Citation: | XU Yun, ZHANG Ning, ZHAO Cunliang, LIANG Handong, SUN Yuzhuang. Wildfires in Jurassic Coal Seams from Ordos Basin and its impact on Paleoclimate[J]. GEOLOGY IN CHINA, 2022, 49(2): 643-654. DOI: 10.12029/gc20220220 |
This paper is the result of coalfield geological survey engineering.
Wildfire is an important part of the earth system. The greenhouse gases produced by combustion will have an impact on the climate and the biosphere. One way to obtain information about the potential long term influences of wildfires on ecosystems and the climate system itself is to study palaeo-wildfires.
A total of 56 Jurassic coal samples from 5 main coal seams were collected from Northern Ordos Basin. The samples were analyzed by macropetrography, microscope, scanning electron microscope in order to study the evidences of wildfire and their impact on the paleoclimate.
The results showed that a great deal of charcoal has been found in the roof and floor of the middle Jurassic coal from Ordos Basin and the cell walls of charcoal observed under SEM were homogenized. The average proportions of inertinite in the coal samples ranged from 45.23% to 56.81%, and the reflectance of most inertinite in coal is less than 2%, which indicated that the frequency wildfires occurred during the peat deposition period and the fires type were dominated by surface and ground fires with low temperature.
According to a carbon emission model for modern forest fires, the total carbon and gas emissions from wildfires in peat swamps of the Middle Jurassic in Northwest China were calculated. The total carbon released from peat-swamp forest wildfires was at least 443 Gt, corresponding to emissions of CO2, CO and CH4 of 1377 Gt, 86.7 Gt, and 8.26 Gt, respectively. The large amount of greenhouse gases released by wildfires may lead to changes of the atmospheric, which may have accelerated the process of climate warming in the Middle Jurassic.
Berner R A. 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2[J]. Geochimica et Cosmochimica Acta, 70(23): 5653-5664. doi: 10.1016/j.gca.2005.11.032
|
Bowman D M J S, Balch J K, Artaxo P. 2009. Fire in the Earth System[J]. Science, 324(5926): 481-484. doi: 10.1126/science.1163886
|
Brown S A E, Scott A C, Glasspool I J, Collinson M E. 2012. Cretaceous wildfires and their impact on the Earth system[J]. Cretaceous Research, 36: 162-190. doi: 10.1016/j.cretres.2012.02.008
|
Bird M I, Moyo C, Veenendaal E M. 1999. Stability of elemental carbon in a savanna soil[J]. Global Biogeochemical Cycles, 13(4): 923-932. doi: 10.1029/1999GB900067
|
Chang Yu, Huang Wentao, Hu Yuanman, Li Yuehui, Bu Rencang, Liu Yongyao. 2015. Contemporary research advances on carbon emissions by forest fires and future prospects[J]. Chinese Journal of Ecology, 34(10): 2922-2929 (in Chinese with English abstract).
|
Ciarapica F E, Giacchetta G. 2006. Managing the condition-based maintenance of a combined-cycle power plant: An approach using soft computing techniques[J]. Journal of Loss Prevention in the Process Industries, 19(4): 316-325. doi: 10.1016/j.jlp.2005.07.018
|
Crutzen P J, Andreae M O. 1990. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles[J]. Science, 250: 1669-1678. doi: 10.1126/science.250.4988.1669
|
Degani-Schmidt I, Guerra-Sommer M, Mendonça J, Filho J, Jasper A. 2015. Charcoalified logs as evidence of hypautochthonous autochthonous wildfire events in a peat-forming environment from the Permian of southern Paraná Basin (Brazil)[J]. International Journal of Coal Geology, 146: 55-67. doi: 10.1016/j.coal.2015.05.002
|
Deng Shenghui, Lu Yuanzheng, Zhao Yi, Fan Ru, Wang Yongdong, Yang Xiaoju, Li Xin, Sun Bainian. 2017. The Jurassic palaeoclimate regionalization and evolution of China[J]. Earth Science Frontiers, 24(1): 106-142 (in Chinese with English abstract).
