• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Jin Yang, Jiang Yuehua, Zhou Quanping, Wang Xiaolong, Zhang Hong, Mei Shijia, Chen Zi, Yang Hai, Lü Jinsong, Hou Lili, Qi Qiuju, Jia Zhengyang, Yang Hui. 2024. Characteristics and ecological risk assessment of sedimentary heavy metals from the Lower Mainstream of Yangtze River[J]. Geology in China, 51(1): 276−289. DOI: 10.12029/gc20220331001
Citation: Jin Yang, Jiang Yuehua, Zhou Quanping, Wang Xiaolong, Zhang Hong, Mei Shijia, Chen Zi, Yang Hai, Lü Jinsong, Hou Lili, Qi Qiuju, Jia Zhengyang, Yang Hui. 2024. Characteristics and ecological risk assessment of sedimentary heavy metals from the Lower Mainstream of Yangtze River[J]. Geology in China, 51(1): 276−289. DOI: 10.12029/gc20220331001

Characteristics and ecological risk assessment of sedimentary heavy metals from the Lower Mainstream of Yangtze River

Funds: Supported by the project of China Geological Survey “Comprehensive Geological Environment Survey Project of the Yangtze River Economic Belt” (No. 0531), “Comprehensive Evaluation of Geological Resources and Environment of the Yangtze River Economic Belt” (No. DD20190260) and “Monitor and Evaluation of Resource Environmental Bear Capacity of the Yangtze River Economic Belt (Yangtze River Delta Integrated Development Zone)” (No. DD20221728).
More Information
  • Author Bio:

    JIN Yang, male, born in 1990, doctor candidate, engineer, mainly engaged in the research of environmental geology and hydrogeology; E-mail: sdkjdxjy@163.com

  • Corresponding author:

    YANG Hui, male, born in 1981, senior engineer, engaged in the research of environmental geology and hydrogeology; E-mail: yhui@mail.cgs.gov.cn.

  • Received Date: March 30, 2022
  • Revised Date: October 23, 2022
  • Available Online: February 03, 2024
  • This paper is the result of hydrogeological survey engineering.

    Objective 

    There are numerous water−intakes along the mainstream of the Yangtze River downstream, in order to ensure water safety and eco−environmental health, relevant situation of heavy metals in the nearshore sediment need to be studied urgently.

    Methods 

    A total of 85 sediment samples were collected on both left and right banks from the upstream to the downstream with the investigation. Descriptive statistics analysis was used to show the characteristics of heavy metals. Correlational analysis and principal component analysis (PCA) were applied to study the sources of heavy metals. Geoaccumulation index and pollution load index were used to analyze the pollution levels, and the potential ecological risk of heavy metals were evaluated by the methods of potential ecological risk assessment index.

    Results 

    The order of average content from high to low is Zn>Cr>Cu>Ni>Pb>As>Cd. From the upstream to the downstream, Cu、Zn、Cr、Ni had a small fluctuating but increasing trend, while As and Pb had a small fluctuating but decreasing trend, Cd showed decreasing trend with an obvious fluctuation. The most polluted one is Cd among seven heavy metals, which were mainly from human activities, such as agriculture. Cd accounted for 1.18%, 1.18%, 18.82% and 34.12% from polluted Class 1 to 4, respectively. Cr and Ni were non−pollution class, which mainly from industries and geochemical natural source. 34.18% of all sampling sites were in moderate pollution (1≤PLIpoint<2). RI was ranged from 19.48 to 388.62, and the proportions of slight potential ecological risk, medium potential ecological risk, strong potential ecological risk and extremely strong potential ecological risk were 38.82 %, 42.35 %, 17.65 % and 1.18 %, respectively.

    Conclusions 

    Contents of all heavy metals in mainstream sediment of the Yangtze River downstream were at a lower level. The catchment were overall at non-pollution sate (PLI area<1 )with slight to moderate ecological risk. The average contents, pollution levels and potential ecological risks of heavy metals on the right bank were all higher than those on the left bank.

