Citation: | YANG Zhengkun, YANG Yang, ZHANG Zhongkun, LIN Bin, HE Jian, ZHANG Zebin, GAO Futai, TANG Xiaoqian, TANG Pan, QI Jing. Geochemistry of pyrrhotite in the Jiama deposit, Tibet and its relationship with gold enrichment and precipitation[J]. GEOLOGY IN CHINA, 2022, 49(4): 1198-1213. DOI: 10.12029/gc20220411 |
This paper is the result of mineral exploration engineering.
As one of the most important porphyry metallogenic systems in Gangdese metallogenic belt in Tibet, Jiama has a four in one orebody structure of porphyry, skarn, hornfels, and vein gold ore-body, forming riched minerals and diverse metal mineralization. Pyrrhotite is one of the important metal minerals, and its mineral geochemistry and relationship with gold mineralization are still obscure.
The mineralogy and geochemistry of pyrrhotite in different occurrences of the Jiama porphyry system are the main objects for this paper according to detailed field geological survey, petrography, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis.
The results show that pyrrhotite is obviously enriched in Co, Ni, Cu, Zn, Ge, and Se, and weakly enriched in Pb, Bi, Sb, Te, Ag, and As, and low content of Mo, Cd, In, Sn, Ba, W, Au, Tl, Th, U, relatively. Moreover, the pyrrhotite from skarn has a high ratio of Co/Ni, represent the its magmatic-hydrothermal genesis, while the pyrrhotite hosted in hornfels shows sedimentary characteristics.
The variation of contents of Cu, Zn, and Pb in pyrrhotite are related to the spatial mineralization in the Jiama deposit. The massive pyrrhotite in skarn is closely related to gold mineralization and the gold is mainly anhedral or irregular free gold occurring in the cavity and boundary of pyrrhotite grains. The enrichment and precipitation of gold could be related to bismuth-rich melts in the ore-fluids.
Belousov I, Large R R, Meffre S, Danyushevsky L V, Steadman J, Beardsomre T. 2016. Pyrite compositions from vhms and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration[J]. Ore Geology Reviews, 79: 474-499. doi: 10.1016/j.oregeorev.2016.04.020
|
Blake A Tooth, Joël Brugger, Cristiana L. Ciobanu. 2009. Experimental observation of gold scavenging by bismuth melts coexisting with hydrothermal fluids[J]. Journal of Geochemical Exploration, 101(1): 104-104. doi: 10.1016/j.gexplo.2008.11.063
|
Bralia A, Sabatinig, Troja F. 1979. A revaluation of the Co/Ni ratioin pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 14(3): 353-374. http://www.sciencedirect.com/science/article/pii/S1053811905001527
|
Chen Guangyuan, Sun Daisheng, Yin Hui'an. 1987. Genetic Mineralogy and Prospecting Mineralogy[M]. Chongqing: Chongqing Publishing House(in Chinese).
|
Danyushevsky L, Robinson P, Gilbert S, Norman M, Large R, McGoldrick P, Shelley M. 2011. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development, consideration of matrix effects[J]. Geochemistry: Exploration, Environment, Analysis, 11(1): 51-60. doi: 10.1144/1467-7873/09-244
|
Guo Wenbo, Zheng Wenbao, Tang Juxing, Ying Lijuan, Wang Yiyun, Lin Bin. 2014. Geochemical constraints on the source of metallogenic fluids and materials in the Jiama polymetallic Cu deposit, Tibet[J]. Geology in China, 41(2): 510-528 (in Chinese with English abstract). http://www.researchgate.net/publication/287951819_Geochemical_constraints_on_the_source_of_metallogenic_fluids_and_materials_in_the_Jiama_polymetallic_Cu_deposit_Tibet
|
Lin Bin, Tang Juxing, Zhang Zhi, Zheng Wenbao, Leng Qiufeng, Zhong Wanting, Ying Lijuan. 2012. Preliminary study of fissure system in Jiama porphyry deposit of Tibet and its significance[J]. Mineral Deposits, 31(3): 579-589(in Chinese with English abstrct). http://www.researchgate.net/profile/Lin_Bin3/publication/299486836_Preliminary_study_of_fissure_system_in_Jiama_porphyry_deposit_of_Tibet_and_its_significance/links/56fb3a9408ae1b40b804dc2f.pdf
|
Lin Bin, Tang Juxing, Tang Pan, Zheng Wenbao, Greg Hall, Chen Guoliang, Zhang Zhongkun. 2019. Polycentric complex mineralization model of porphyry system: A case study of Jiama superlarge deposit in Tibet[J]. Mineral Deposits, 38(6): 1204-1222(in Chinese with English abstract).