|
Diessel C F K. 2010. The stratigraphic distribution of inertinite[J]. International Journal of Coal, Geology, 81(4): 251-268. doi: 10.1016/j.coal.2009.04.004
|
Finkelstein D B, Pratt L M, Curtin T M, Brassell S C. 2005. Wildfires and seasonal aridity recorded in Late Cretaceous strata from south-eastern Arizona[J]. USA Sedimentology, 52(3): 587-599. doi: 10.1111/j.1365-3091.2005.00712.x
|
Glasspool I J, Scott A C, Waltham D, Pronina N, Shao L. 2015. The impact of fire on the Late Paleozoic[J]. Earth System Frontiers in Plant Science, 6: 756.
|
Guo Y, Bustin R M. 1998. Fire spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals[J]. International Journal of Coal Geology, 37(1-2): 29-53. doi: 10.1016/S0166-5162(98)00019-6
|
Han Dexin, Ren Deyi, Wang Yanbin, Jin Kuili, Mao Heling, Qin Yong. 1996. Coal Petrology of China[M]. Xuzhou: China Mining University Press, 140-146 (in Chinese with English abstract).
|
Hower J C, Misz-Keenan M, O"Keefe J M K, Mastalerz M, Eble C F, Garrison T M. 2013. Macrinite forms in Pennsylvanian coals[J]. International Journal of Coal Geology, 116/117: 172-181. doi: 10.1016/j.coal.2013.07.017
|
Hower J C, O"Keefe J M K, Eble C F, Raymond A, Valentim B, Volk T J. 2011. Notes on the origin of inertinite macerals in coal: Evidence for fungal and arthropod transformations of degraded macerals[J]. International Journal of Coal Geology, 86(2/3): 231-240.
|
Hu Haiqing, Wei Shujing, Sun Long. 2012. Estimation of carbon emissions due to forest fire in Daxing'an mountains from 1965 to 2010[J]. Chinese Journal of Plant Ecology, 36(7): 629-644 (in Chinese with English abstract).
|
Huang Wenhui, Ao Weihua, Weng Chengmin, Xiao Xiuling, Liu Dameng, Tang Xiuyi, Chen Ping, Zhao Zhigen, Wan Xin, Finkelman Bob. 2010. Characteristics of coal petrology and genesis of Jurassic coal in Ordos Basin[J]. Geoscience, 24(6): 1186-1197 (in Chinese with English abstract).
|
Jasper A, Uhl D, Guerra-Sommer M, Mosbrugger V. 2008. Palaeobotanical evidence of wildfires in the Late Palaeozoic of South America - Early Permian, Rio Bonito Formation, Paraná Basin, Rio Grande do Sul, Brazil[J]. Journal of South American Earth Sciences, 26(4): 435-444. doi: 10.1016/j.jsames.2008.08.002
|
Jin Peihong, Dong Junling, Wang Zixi, Yuan Jidong, Mao Ziqiang, Li Yuqiong, Sun Bainian. 2017. Middle Jurassic ginkgophyte fossils from the Gucheng coal mine of the Junger Banner, Inner Mongolia and indications of the paleo-CO2 concentration[J]. Journal of Lanzhou University: Natural Sciences, 53(1): 1-9 (in Chinese with English abstract).
|
Kauffmann M, Jasper André, Uhl D, Meneghini J, Osterkamp I C, Zvirtes G. 2016. Evidence for palaeo-wildfire in the Late Permian palaeotropics-Charcoal from the Motuca Formation in the Parnaíba Basin, Brazil[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 450: 122-128. doi: 10.1016/j.palaeo.2016.03.005
|
Kwiecińska B, Petersen H I. 2004. Graphite, semi-graphite, natural coke, natural char classification—ICCP system[J]. International Journal of Coal Geology, 57(2): 99-116. doi: 10.1016/j.coal.2003.09.003
|
Li Jianghai, Jiang Hongfu. 2013. Global Paleoplate Reconstruction, Lithofacies Paleogeography and Paleoenvironment Atlas[M]. Beijing: Geological Publishing House, 43 (in Chinese).
|
Liu Chiyang, Zhao Hongge, Gui Xiaojun, Yue Leping, Zhao Junfeng, Wang Jianqiang. 2006. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 80(5): 617-638 (in Chinese with English abstract).