    Highlights
    (1) Upstream to downstream and both the left bank and the right bank were considered during samples collection and data analysis, so integrated survey and comprehensive analysis were studied for the downstream of the Yangtze River; (2) Geoaccumulation index and pollution load index were used to analyze the pollution levels and the potential ecological risk index was applied to evaluate the potential ecological risk, the relationship of incomplete correspondence between pollution level and ecological risk was discussed.
  • [1]
    Ali M M, Rahman S, Islam M S, Rakib M R J, Hossen S, Rahman M Z, Kormoker T, Idris A M, Phoungthong K. 2022. Distribution of heavy metals in water and sediment of an urban river in a developing country: A probabilistic risk assessment[J]. International Journal of Sediment Research, 37(2): 173−187. doi: 10.1016/j.ijsrc.2021.09.002
    [2]
    Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil in northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625−1636 (in Chinese with English abstract).
    [3]
    Cao Shengwei, Liu Chunlei, Li Yasong, Li Jing, Hao Qichen, Gao Jie, Dong Yan, Lu Chenming. 2022. Sources and ecological risk of heavy metals in the sediments of offshore area in Quanzhou Bay, Fujian Province[J]. Geology in China, 49(5): 1481−1496 (in Chinese with English abstract).
    [4]
    Condron L, Goh K. 1989. Effects of long-term phosphatic fertiliser applications on amounts and forms of phosphorus applications on amounts and forms of phosphorus in soils under irrgiated pasture in New Zealand[J]. Journal of Soil Science, 40: 383−395. doi: 10.1111/j.1365-2389.1989.tb01282.x
    [5]
    Dai Jierui, Pang Xugui, Song Jianhua, Dong Jian, Hu Xueping, Li Xiaopeng. 2018. A study of geochemical characteristics and ecological risk of elements in soil of urban and suburban areas of Zibo City, Shandong Province[J]. Geology in China, 45(3): 617−627 (in Chinese with English abstract).
    [6]
    Dong Yaohua, Wang Xiuli. 2017. Method of river segmentation with five subzones and its application to the Changjiang River segmentation[J]. Journal of Yangtze River Scientific Research Institute, 34(6): 1−6 (in Chinese with English abstract).
    [7]
    Duan Xuejun, Wang Xiaolong, Xu Xibao, Huang Qun, Xiao Fei. 2019. Major problems and countermeasures of ecological protection on the waterfront resources along the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 28(11): 2641−2648 (in Chinese with English abstract).
    [8]
    Fan Shuanxi, Gan Zhuoting, Li Meijuan, Zhang Zhangquan, Zhou Qi. 2010. Progress of assessment methods of heavy metal pollution in soil[J]. Chinese Agricultural Science Bulletin, 26(17): 310−315 (in Chinese with English abstract).
    [9]
    Fang Zhiqing, Chen Qiuyu, Yin Deliang, Wang Zhikang, Sun Tao, Wang Yongmin, Xie Deti, Wang Dingyong. 2018. Distribution characteristics and risk assessment of heavy metals in the sediments of the estuary of the tributaries in the Three Gorges Reservoir, SW China[J]. Environmental Science, 39(6): 2607−2614 (in Chinese with English abstract).
    [10]
    Filzek P D B, Spurgeon D J, Broll G, Svendsen C, Hankard P K, Kammenga J E, Donker M H, Weeks J M. 2004. Pedological characterisation of sites along a transect from a primary cadmium/lead/zinc smelting works[J]. Ecotoxicology, 13(8): 725−737. doi: 10.1007/s10646-003-4472-6
    [11]
