• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
JIN Wenzheng, BAI Wankui, YE Zhixu. Thermochronology of Meso-Cenozoic uplift and tectonic growth of the Longmenshan Thrust Belt[J]. GEOLOGY IN CHINA. DOI: 10.12029/gc20220306001
Citation: JIN Wenzheng, BAI Wankui, YE Zhixu. Thermochronology of Meso-Cenozoic uplift and tectonic growth of the Longmenshan Thrust Belt[J]. GEOLOGY IN CHINA. DOI: 10.12029/gc20220306001

Thermochronology of Meso-Cenozoic uplift and tectonic growth of the Longmenshan Thrust Belt

Funds: 

Supported by the project of National Natural Science Foundation of China ―Study on the Mechanism of Structural Segmental Deformation in Longmenshan Thrust Belt‖ (No.41002072) and Open Fund of the State Key Laboratory of Oil and Gas Resources and Exploration ―Thermochronological study on tectonic uplift of Bikou block since Mesozoic in northern Sichuan‖(No.PRP/open-1307).

More Information
  • Available Online: February 03, 2024
  • This paper is the result of geological survey engineering. [Objective] In order to discuss the relationship between the vertical tectonic uplift and the lateral tectonic expansion happened in Meso-Cenozoic in the Longmenshan thrust belt, this paper carries out low-temperature thermal chronology testing and analysis. [Methods] Through the determination and analysis of apatite and zircon fission track age, the characteristics of tectonic evolution are studied. [Results] The study shows that the lengths of apatite fission tracks are within the range of 11.4±2.6~12.2±2.2μm, which can effectively reflect the local tectonic uplift history; the results of thermal history simulation show that the apatite samples have experienced three critical stages, including the rapid tectonic uplift, the stable tectonic stage and the rapid tectonic uplift. Besides, the uplifting events happened in the northern area were earlier than those in the southern area. The cooling rate of each rock sample is within the range of 1.211~6.053℃/Myr. The tectonic uplift rate gradually increases from southeast to northwest, and the time of uplifting gradually becomes late in the same direction. [Conclusions] The tectonic deformation of Longmenshan thrust belt has had the characteristics of piggyback propagation from northwest to southeast since Meso-Cenozoic (150Ma), and it has showed these characteristics again from late Cretaceous to Eocene (70~50Ma), even Oligocene (about 20Ma). The central and western regions of the Longmenshan thrust belt are characterized by multi-stage tectonic uplift and superposition.
  • Related Articles

    [1]LÜ Peng, LU Xiaoli, LI Lu, XIANG Li, HONG Jinglan, FANG Qiuyun. Bibliometric analysis and inspiration of international research situation of nickel deposits[J]. GEOLOGY IN CHINA, 2024, 51(6): 2115-2119. DOI: 10.12029/gc20241106003
    [2]ZHANG Yutong, LÜ Peng, LU Xiaoli, XIANG Li, HONG Jinglan, CAI Xiuhua, ZHANG Mengbo, CHAI Xinxia, LI Lu. Bibliometric analysis and inspiration of international research situation of high−purity quartz[J]. GEOLOGY IN CHINA, 2024, 51(5): 1800-1805. DOI: 10.12029/gczhangyutong
    [3]LU Xiaoli, LÜ Peng, XIANG Li, HONG Jinglan, CAI Xiuhua, ZHANG Mengbo, CHAI Xinxia, LI Lu. Bibliometric analysis and inspiration of international research situation of natural gas hydrate[J]. GEOLOGY IN CHINA, 2024, 51(4): 1451-1454. DOI: 10.12029/gc20240401
    [4]LIN Liangjun, MA Zhen, GUO Xu, Zhang Zhenya, LI Yamin. Research on basic theory of urban geology[J]. GEOLOGY IN CHINA, 2020, 47(6): 1668-1676. DOI: 10.12029/gc20200605
    [5]FAN Jun, GUO Yuanyang, CHENG Yongsheng. An introduction to Deep Resources Exploration and Mining, a special project of National Key R&D Program of China[J]. GEOLOGY IN CHINA, 2019, 46(4): 919-926. DOI: 10.12029/gc20190420
    [6]WANG Tong, SHAO Longyi, XIA Yucheng, FU Xuehai, SUN Yuzhuang, SUN Yajun, JU Yiwen, BI Yinli, YU Jingchun, XIE Zhiqing, MA Guodong, WANG Qinwei, ZHOU Jin, JIANG Tao. Major achievements and future research directions of the coal geology in China[J]. GEOLOGY IN CHINA, 2017, 44(2): 242-262. DOI: 10.12029/gc20170203
    [7]MO Xuan-xue. A review and prospect of geological researches on the Qinghai-Tibet Plateau[J]. GEOLOGY IN CHINA, 2010, 37(4): 841-853. DOI: 10.12029/gc20100401
    [8]Bradley S. Van Gosen. 天然石棉矿床地质学及其在公共卫生政策中的应用[J]. GEOLOGY IN CHINA, 2010, 37(3): 704-711. DOI: 10.12029/gc20100324
    [9]WANG Yang-gang, LI Yu-long, WANG Xin-chun, ZHANG Huai-dong. Research and realization of the Geologic Projects Management System based on GIS: A case study of the Strategic Mineral Prospect Survey projects management system[J]. GEOLOGY IN CHINA, 2010, 37(2): 542-549. DOI: 10.12029/gc20100230
    [10]LI Ting-dong. Status and development trend of geological map compilation in the world[J]. GEOLOGY IN CHINA, 2007, 34(2): 206-211. DOI: 10.12029/gc20070202

Catalog

    Article views (7562) PDF downloads (700) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return