(3): 223-227 (in Chinese with English abstract).
    Zheng J H, Shen P, Li C H. 2020. Ore genesis of Axi post-collisional epithermal gold deposit, western Tianshan, NW China: Constraints from U-Pb dating, Hf isotopes, and pyrite in situ sulfur isotopes[J]. Ore Geology Review, 117 DOI:10. 1016/j. orgrorev. 2019. 103290.
    Zhou Lingli, Zeng Qingdong, Sun Guotao, Duan Xiaoxia. 2019. Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) elemental mapping and its applications in ore geology[J]. Acta Petrologica Sinica, 35(7): 1964-1978 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.02
    Zhu Xiangkun, Wang Yue, Yan Bin, Li Jin, Dong Aiguo, Li Zhihong, Sun Jian. 2013. Developments of non-traditional stable isotope geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688 (in Chinese with English abstract). https://www.researchgate.net/publication/273766379_Developments_of_Non-Traditional_Stable_Isotope_Geochemistry
    Zou C N, Zhen Q, W H Y, Dong D Z, Lu B. 2018. Euxinia caused the Late Ordovician extinction Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 1-11. doi: 10.1016/j.palaeo.2017.11.033
    常华进, 储雪蕾, 冯连君, 黄晶. 2009. 华南老堡组硅质岩中草莓状黄铁矿-埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报, 25(4): 1001-1007. https://d.wanfangdata.com.cn/periodical/ysxb98200904024
    常晓琳, 黄元耕, 陈中强, 侯明才. 2020. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报, 1: 150-165. http://www.cnki.com.cn/Article/CJFDTotal-CJXB202001013.htm
    范宏瑞, 李兴辉, 左亚彬, 陈蕾, 刘尚, 胡芳芳, 冯凯. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 34(12): 3479-3496. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201812002.htm
    胡永亮, 王伟, 周传明. 2020. 沉积地层中的黄铁矿形态及同位素特征初探——以华南埃迪卡拉纪深水相地层为例[J]. 沉积学报, 38(1): 138-149. http://www.cnki.com.cn/Article/CJFDTotal-CJXB202001012.htm
    黄元耕. 2018. 华南及新疆地区二叠纪至三叠纪海洋、陆地古群落模拟及海洋氧化还原环境变化研究[D]. 中国地质大学(武汉).
    刘斌, 陈卫锋, 方启春, 唐湘生, 毛玉锋, 孙立强, 高爽, 严永杰, 魏欣, 凌洪飞. 2020. 相山西部牛头山铅锌矿化体成矿物质来源: 原位硫同位素的制约[J]. 地球科学, 45(2): 389-399. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002004.htm
    刘大猛, 杨起, 周春光, 康西栋. 1999. 华北晚古生代煤中黄铁矿赋存特征与地质成因研究[J]. 地球化学, 28(4): 340-351. doi: 10.3321/j.issn:0379-1726.1999.04.004
    韦雪梅. 2017. 广西蓬莱滩GSSP剖面G-L界线黄铁矿形态特征及其氧化还原意义[D]. 东华理工大学.