    Guo Hua, Hu Qi, Zhang Qi, Feng Song. 2012. Effects of the three gorges dam on Yangtze river flow and river interaction with Poyang Lake, China: 2003–2008[J]. Journal of Hydrology, 416: 19−7.
    [12]
    Guo Jie, Wang Ke, Yu Qi, Duan Xinbin, Liu Shaoping, Chen Daqing. 2021. Pollution characteristics of the heavy metals and their potential ecological risk assessment in nearshore sediments of the middle reaches of the Yangtze River[J]. Acta Scientiae Circumstantiae, 41(11): 4625−4636 (in Chinese with English abstract).
    [13]
    Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8
    [14]
    Hu Y, Liu X, Bai J, Shi H K, Zeng E Y, Cheng H. 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization[J]. Environmental Science and Pollution Research, 20(9): 6150−6159. doi: 10.1007/s11356-013-1668-z
    [15]
    Huang Changsheng, Zhou Yun, Zhang Shengnan, Wang Jietao, Liu Fengmei, Gong Chong, Yi Chengyun, Li Long, Zhou Hong, Wei Liangshuai, Pan Xiaodong, Shao Changsheng, Li Yiyong, Han Wenjing, Yin Zhibin, Li Xiaozhe. 2021. Groundwater resources in the Yangtze River Basin and its current development and utilization[J]. Geology in China, 48(4): 979−1000 (in Chinese with English abstract).
    [16]
    Huang Hongwei, Xiao He, Wang Dunqiu, Xi Beidou, Sun Xiaojie, Li Jieyue, Li Xiangkui. 2021. Pollution characteristics and health risk assessment of heavy metals in the water of Lijiang River Basin [J]. Environmental Science, 42(4): 1714-1723 (in Chinese with English abstract).
    [17]
    Jaskuła J, Sojka M. 2022. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland[J]. Catena, 211: 105959. doi: 10.1016/j.catena.2021.105959
    [18]
    Jiang Yuehua, Ni Huayong, Zhou Quanping, Cheng Zhiyan, Duan Xuejun, Zhu Zhimin, Wu Jichun, Ren Haiyan, Fan Chenzi, Yang Jinwei, Chen Chao, Hu Jian, Wang Xiaolong, Jiang Xiaye, Liu Yongbing, Yang Hai, Guo Wei, Feng Naiqi, Wei Guangqing, Jin Yang, Yang Hui, Liu Lin, Mei Shijia, Zhang Hong, Chen Pengjun, Yuan Jihai, Qi Qiuju, Lü Jinsong, Gu Xuan, Liu Peng. 2021. Key technologies of ecological restoration demonstration in the yangtze river economic zone and their application[J]. Geology in China, 48(5): 1305−1333 (in Chinese with English abstract).
    [19]
    Jin Yang, Jiang Yuehua, Dong Xianzhe, Yang Guoqiang, Liu Hongying, Lei Changzheng, Zhou Quanping, Zhang Hong, Mei Shijia, Yang Hui, Lü Jinsong, Li Yun. 2022. Chemical characteristics and eco−environmental effect of groundwater in Ningbo Plain, Zhejiang Province[J]. Geology in China, 48(5): 1305−1333 (in Chinese with English abstract).
    [20]
    Jørgensen N, Laursen J, Viksna A, Pind N, Holm P E. 2005. Multi−elemental EDXRF mapping of polluted soil from former horticultural land[J]. Environment International, 31(1): 43−52. doi: 10.1016/j.envint.2004.06.007
    [21]
    Ke X, Gui S F, Huang H, Zhang H J, Wang C Y, Guo W. 2017. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China[J]. Chemosphere, 175: 473−481. doi: 10.1016/j.chemosphere.2017.02.029
    [22]
    Li Chunfang, Wang Fei, Cao Wentao, Pan Jian, Lü Jianshu, Wu Quanyuan. 2017. Source analysis, spatial distribution and pollution assessment of heavy metals in sewage irrigation area farmland soils of Longkou City[J]. Environmental Science, 38(3): 1018−1027 (in Chinese with English abstract).
    [23]