|
Lin Bin, Tang Juxing, Tang Pan, Zhou Aorigele, Sun Miao, Qi Jing, Chen Guoliang, Zheng Wenbao, Zhang Zhongkun, Zhang Zebin, Wu Chunneng, Tian Zhichao, Dai Jingjing, Yang Zhenkun, Yao Xiaofeng. 2021. Preliminary study of the first 3000 m scientific drilling in the Jiama porphyry metallogenic system, Tibet[J]. Mineral Deposits, 40(6): 1119-1134 (in Chinese with English abstract).
|
Lin Bin, Tang Juxing, Chen Yuchuan, Song Yang, Hall Greg, Wang Qin, Yang Chao, Fang Xiang, Duan Jilin, Yang Huanhuan, Liu Zhibo, Wang Yiyun, Feng Jun. 2017a. Geochronology and genesis of the Tiegelongnan porphyry Cu(Au) deposit in Tibet: Evidence from U-Pb, Re-Os dating and Hf, S, and H-O isotopes[J]. Resource Geology, 67: 1-21. doi: 10.1111/rge.12113
|
Lin Bin, Chen Yuchuan, Tang Juxing, Wang Qin, Song Yang, Yang Chao, Wang Wenlei, He Wen, Zhang Lejun. 2017b. 40Ar/39Ar and Rb-Sr ages of the Tiegelongnan porphyry Cu-(Au) deposit in the Bangong Co-Nujiang metallogenic belt of Tibet, China: Implication for generation of super-large deposit[J]. Acta Geologica Sinca (English edition), 91: 602-616. doi: 10.1111/1755-6724.13120
|
Lin, Bin, Tang Juxing, Chen Yuchuan, Baker Micheal, Song Yang, Yang Huanhuan, Wang Qin, He Wen, Liu Zhibo. 2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district, Tibet[J]. Gondwana Research, 66: 168-182. doi: 10.1016/j.gr.2018.07.009
|
Leng Qiufeng, Tang Juxing, Zheng Wenbao, Lin Bin, Wang Yiyun, Tang Pan, Lin Xin. 2015. A study of ore-controlling factors of thick and large skarn orebodies in Jiama porphyry metallogenic system, Tibet[J]. Mineral Deposits, 34(2): 273-288(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201502005.htm
|
Leng Chengbiao. 2017. Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: Constraints from LA-ICPMS trace elements of pyrite and pyrrhotite[J]. Earth Science Frontiers, 24(6): 162-175(in Chinese with English abstract).
|
Liu Wusheng, Zhao Ruyi, Zhang Xiong, Jiang Jinchang, Chen Yuchuan, Wang Denghong, Ying Lijuan, Liu Zhanqin. 2019. The EPMA and LA-ICP-MS In-situ geochemical features of pyrrhotite and pyrite in Dabaoshan Cu-polymetallic deposit, North Guangdong Province, and their constraint on genetic mechanism[J]. Acta Geoscientica Sinica, 40(2): 291-306(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201902005.htm
|
Liu Yongsheng, Hu Zhaochu, Gao Shan, Detlef Günther, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004
|
Large R R, Maslennikov V, Roboert F, Danyushevsky L V, Chang Z. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant sukhoi log deposit, Lena gold province, Russia[J]. Economic Geology, 102(7): 1233-1267. doi: 10.2113/gsecongeo.102.7.1233
|
Loftus-Hills G, Solomon M. 1967. Cobalt, Nickel and selenium in sulphides as indicators of ore genesis[J]. Mineralium Deposita, 2(3): 228-242. doi: 10.1007%2FBF00201918.pdf
|
Liu Yinjun, Cao Liming. 1984. Element geochemistry[M]. Beijing: Science Press(in Chinese).
|
Qin Zhipeng. 2013. Genetic Model of Jiama Copper Polymetallic Deposit in Tibet[D]. Chengdu: Chengdu University of Technology(in Chinese with English abstrct).