|
Liu Hongye, Gu Yansheng, Cheng Shenggao, Huang Ting, Xiao He. 2018. Research advancement on the paleofire occurrences and its significance of global change since the last deglaciation[J]. Advances in Geosciences, 8(1): 106-119 (in Chinese with English abstract). doi: 10.12677/AG.2018.81012
|
Liu Xiaodong, Wang Bo. 2017. Review on the main emission products released by forest combustion[J]. Journal of Beijing Forestry University, 39(12): 118-124 (in Chinese with English abstract).
|
Lu Jing, Yang Minfang, Shao Longyi, Chen Shucong, Li Yonghong, Zhou Kai, Wang Wanqing. 2016. Paleoclimate change and sedimentary environment evolution, coal accumulation: A Middle Jurassic terrestrial[J]. Journal of China Coal Society, 41(7): 1788-1797 (in Chinese with English abstract).
|
Marynowski L, Simoneit B R T. 2009. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic Hydrocarbons[J]. Palaios, 24(12): 785-798. doi: 10.2110/palo.2009.p09-044r
|
Masiello C A. 2004. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 92(1/4): 201-213
|
Moraes E C, Franchio S H, Rao V B. 2004. Effects of biomass burning inAmazonia on climate: A numerical experiment with a statistical-dynamical model[J]. Journal of Geophysical Research, 109: 1-12.
|
Page D S, Boehm P D, Douglas G S, Bence A E, Burns W A, Mankiewicz P J. 1999. Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: A case study in Prince William Sound, Alaska Marine[J]. Pollution Bulletin, 38: 247-260. doi: 10.1016/S0025-326X(98)00142-8
|
Page S E, Siegert F, Rieley J O, Boehm H D V, Jaya A, Limin S. 2002. The amount of carbon released from peat and forest fires in indonesia during 1997[J]. Nature (London), 420(6911): 61-65. doi: 10.1038/nature01131
|
Petersen H I, Lindström S. 2012. Synchronous wildfire activity rise and mire deforestation at the Triassic-Jurassic boundary[J]. PLoS ONE, 7(10): e47236. doi: 10.1371/journal.pone.0047236
|
Qin S, Gao K, Wang J, Li Y, Lu Q. 2016. Organic geochemistry of the Late Permian coals from the Huoshaopu and Jinjia Mines, Liupanshui Coalfield, China[J]. Energy Exploration & Exploitation, 34(6): 881-898.
|
Royer D L. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration[J]. Review of Palaeobotany and Palynology, 114(1): 1-28.
|
Schönenberger J. 2005. Rise from the ashes—the reconstruction of charcoal fossil owers[J]. Trends in Plant Science, 10(9): 436-443. doi: 10.1016/j.tplants.2005.07.006
|
Scott A C, Glasspool I J. 2007. Observations and experiments on the origin and formation of inertinite group macerals[J]. International Journal of Coal Geology, 70(1/3): 53-66.
|
Scott A C, Jones T P. 1991. Fossil charcoal: a plant-fossil record preserved by fire[J]. Geology Today, 7(6): 214-216. doi: 10.1111/j.1365-2451.1991.tb00806.x
|
Scott A C, Jones T P. 1994. The nature and influence of fire in carboniferous ecosystems[J]. Palaeogeography Palaeoclimatology Palaeoecology, 106: 91-112. doi: 10.1016/0031-0182(94)90005-1
|
Scott A C, Kenig F, Plotnick R E. 2010. Evidence of multiple late Bashkirian to early Moscovian (Pennsylvanian) fire events preserved in contemporaneous cave fills[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1/2): 72-84.
|
Scott A C. 2000. The Pre-Quaternary history of fire[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1): 281-329.
|
Scott A C. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1/2): 11-39.
|
Seiler W, Crutzen, P J. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning[J]. Climatic Change, 2(3): 207-247. doi: 10.1007/BF00137988
|
Sellwood B W, Valdes P J. 2008. Jurassic climates[J]. Proceedings of the Ueologists Association, 119(1): 1-17. doi: 10.1016/S0016-7878(08)80256-8
|
Shao Longyi, Wang Hao, Yu Xiaohui, Liu Jing, Zhang Mingquan. 2012. Paleo-fires and atmospheric oxygen levels in the latest permian: Evidence from maceral compositions of coals in eastern yunnan, southern China[J]. Acta Geologica Sinica, 86(4): 949-962. doi: 10.1111/j.1755-6724.2012.00719.x
|
Shen W, Sun Y, Lin Y, Liu D, Chai P. 2011. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events[J]. Geochimica et Cosmochimica Acta, 75(7): 1992-2006. doi: 10.1016/j.gca.2011.01.027
|
Shen Wenjie, Zhang Hua, Sun Yongge, Lin Yangting, Liang Ting, Yang Zhijun, Zhou Yongzhang. 2012. Evidences for the Permian-Triassic wildfire event: Review and appraisal[J]. Advances in Earth Science, 27(6): 613-623 (in Chinese with English abstract).