    Li H H, Chen L J, Yu L, Guo Z H, Shan C Q, Lin J Q, Gu Y G, Yang Z B, Yang Y X, Shao J R, Zhu X M, Cheng Z. 2017. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China[J]. Science of the Total Environment, 586: 1076−1084. doi: 10.1016/j.scitotenv.2017.02.092
    [24]
    Li Jing, Wu Huawu, Zhou Yongqiang, Zhao Zhonghua, Wang Xiaolong, Cai Yongjiu, He Bin, Chen Wen, Sun Wei. 2020. Variations of stable oxygen and deuterium isotopes in river and lake waters during flooding season along the middle and lower reaches of the Yangtze River Regions[J]. Environmental Science, 41(3): 1176−1183 (in Chinese with English abstract).
    [25]
    Li Juanjuan, Ma Jintao, Chu Xiujuan, Wang Shaobo, Wu Heng, Wang Zhaohong. 2006. Application of index of geo-accumulation and enrichment factor in safety assessment of heavy-metal contamination in soil of copper refining[J]. China Safety Science Journal, 16(12):135−139, 170 (in Chinese with English abstract).
    [26]
    Li Ping, Huang Yong, Lin Yun, Hua Peixue, Yuan Guoli. 2018. Distribution, source identification and risk assessment of heavy metals in topsoil of Huairou District in Beijing[J]. Geoscience, 32(1): 86−94 (in Chinese with English abstract).
    [27]
    Li Yimeng, Ma Jianhua, Liu Dexin, Sun Yanli, Chen Yanfang. 2015. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China[J]. Environmental Science, 36(3): 1037−1044 (in Chinese with English abstract).
    [28]
    Lin Chengqi, Chen Fenghua, Hu Gongren, Yu Ruilian, Huang Huabin. 2020. Source apportionment of heavy metals in surface sediments of the Jiulong River estuary based on positive matrix factorization[J]. Earth and Environment, 48(4): 42−50 (in Chinese with English abstract).
    [29]
    Liu Min, Deng Wei, Zhao Liangyuan, Hu Yuan, Huang Huawei, Gao Fei. 2021. Distribution characteristics and sources of heavy metals in surface sediments and bank soils of major rivers in source region of Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 38(7): 143−149, 154 (in Chinese with English abstract).
    [30]
    Liu Qingqing, Yang Zhongfang, Zhou Guohua, Xia Xueqi, Hou Qingye, Yu Tao, Zhai Daxing. 2012. Distribution, sources and impact factors of arsenic in the major rivers of Eastern China[J]. Geoscience, 26(1): 114−124 (in Chinese with English abstract).
    [31]
    Liu Yan, Su Huai, Li Weikang, Dong Ming. 2022. Distribution characteristics and ecological risk assessment of heavy metal pollution in floodplain sediments of Xiaojiang River basin in Dongchuan[J]. Journal of Southwest Forestry University, 42(4): 96−105 (in Chinese with English abstract).
    [32]
    Loska K, Wiechuła D. 2003. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir[J]. Chemosphere, 51(8): 723−733. doi: 10.1016/S0045-6535(03)00187-5
    [33]
    Lü Da, Zheng Xiangmin, Zhou Liwen, Lü Jinmei, Wang Yongjie. 2007. Magnetic diagnosis of heavy metal pollution in sediments of Chongming Wetland[J]. Research of Environmental Sciences, 20(6): 38−43 (in Chinese with English abstract).
    [34]
    Ma Chao, Gu Yansheng, Liu Chungen, Zuo Zufa. 2018. Characteristics of Holocene phytolith assemblage in the southeast of Poyang Lake and its paleoenvironmental implications[J]. East China Geology, 39(3): 187−193 (in Chinese with English abstract).
    [35]
    Ma Jianhua, Han Changxu, Jiang Yuling. 2020. Some problems in the application of potential ecological risk index[J]. Geographical Research, 39(6): 1233−1241 (in Chinese with English abstract).
    [36]