|
Tang Juxing, Wang Denghong, Wang Xiongwu, Zhong Kanghui, Ying Lijuan, Zheng Wenbao, Li Fengji, Guo Na, Qin Zhipeng, Yao Xiaofeng, Li Lei, Wang You and Tang Xiaoqian. 2010. Geological features and metaliogenic model of the Jiama copper-polymetallic deposit in Tibet[J]. Acta Geoscientia Sinica, 31(4): 495-506(in Chinese with English abstract). http://www.researchgate.net/publication/306218155_Geological_features_and_metallogenic_model_of_the_Jiama_copper-polymetallic_deposit_in_Tibet
|
Tang Juxing, Deng Shilin, Zheng Wenbao, Ying Lijuan, Wang Xiongwu, Zhong Kanghui, Qin Zhipeng, Ding Feng, Li Fengji, Tang Xiaoqian, Zhong Yufeng and Peng Huijuan. 2011. An exploration model for Jiama copper polymetallic deposit in Maizhokunggar County, Tibet[J]. Mineral Deposits, 30(2): 179-196(in Chinese with English abstract). http://www.researchgate.net/publication/312661222_An_exploration_model_for_Jiama_copper_polymetallic_deposit_in_Maizhokunggar_County_Tibet
|
Tang Juxing, Zheng Wenbao, Chen Yuchuan, Wang Denghong, Ying Lijuan and Qin Zhipeng. 2013. Prospecting breakthrough of the deep porphyry ore body and its significance in Jiama copper polymetallic deposit, Tibet, China[J]. Journal of Jilin University (Earth Science Edition), 43(4): 1100-1110(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201304006.htm
|
Tang Juxing, Wang Qin. 2019. Advantages of copper resources and prospects for their exploitation and utilization in Tibet[J]. China Engineering Science, 21(1): 140-147(in Chinese with English abstrct). doi: 10.15302/J-SSCAE-2019.01.020
|
Wang Yiyun, Zheng Wenbao, Chen Yuchuan, Tang Juxing, Leng Qiufeng, Tang Pan, Ding Shuai and Zhou Yun. 2017. Discussion on the mechanism of seperation of copper and molybdenum in Jima porphyry deposit system, Tibet[J]. Acta Petrologica Sinica, 33(2) : 495-514(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201702012.htm
|
Wang Huan, Wang Liqiang, Ying Lijuan, Zheng Wenbao. 2011. Features and genesis of bornite in Jiama copper-polymetallic deposit of Tibet[J]. Mineral Deposits, 30(2): 305-517(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201102012.htm
|
Ye Tian, Li Nuo. 2015. The application of pyrite LA-ICP-MS trace element analysis to gold deposits[J]. Chinese Journal of Geology, 50(4): 1178-1199(in Chinese with English abstract). http://www.researchgate.net/publication/286856004_The_application_of_pyrite_LA-ICP-MS_trace_element_analysis_to_gold_deposits
|
Yang Yang, Tang Juxing, Wu Chunneng, Lin Bin, Tang Pan, Zhang Zhebing, He Liang, Qi Jing, Li Yixuan. 2020. Typomorphic mineralogical characteristics of pyrrhotite in Jiama Cu polymetallic deposit, Tibet, and its geological significance[J]. Mineral Deposits, 39(2): 337-350(in Chinese with English abstract).
|
Ying Lijuan, Wang Denghong, Tang Juxing, Chang Zhesheng, Qu Wenjun, Zheng Wenbao and Wang Huan. 2010. Re-Os dating of molybdenite from the Jiama copper polymetallic deposit in Tibet and its metallogenic significance[J]. Acta Geologica Sinica, 84(8): 1165-1174(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201008010&dbcode=CJFD&year=2010&dflag=pdfdown
|
Zheng Wenbao, Tang Juxing, Chang Zhesheng, Li Fengji, Yao Xiaofeng. 2010. Geological and geochemical characteristics and genesis of the Jiama polymetallic copper deposit in Tibet[J]. Geology and Exploration, 46(6): 985-994(in Chinese with English abstrct). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201006002.htm
|
Zheng Wenbao. 2012. The Study on Metallogenic Model and Prospecting Pattern for Jiama Polymetallic Copper Deposit, Tibet[D]. Chengdu: Chengdu University of Technology(in Chinese with English abstrct).