|
Shivanna M, Murthy S, Gautam S. 2017. Macroscopic charcoal remains as evidence of wildfire from Late Permian Gondwana sediments of India: Further contribution to global fossil charcoal database[J]. Palaeoworld, 26(4): 638-649. doi: 10.1016/j.palwor.2017.05.003
|
Song Jianzhong, Hu Jianfang, Peng Pingan, Wan Xiaoqiao. 2015. Black carbon record in ancient geological samples and its responses to the paleoclimate and paleoenvironment[J]. Chinese Journal of Nature, 37(2): 86-92 (in Chinese with English abstract).
|
Wang Shuangming, Zhang Yuping. 1999. Study on the formation, evolution and coal-accumulating regularity of the Jurassic Ordos basin[J]. Earth Science Frontiers, 6(1): 147-155 (in Chinese with English abstract).
|
Wang Xiaoke, Zhuang Yahui, Feng Zongwei. 1998. Estimation of carbon containing gases released from forest fire[J]. Advances in Environmental Science, 6(4): 1-15 (in Chinese with English abstract).
|
Wu Chuanrong, Zhang Hui, Li Yuanlu, Li Xiaoyan, Wang Chengsheng. 1995. Reserche on Coal Petrology Properties and Coal Metamorphism of Early-middle Jurassic Coal in Northwest China China[M]. Beijing: China Coal Industry Publishing House, 22-32 (in Chinese with English abstract).
|
Wu Jingyu, Ding Suting, Li Qijia, Sun Bainian, Wang Yongdong. 2016. Reconstructing paleoatmospheric CO2 levels based on fossil Ginkgoites from the Upper Triassic and Middle Jurassic in Northwest China[J]. PalZ, 90(2): 377-387. doi: 10.1007/s12542-016-0300-1
|
Xia Yangqing, Wang Chunjiang, Meng Qianxiang, Wang Hongyong, Du Li. 1998. The simulation of the formation of condensed nucleus and polycyclic aromatic hydrocarbons[J]. Acta Sedimentologica Sinica, 16(2): 1-4 (in Chinese with English abstract).
|
Yan Defei, Sun Bainian, Xie Sanping, Li Xiangchuan, Wen Wenwen. 2009. Response to paleoatmospheric CO2 concentration of Solenites vimineus (Phillips) Harris (Ginkgophyta) from the Middle Jurassic of the Yaojie Basin, Gansu Province, China[J]. Science in China: Earth Sciences, 52(12): 2029-2039. doi: 10.1007/s11430-009-0181-1
|
Yan M, Wan M, He X, Hou X, Wang J. 2016. First report of Cisuralian (early Permian) charcoal layers within a coal bed from Baode, North China with reference to global wildfire distribution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 394-408. doi: 10.1016/j.palaeo.2016.07.031
|
Zhan Changlin, Cao Junji, Han Yongming, An Zhisheng. 2011. Research progress on reconstruction of paleofire history[J]. Advances in Earth Science, 12: 1248-1259 (in Chinese with English abstract).
|
Zhang Hong, Bai Qingzhao, Zhang Xiaowei. 1995. Formation and Evolution of Ordos Coal-accumulcting Basin[M]. Xi' an: Shannxi Science and Technology Press, 1-15 (in Chinese with English abstract).
|
Zhong Xiaochun, Zhao Chuanben, Yang Shizhong. 2003. Jurassic System in the North of China Volum Ⅱ Paleoenvironment and Oil and Gas[M]. Beijing: Petroleum Industry Press, 53-65 (in Chinese with English abstract).