    Ma Jianhua, Wang Xiaoyun, Hou Qian, Duan Haijing. 2011. Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens[J]. Geographical Research, 30(3): 486−495 (in Chinese with English abstract).
    [37]
    Ma L, Yang Z G, Li L, Wang L. 2016. Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine−impacted city in Southern China[J]. Environmental Science and Pollution Research, 23(17): 17058−17066. doi: 10.1007/s11356-016-6890-z
    [38]
    Maanan M, Saddik M, Maanan M, Chaibi M, Assobhei O, Zourarah B. 2015. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco[J]. Ecological Indicators, 48: 616−626. doi: 10.1016/j.ecolind.2014.09.034
    [39]
    Müller G. 1969. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 2(3): 108−118.
    [40]
    Shan Lili, Yuan Xuyin, Mao Changping, Ji Junfeng. 2008. Characteristics of heavy metals in sediments from different sources and their ecological risks in the downstream of the Yangtze River[J]. Environmental Science, 29: 2399−2404 (in Chinese with English abstract).
    [41]
    Shomar B. 2006. Trace elements in major solid−pesticides used in the Gaza Strip[J]. Chemosphere, 65(5): 898−905. doi: 10.1016/j.chemosphere.2006.03.004
    [42]
    Singh D V, Bhat J I A, Bhat R A, Dervash M A, Ganei S A. 2018. Vehicular stress a cause for heavy metal accumulation and change in physico−chemical characteristics of road side soils in Pahalgam[J]. Environmental Monitoring and Assessment, 190(6): 1−10.
    [43]
    Sun Qifa, Sun Zhuoan, Jia Lingang, Tian Hui, Guo Xiaodong, Li Xuguang, Zhu Wei. 2022. Characteristics of groundwater quality in Changchun New District and its evaluation on ecological health[J]. Geology in China, 49(3): 834−848 (in Chinese with English abstract).
    [44]
    Tam N, Yao M. 1998. Normalisation and heavy metal contamination in mangrove sediments[J]. Science of the Total Environment, 216(1/2): 33−39. doi: 10.1016/S0048-9697(98)00132-6
    [45]
    Tian H, Zhu C, Gao J, Cheng K, Hao M J, Wang K, Hua S B, Wang Y, Zhou J R. 2015. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: Historical trend, spatial distribution, uncertainties, and control policies[J]. Atmospheric Chemistry and Physics, 15(17): 10127−10147. doi: 10.5194/acp-15-10127-2015
    [46]
    Tomlinson D L, Wilson J G, Harris C R, Jeffrey D W. 1980. Problems in the assessment of heavy−metal levels in estuaries and the formation of a pollution index[J]. Helgoland Marine Research, 33(1): 566−575.
    [47]
    Wang Jie, Liu Guijian, Fang Ting, Yuan Zijiao. 2013. Assessment of pollution characteristics of heavy metals in the sediments of Huaihe River (Anhui Section) by pollution load index[J]. Journal of University of Science and Technology of China, 42(2): 97−103 (in Chinese with English abstract).
    [48]
    Wang J, Liu G J, Liu H Q, Lam P K S. 2017. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China[J]. Science of the Total Environment, 583: 421−431. doi: 10.1016/j.scitotenv.2017.01.088
    [49]
    Wang Lan, Wang Yaping, Xu Chunxue, An Ziyi. 2012. Pollution characteristics and ecological risk assessment of heavy metals in the surface sediments of the Yangtze River[J]. Environmental Science, 33(8): 2599−2606 (in Chinese with English abstract).
    [50]
    Wang Yaping, Wang Lan, Xu Chunxue, Ji Junfeng, Wang Suming. 2012. The influence of pH on the release behavior of heavy metal elements Cd and Pb in the sediments of the lower reaches of the Yangtze River[J]. Geological Bulletin of China, 31(4): 594−600 (in Chinese with English abstract).