|
Zheng Wenbao, Tang Juxing, Zhong Kanghui. 2016. Geology of the Jiama Porphyry copper-polymetallic system, Lhasa Region, China[J]. Ore Geology Reviews, 74: 151-169. doi: 10.1016/j.oregeorev.2015.11.024
|
Zhao Zhenhua. 1997. Principles of Trace Element Geochemistry[M]. Beijing: Science Press, 1-218(in Chinese).
|
Zhang Zhongkun, Lin Bin, Chen Guoliang, Zou Bing, Yang Zhongkun, Tang Pan, Gao Xin, Gao Futai, Jiao Haijun, Sun Jianjun, Li Yajun, Su Wei. 2020. The relationship of diagenesis, mineralization and structural of south-pit skarn thick ore-body in Jiama Cu-Mo super-large deposit, Tibet[J]. Geology in China. https://kns.cnki.net/kcms/detail/11.1167.P.20200702.0858.002.html.
|
Zhong Kanghui, Li Lei, Zhou Huiwen, Bai Jinguo, Li Wei, Zhong Wanting, Zhang Yongqiang, Lin Jiqin, Zheng Fanshi, Huang Xiaoyu, Lu Biao, Lei Bo. 2012. Features of Jiama(Gyama)-Kajunguo thrust-gliding nappe tectonic systemin Tibet[J]. Acta Geoscientia Sinica, 33(4): 411-423(in Chinese with English abstract). http://www.oalib.com/paper/1559720
|
Zhou Haoyang, Sun Xiaoming, Nigel J. Cook, Lin Hai, Fu Yu, Richen Zhong and Joel Brugger. 2017. Nano-to micron-scale particulate gold hosted by magnetite: A product of gold scavenging by bismuth melts[J]. Economic Geology, 112: 993-1010. doi: 10.2113/econgeo.112.4.993
|
Zhou Yun. 2010. Characteristics and Evolution of Metallogenic Fluids in Jiama Copper Polymetallic Deposit, Mozhugongka County, Tibet[D]. Chengdu: Chengdu University of Technology(in Chinese with English abstrct).
|
Zou Bin, Lin Bin, Zheng Wenbao, Song Yang, Tang Pan, Zhang Zebing, Gao Xin. 2019. The characteristics of alteration and mineralization and geochronology of ore-bearing porphyry in south pit of Jiama copperpolymetallic deposit, Tibet[J]. Acta Petrologica Sinica, 35(3): 953-967(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.20
|
陈光远, 孙岱生, 殷辉安. 1987. 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社.
|
郭文铂, 郑文宝, 唐菊兴, 应立娟, 王艺云, 林彬. 2014. 西藏甲玛铜多金属矿床流体、成矿物质来源的地球化学约束[J]. 中国地质. 41(2): 510-528. doi: 10.3969/j.issn.1000-3657.2014.02.015
|
林彬, 唐菊兴, 张志, 郑文宝, 冷秋锋, 钟婉婷, 应立娟. 2012. 西藏甲玛斑岩矿床裂隙系统的初步研究及意义[J]. 矿床地质, 31(3): 579-589. doi: 10.3969/j.issn.0258-7106.2012.03.015
|
林彬, 唐菊兴, 唐攀, 郑文宝, GREG Hall, 陈国良, 张忠坤. 2019. 斑岩成矿系统多中心复合成矿作用模型——以西藏甲玛超大型矿床为例[J]. 矿床地质, 38(6): 1204-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201906002.htm
|
林彬, 唐菊兴, 唐攀, 周敖日格勒, 孙渺, 祁婧, 陈国良, 张忠坤, 张泽斌, 吴纯能, 田志超, 代晶晶, 杨征坤, 姚晓峰. 2021. 青藏高原甲玛斑岩成矿系统首例3000 m科学深钻的初步认识[J]. 矿床地质, 40(6): 1119-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202106015.htm
|
冷秋锋, 唐菊兴, 郑文宝, 林彬, 王艺云, 唐攀, 林鑫. 2015. 西藏甲玛斑岩成矿系统中厚大矽卡岩矿体控矿因素研究[J]. 矿床地质. 34(2): 273-288. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201502005.htm
|
冷成彪. 2017. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约[J]. 地学前缘, 24(6): 162-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706016.htm
|
刘武生, 赵如意, 张熊, 蒋金昌, 陈毓川, 王登红, 应立娟, 刘战庆. 2019. 粤北大宝山铜多金属矿区黄铁矿与磁黄铁矿EPMA和LA-ICP-MS原位微区组分特征及其对矿床成因机制约束[J]. 地球学报, 40(2): 291-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201902005.htm
|
刘英俊, 曹励明. 1984. 元素地球化学[M]. 北京: 科学出版社.