|
常禹, 黄文韬, 胡远满, 李月辉, 布仁仓, 刘永耀. 2015. 林火碳排放研究概况及展望[J]. 生态学杂志, 34(10): 2922-2929. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201510033.htm
|
邓胜徽, 卢远征, 赵怡, 樊茹, 王永栋, 杨小菊, 李鑫, 孙柏年. 2017. 中国侏罗纪古气候分区与演变[J]. 地学前缘, 24(1): 106-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201701008.htm
|
韩德馨, 任德贻, 王延彬, 金奎励, 毛鹤龄, 秦勇. 1996. 中国煤岩学[M]. 徐州: 中国矿业大学出版社, 26-28.
|
胡海清, 魏书精, 孙龙. 2012. 1965-2010年大兴安岭森林火灾碳排放的估算研究[J]. 植物生态学报, 36(7): 629-644. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201207007.htm
|
黄文辉, 敖卫华, 翁成敏, 肖秀玲, 刘大锰, 唐修义, 陈萍, 赵志根, 万欢, Finkelman Bob. 2010. 鄂尔多斯盆地侏罗纪煤的煤岩特征及成因分析[J]. 现代地质, 24(6): 1186-1197. doi: 10.3969/j.issn.1000-8527.2010.06.022
|
金培红, 董俊玲, 王姿晰, 远继东, 毛子强, 李玉琼, 孙柏年. 2017. 内蒙古准格尔旗古城煤矿中侏罗世银杏类化石及其对古大气CO2的指示[J]. 兰州大学学报: 自然科学版, 53(1), 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201701001.htm
|
李江海, 江洪福. 2013. 全球古板块再造、岩相古地理及古环境图集[M]. 北京: 地质出版社, 43.
|
刘池洋, 赵红格, 桂小军. 2006. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 80(5): 617-638. doi: 10.3321/j.issn:0001-5717.2006.05.001
|
刘红叶, 顾延生, 程胜高, 黄庭, 肖河. 2018. 末次冰消期以来火灾发生及全球变化意义[J]. 地球科学前沿, 8(1): 106-119.
|
刘晓东, 王博. 2017. 森林燃烧主要排放物研究进展[J]. 北京林业大学学报, 39(12): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY201712015.htm
|
鲁静, 杨敏芳, 邵龙义, 陈恕聪, 李永红, 周凯, 王万青. 2016. 陆相盆地古气候变化与环境演化、聚煤作用. 煤炭学报[J], 41(7): 1788-1797. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607025.htm
|
沈文杰, 张华, 孙永革, 林杨挺, 梁婷, 杨志军, 周永章. 2012. 二叠纪—三叠纪界线大火燃烧的地层记录: 研究进展回顾与评述[J], 地球科学进展(6): 613-623. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201206003.htm
|
宋建中, 胡建芳, 彭平安, 万晓樵. 2015. 古老地质样品的黑碳记录及其对古气候、古环境的响应[J]. 自然杂志, 37(2): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201502003.htm
|
王双明, 张玉平. 1999. 鄂尔多斯侏罗纪盆地形成演化和聚煤规律[J]. 地学前缘, 6(S1): 147-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY1999S1026.htm
|
王效科, 庄亚辉, 冯宗炜. 1998. 森林火灾释放的含碳温室气体量的估计[J]. 环境工程学报, 6(4): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ804.000.htm
|
吴传荣, 张慧, 李远滤, 李小颜, 汪程生. 1995. 西北早—中侏罗世煤岩煤质与煤变质研究[M]. 北京: 煤炭工业出版社, 22-32.
|
夏燕青, 王春江, 孟仟祥, 王红勇, 杜丽. 1998. 稠环芳烃和多环芳烃成因模拟[J]. 沉积学报, 16(2), 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB802.000.htm
|
占长林, 曹军骥, 韩永明, 安芷生. 2011. 古火灾历史重建的研究进展[J]. 地球科学进展(12): 1248-1259. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201112003.htm
|
张泓, 白清昭, 张笑薇. 1995. 鄂尔多斯聚煤盆地形成与演化[M]. 西安: 陕西科学技术出版社, 1-15.
|
钟筱春, 赵传本, 杨时中. 2003. 中国北方侏罗纪二古环境与油气[M]. 北京: 石油工业出版社, 53-65.
|