    [51]
    Wang Y Q, Yang L Y, Kong L H, Liu E F, Wang L F, Zhu J R. 2015. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China[J]. Catena, 125: 200−205. doi: 10.1016/j.catena.2014.10.023
    [52]
    Wcisło E, Ioven D, Rafał K, Szdzuj J. 2002. Human health risk assessment case study: an abandoned metal smelter site in Poland[J]. Chemosphere, 47(5):507−515.
    [53]
    Xu Jinying, Zou Hui, Wang Jingbo, Guo Yufei, Wang Xiaolong. 2021. Pollution status and potential sources of main heavy metals in the main stream of the Yangtze River[J]. East China Geology, 42(1): 21−28 (in Chinese with English abstract).
    [54]
    Xu Zhengqi, Ni Shijun, Tuo Guoxian, Zhang Chengjiang. 2008. Calculation of heavy metals’ toxicity coefficient in the evaluation of pollution ecological risk index[J]. Environmental Science & Technology, 31(2):112−115(in Chinese with English abstract).
    [55]
    Ye C, Butler O M, Du M, Liu W Z, Zhang Q F. 2019. Spatio−temporal dynamics, drivers and potential sources of heavy metal pollution in riparian soils along a 600 kilometre stream gradient in Central China[J]. Science of the Total Environment, 651: 1935−1945. doi: 10.1016/j.scitotenv.2018.10.107
    [56]
    Ye Hongmeng, Yuan Xuyin, Zhao Jing. 2012. Spatial migration and environmental effects of heavy metals in river sediments from in the Tongling mining area, Anhui Province[J]. Environmental Science, 32(10): 1853−1859 (in Chinese with English abstract).
    [57]
    Yi Yujun, Wang Wenjun, Song Jie. 2019. Pollution characteristics, potential ecological risk assessment and source analysis of heavy metals of sediment in the middle and lower reaches of the Yangtze River[J]. Water Resources and Hydropower Engineering, 50(2): 1−7 (in Chinese with English abstract).
    [58]
    Yin S, Feng C H, Li Y Y, Yin L F, Shen Z Y. 2015. Heavy metal pollution in the surface water of the Yangtze Estuary: A 5−year follow−up study[J]. Chemosphere, 138: 718−725. doi: 10.1016/j.chemosphere.2015.07.060
    [59]
    Yu Ruilian, Hu Gongren, Zheng Zhimin, Lin Chengqi. 2013. Composition variations and sources of Pb isotopes in the intertidal core sediment from Luoyang estuary of Quanzhou Bay[J]. Acta Scientiae Circumstantiae, 33(6): 1756−1762 (in Chinese with English abstract).
    [60]
    Zang Xiaoping, Guo Liping, Chen Hongzhang, Ma Ling, Liu Yanan. 1992. A preliminary study on the background values and pollution status of twelve metal elements in the bottom sediments of the main stream of Yangtze River[J]. Environmental Monitoring in China, 84(4): 18−20 (in Chinese with English abstract).
    [61]
    Zhai Wanying, Ouyang Xuejiao, Zhou Wewi, Yu Da, Zheng Hongyan. 2017. Spatial distribution and risk assessment of heavy metals in the nearshore sediments in main stream of Yangtze River[J]. Acta Scientiae Circumstantiae, 37(11): 4195−4201 (in Chinese with English abstract).
    [62]
    Zhang Hong, Zhou Quanping, Jiang Yuehua, Jin Yang, Yang Guoqiang, Gu Xuan, Mei Shijia, Wang Xiaolong. 2022. Hydrochemical origins and weathering−controlled CO2 consumption rates in the mainstream of the Yangtze River[J]. Hydrogeology & Engineering Geology, 49: 30−40 (in Chinese with English abstract).
    [63]