    肖凡, 班宜忠, 范飞鹏, 许乃岑, 毛光武, 李凤春. 2020. 福建政和县东际金(银)矿床黄铁矿微量元素和硫-铅同位素及锆石年龄研究[J]. 中国地质, 47(2): 375-393. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20200208&flag=1
    杨雪英, 龚一鸣. 2011. 莓状黄铁矿: 环境与生命的示踪计[J]. 地球科学, 36(4): 643-658. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201104004.htm
    张伟, 刘丛强, 梁小兵. 2007. 硫同位素分馏中的生物作用及其环境效应[J]. 地球与环境, 35(3): 223-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200703004.htm
    周伶俐, 曾庆栋, 孙国涛, 段晓侠. 2019. LA-ICPMS原位微区面扫描分析技术及其矿床学应用实例[J]. 岩石学报, 35(7): 1964-1978. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201907002.htm
    朱祥坤, 王跃, 闫斌, 李津, 董爱国, 李志红, 孙剑. 2013. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 32: 651-688. http://www.cnki.com.cn/Article/CJFDTotal-KYDH201306002.htm
  • Related Articles

    [1]NIE Xin, QIU Yan, MANUEL Pubellier, WANG Jun, ZHU Rongwei, DU Wenbo. Tectonic characteristics and sedimentary responses of the southwest Subbasin of the South China Sea[J]. GEOLOGY IN CHINA, 2020, 47(5): 1463-1473. DOI: 10.12029/gc20200512
    [2]CHEN Xuanhua, SHAO Zhaogang, XIONG Xiaosong, GAO Rui, LIU Xuejun, WANG Caifu, LI Bing, WANG Zengzhen, ZHANG Yiping. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. GEOLOGY IN CHINA, 2019, 46(5): 995-1020. DOI: 10.12029/gc20190504
    [3]CHEN Yao-huang, YAO Shu-zhen, ZHAO Jiang, LI Shou-ye, CHEN Jing-he, ZHANG Hui-li, ZENG Guo-ping. Spatial distribution of faults and structural ore-control regularity in the Daping gold deposit, Yunan Province[J]. GEOLOGY IN CHINA, 2014, 41(5): 1539-1553. DOI: 10.12029/gc20140511
    [4]DONG Lian-hui, WANG Ke-zhuo, ZHU Zhi-xin, ZHAO Tong-yang, XU Shi-qi, ZHENG Jia-xing. The relationship between the characteristics of the large-scale deformation structure and the metallogenic processes in Xinjiang[J]. GEOLOGY IN CHINA, 2013, 40(5): 1552-1568. DOI: 10.12029/gc20130520
    [5]CHEN Xi-feng, PENG Run-min, ZENG Pu-sheng. Metallogenic response to geological structural evolution in Aguimiao area, Inner Mongolia[J]. GEOLOGY IN CHINA, 2011, 38(5): 1201-1211. DOI: 10.12029/gc20110507
    [6]TANG Yong-zhong, SHI Zun-ying, GAO Rong-hu, ZHU Zeng-wu, LIU Li-min, MA Lin. The response of Mayuan, Nanzheng- Yangpingguan, Ningqiang sedimentary basin on the northern edge of the Yangtze platform to tectonic events and sea level changes[J]. GEOLOGY IN CHINA, 2011, 38(1): 52-64. DOI: 10.12029/gc20110106
    [7]TAN Xian-feng, TIAN Jing-chun, BAI Jian-ping, WANG Yan-bi, QIU Gui-qiang, ZHANG Shou-peng. Depositional response and filling process of the steep slope rift belt in the terrestrial fault basin: a case study of Paleogene in Dongying terrestrial fault basin[J]. GEOLOGY IN CHINA, 2010, 37(2): 298-310. DOI: 10.12029/gc20100204
    [8]WANG Chang-yong, ZHENG Rong-cai, LI Shi-xiang, HAN Yong-lin, WANG Cheng-yu, SHI Jian-nan, ZHOU Qi. Early tectonic evolution and sedimentary response of Ordos basin: A case study of Interval 8~Interval 6 oil layers of Yanchang Formation in Jiyuan area[J]. GEOLOGY IN CHINA, 2010, 37(1): 134-143. DOI: 10.12029/gc20100115
    [9]HE Zheng-jun, NIU Bao-gui, ZHANG Xin-yuan. Sedimentary response of the Shangyi basin, northwestern Hebei, to the Late Jurassic tectonism[J]. GEOLOGY IN CHINA, 2008, 35(2): 181-195. DOI: 10.12029/gc20080201
    [10]CHEN Gang, WANG Zhi-wei, BAI Guo-juan, SUN Jian-bo, ZHANG Hui-ruo, LI Xiang-dong. Meso-Cenozoic peak-age events and their tectono-sedimentary response in the Ordos basin[J]. GEOLOGY IN CHINA, 2007, 34(3): 375-383. DOI: 10.12029/gc20070302
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views (3086) PDF downloads (2991) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return