    Zhang Li, Qi Shihua, Qu Chengkai, Liu Hongxia, Chen Wenwen, Li Feng, Hu Ting, Huang Huanfang. 2014. Distribution, source and health risk assessment of heavy metals in the water of Jiulong River, Fujian[J]. China Environmental Science, 34: 2133−2139 (in Chinese with English abstract).
    [64]
    Zhang Qian, Liu Xiangwei, Shui Yong, Wang Ting. 2021. Distribution of heavy metals in the upstream of Yellow River and ecological risk assessment[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 57(2): 333−340 (in Chinese with English abstract).
    [65]
    Zhang Z X, Lu Y, Li H P, Tu Y, Liu B Y, Yang Z G. 2018. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China[J]. Science of the Total Environment, 645(15): 235−243.
    [66]
    Zhang Z Y, Li J Y, Mamat Z, Ye Q F. 2016. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China[J]. Ecotoxicology and Environmental Safety, 126: 94−101. doi: 10.1016/j.ecoenv.2015.12.025
    [67]
    Zhang Zhiyong, Wan Chengyan, Hu Hongqing, Yang Zhihua, Yuan Yujie, Zhu Wen. 2023. Spatial distribution and risk assessment of heavy metals in surface sediments from the middle and upper reaches of the Yangtze River[J]. Environmental Science, 44(2):770−780 (in Chinese with English abstract).
    [68]
    Zhao Xiufang, Zhang Yongshuai, Feng Aiping, Wang Yixuan, Xia Lixian, Wang Honglei, Du Wei. 2020. Geochemiacl characteristics and environmental assessment of heavy metal elements in agricultural soil of Anqiu area, Shangdong Province[J]. Geophysical and Geochemical Exploration, 44(6): 1446−1454 (in Chinese with English abstract).
    [69]
    Zhao Z H, Gong X H, Zhang L, Jin M, Wang X L. 2021. Riverine transport and water−sediment exchange of polycyclic aromatic hydrocarbons (PAHs) along the middle−lower Yangtze River, China[J]. Journal of Hazardous Materials, 403: 123973. doi: 10.1016/j.jhazmat.2020.123973
    [70]
    Zhou Yan, Chen Qiang, Deng Shaopo, Wan Jinzhong, Zhang Shengtian, Long Tao, Li Qun, Lin Yusuo, Wu Yunjin. 2018. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb−Zn mine in southwestern, China[J]. Environmental Science, 39(6): 2884−2892 (in Chinese with English abstract).
    [71]
    鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625−1636.
    [72]
    曹胜伟, 刘春雷, 李亚松, 李静, 郝奇琛, 高婕, 董岩, 陆晨明. 2022. 福建泉州湾近岸海域沉积物重金属来源分析与生态风险评价[J]. 中国地质, 49(5): 1481−1496.
    [73]
    代杰瑞, 庞绪贵, 宋建华, 董建, 胡雪平, 李肖鹏. 2018. 山东淄博城市和近郊土壤元素地球化学特征及生态风险研究[J]. 中国地质, 45(3): 617−627.
    [74]
    董耀华, 汪秀丽. 2017. 河流5区分段方法与长江干流分段实践[J]. 长江科学院院报, 34(6): 1−6.
    [75]
    段学军, 王晓龙, 徐昔保, 黄群, 肖飞. 2019. 长江岸线生态保护的重大问题及对策建议[J]. 长江流域资源与环境, 28(11): 2641−2648.
    [76]
    范拴喜,甘卓亭,李美娟,张掌权,周旗. 2010. 土壤重金属污染评价方法进展[J]. 中国农学通报, 26(17): 310−315.
    [77]
    方志青, 陈秋禹, 尹德良, 王志康, 孙涛, 王永敏, 谢德体, 王定勇. 2018. 三峡库区支流河口沉积物重金属分布特征及风险评价[J]. 环境科学, 39(6): 2607−2614.
    [78]
    郭杰, 王珂, 于琪, 段辛斌, 刘绍平, 陈大庆. 2021. 长江中游近岸表层沉积物重金属污染特征分析及风险评估[J]. 环境科学学报, 41(11): 4625−4636.
    [79]
    黄长生, 周耘, 张胜男, 王节涛, 刘凤梅, 龚冲, 易秤云, 李龙, 周宏, 魏良帅, 潘晓东, 邵长生, 黎义勇, 韩文静, 尹志彬, 李晓哲. 2021. 长江流域地下水资源特征与开发利用现状[J]. 中国地质, 48(4): 979−1000.
    [80]
    黄宏伟, 肖河, 王敦球, 席北斗, 孙晓杰, 李洁月, 李向奎. 2021. 漓江流域水体中重金属污染特征及健康风险评价[J]. 中国地质, 42(4): 1714−1723.
    [81]
    姜月华, 倪化勇, 周权平, 程知言, 段学军, 朱志敏, 吴吉春, 任海彦, 范晨子, 杨晋炜, 陈超, 胡建, 王晓龙, 姜夏烨, 刘永兵, 杨海, 郭威, 冯乃琦, 魏广庆, 金阳, 杨辉, 刘林, 梅世嘉, 张鸿, 陈澎军, 袁继海, 齐秋菊, 吕劲松, 顾轩, 刘鹏. 2021. 长江经济带生态修复示范关键技术及其应用[J]. 中国地质, 48(5): 1305−1333.
    [82]
    金阳, 姜月华, 董贤哲, 杨国强, 刘红樱, 雷长征, 周权平, 张鸿, 梅世嘉, 杨辉, 吕劲松, 李云. 2022. 浙江宁波平原地下水水化学特征及其生态环境效应[J]. 中国地质, 49(5): 1527−1542.
    [83]
    李春芳, 王菲, 曹文涛, 潘健, 吕建树, 吴泉源. 2017. 龙口市污水灌溉区农田重金属来源、空间分布及污染评价[J]. 环境科学, 38(3): 1018−1027.
    [84]
    李静, 吴华武, 周永强, 赵中华, 王晓龙, 蔡永久, 贺斌, 陈雯, 孙伟. 2020. 长江中下游地区丰水期河、湖水氢氧同位素组成特征[J]. 环境科学, 41(3): 1176−1183.
    [85]
    李娟娟,马金涛, 楚秀娟, 王少博, 吴珩, 王兆红. 2006. 应用地积累指数法和富集因子法对铜矿区土壤重金属污染的安全评价[J]. 中国安全科学学报, 16(12): 135−139, 170.
    [86]
    李苹, 黄勇, 林赟, 华培学, 袁国礼. 2018. 北京市怀柔区土壤重金属的分布特征、来源分析及风险评价[J]. 现代地质, 32(1): 86−94.
    [87]
    李一蒙, 马建华, 刘德新, 孙艳丽, 陈彦芳. 2015. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 36(3): 1037−1044.
    [88]
    林承奇, 陈枫桦, 胡恭任, 于瑞莲, 黄华斌. 2020. 基于PMF模型解析九龙江河口表层沉积物重金属来源[J]. 地球与环境, 48(4): 42−50.
    [89]
    刘敏, 邓玮, 赵良元, 胡园, 黄华伟, 高菲. 2021. 长江源区主要河流表层沉积物及沿岸土壤重金属分布特征及来源[J]. 长江科学院院报, 38(7): 143−149, 154.
    [90]
    刘艳, 苏怀, 李伟康, 董铭. 2022. 东川小江流域河漫滩沉积物重金属污染分布特征及生态风险评价[J]. 西南林业大学学报(自然科学), 42(4): 96−105.
    [91]
    柳青青, 杨忠芳, 周国华, 夏学齐, 侯青叶, 余涛, 翟大兴. 2012. 中国东部主要入海河流As元素分布、来源及影响因素分析[J]. 现代地质, 26(1): 114−124.
    [92]
    吕达, 郑祥民, 周立旻, 吕金妹, 王永杰. 2007. 崇明东滩湿地沉积物重金属污染的磁诊断[J]. 环境科学研究, 20(6): 38−43.
    [93]
    马超, 顾延生, 刘春根, 左祖发. 2018. 鄱阳湖东南部地区全新统植硅体组合特征与古环境分析[J]. 华东地质, 39(3): 187−193.
    [94]
    马建华, 韩昌序, 姜玉玲. 2020. 潜在生态风险指数法应用中的一些问题[J]. 地理研究, 39(6): 1233−1241.
    [95]
    马建华, 王晓云, 侯千, 段海静. 2011. 某城市幼儿园地表灰尘重金属污染及潜在生态风险[J]. 地理研究, 30(3): 486−495.
    [96]
    单丽丽, 袁旭音, 茅昌平, 季峻峰. 2008. 长江下游不同源沉积物中重金属特征及生态风险[J]. 环境科学, 29(9): 2399−2404.
    [97]
    孙岐发, 孙茁桉, 贾林刚, 田辉, 郭晓东, 李旭光, 朱巍. 2022. 长春新区地下水水质特征及其对生态健康的评价[J]. 中国地质, 49(3): 834−848.
    [98]
    王婕, 刘桂建, 方婷, 袁自娇. 2013. 基于污染负荷指数法评价淮河(安徽段)底泥中重金属污染研究[J]. 中国科学技术大学学报, 43(2): 97−103.
    [99]
    王岚, 王亚平, 许春雪, 安子怡. 2012. 长江水系表层沉积物重金属污染特征及生态风险性评价[J]. 环境科学, 33(8): 2599−2606.
    [100]
    王亚平, 王岚, 许春雪, 季俊峰, 王苏明. 2012. pH 对长江下游沉积物中重金属元素 Cd, Pb 释放行为的影响[J]. 地质通报, 31(4): 594−600.
    [101]
    徐金英, 邹辉, 王经波, 郭宇菲, 王晓龙. 2021. 长江干流主要重金属污染状况及其来源解析[J]. 华东地质, 42(1): 21−28.
    [102]
    徐争启, 倪师军, 庹先国, 张成江. 2008. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 31(2): 112−115.
    [103]
    叶宏萌, 袁旭音, 赵静. 2012. 铜陵矿区河流沉积物重金属的迁移及环境效应[J]. 中国环境科学, 32(10): 1853−1859.
    [104]
    易雨君, 王文君, 宋劼. 2019. 长江中下游底泥重金属污染特征, 潜在生态风险评价及来源分析[J]. 水利水电技术, 50(2): 1−7.
    [105]
    于瑞莲, 胡恭任, 郑志敏, 林承奇. 2013. 泉州湾洛阳江河口潮间带柱状沉积物铅同位素组成的变化与来源[J]. 环境科学学报, 33(6): 1756−1762.
    [106]
    臧小平, 郭利平, 陈宏章, 马伶, 刘亚男. 1992. 长江干流水底沉积物中十二种金属元素的背景值及污染状况的初步探讨[J]. 中国环境监测, 84(4): 18−20.
    [107]
    翟婉盈, 欧阳雪姣, 周伟, 余达, 郑红艳. 2017. 长江干流近岸沉积物重金属的空间分布及风险评估[J]. 环境科学学报, 37(11): 4195−4201.
    [108]
    张鸿, 周权平, 姜月华, 金阳, 杨国强, 顾轩, 梅世嘉, 王晓龙. 2022. 长江干流水化学成因与风化过程CO2消耗通量解析[J]. 水文地质工程地质, 49(1): 30−40.
    [109]
    张莉, 祁士华, 瞿程凯, 刘红霞, 陈文文, 李丰, 胡婷, 黄焕芳. 2014. 福建九龙江流域重金属分布来源及健康风险评价[J]. 中国环境科学, 34(8): 2133−2139.
    [110]
    张倩, 刘湘伟, 税勇, 王婷. 2021. 黄河上游重金属元素分布特征及生态风险评价[J]. 北京大学学报(自然科学版), 57(2): 333−340.
    [111]
    张志永, 万成炎, 胡红青, 杨中华, 袁玉洁, 朱稳. 2021. 长江中上游表层沉积物重金属形态分布特征及风险评[J].环境科学, 44(2):770−780.
    [112]
    赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 2020. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 44(6): 1446−1454.
    [113]
    周艳, 陈樯, 邓绍坡, 万金忠, 张胜田, 龙涛, 李群, 林玉锁, 吴运金. 2018. 矿区农田土壤重金属空间主成分分析及生态风险评价[J]. 环境科学, 39(6): 2884−2892.
  • Cited by

    Periodical cited type(1)

    1. 宋宏,汤庆艳,苏天宝,刘聪,黎卓明,鲍坚,赵吉昌,李立武. 敦煌地块大水峡北晶质石墨矿床地球化学特征及成因意义. 岩石学报. 2023(09): 2679-2696 .

    Other cited types(0)

Catalog

    Article views (2148) PDF downloads (435) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return