|
秦志鹏. 2013. 西藏甲玛铜多金属矿床成因模式[D]. 成都: 成都理工大学.
|
唐菊兴, 王登红, 汪雄武, 钟康惠, 应立娟, 郑文宝, 黎枫佶, 郭娜, 秦志鹏, 姚晓峰, 李磊, 王友, 唐晓倩. 2010. 西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J]. 地球学报, 31(4): 495-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004002.htm
|
唐菊兴, 邓世林, 郑文宝, 应立娟, 汪雄武, 钟康惠, 秦志鹏, 丁枫, 黎枫佶, 唐晓倩, 钟裕峰, 彭慧娟. 2011. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J]. 矿床地质, 30(2): 179-196. doi: 10.3969/j.issn.0258-7106.2011.02.002
|
唐菊兴, 郑文宝, 陈毓川, 王登红, 应立娟, 秦志鹏. 2013. 西藏甲玛铜多金属矿床深部斑岩矿体找矿突破及其意义[J]. 吉林大学学报(地球科学版), 43(4): 1100-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201304006.htm
|
唐菊兴, 王勤. 2019. 西藏铜矿资源优势及开发利用展望[J]. 中国工程科学, 21(1): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201901021.htm
|
王艺云, 郑文宝, 陈毓川, 唐菊兴, 冷秋锋, 唐攀, 丁帅, 周云. 2017. 西藏甲玛斑岩成矿系统铜钼元素分离机制探讨[J]. 岩石学报, 33(2): 495-514. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702012.htm
|
王焕, 王立强, 应立娟, 郑文宝. 2011. 西藏甲玛铜多金属矿床斑铜矿特征及其成因意义[J]. 矿床地质, 30(2): 305-517. doi: 10.3969/j.issn.0258-7106.2011.02.011
|
叶甜, 李诺. 2015. 黄铁矿原位LA-ICP-MS微量元素分析在金矿床中应用[J]. 地质科学, 50(4): 1178-1199.
|
杨阳, 唐菊兴, 吴纯能, 林彬, 唐攀, 张泽斌, 何亮, 祁婧, 李怡萱. 2020. 西藏甲玛铜多金属矿床磁黄铁矿标型矿物学特征及其地质意义[J]. 矿床地质, 39(2): 337-350. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002008.htm
|
应立娟, 王登红, 唐菊兴, 畅哲生, 屈文俊, 郑文宝, 王焕. 2010. 西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J]. 地质学报. 84(8): 1165-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm
|
郑文宝, 唐菊兴, 畅哲生, 黎枫佶, 姚晓峰. 2010. 西藏甲玛铜多金属矿床地质地球化学特征及成因浅析[J]. 地质与勘探, 46(6): 985-994. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201006002.htm
|
郑文宝, 唐菊兴, 汪雄武, 王焕, 应立娟, 钟裕锋, 钟婉婷. 2012. 西藏甲玛铜多金属矿床金矿地质特征及成矿作用[J]. 吉林大学学报(地球科学版), 42(S1): 181-196. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S1023.htm
|
郑文宝. 2012. 西藏甲玛铜多金属矿床成矿模式与找矿模型[D]. 成都: 成都理工大学.
|
赵振华. 1997. 微量元素地球化学原理[M]. 北京: 科学出版社, 1-218.
|
钟康惠, 李磊, 周慧文, 白景国, 李伟, 钟婉婷, 张勇强, 蔺吉庆, 郑凡石, 黄小雨, 陆彪, 雷波. 2012. 西藏甲玛—卡军果推-滑覆构造系特征[J]. 地球学报, 33(4): 411-423. doi: 10.3975/cagsb.2012.04.03
|
张忠坤, 林彬, 陈国良, 邹兵, 杨征坤, 唐攀, 高昕, 高福太, 焦海军, 孙建军, 李亚军, 苏伟, 2020. 西藏甲玛超大型Cu-Mo矿床南坑厚大矽卡岩矿体的成岩-成矿-构造耦合关系[J]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20200702.0858.002.html.
|
周云. 2010. 西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化[D]. 成都: 成都理工大学.
|
邹兵, 林彬, 郑文宝, 宋扬, 唐攀, 张泽斌, 高昕. 2019. 西藏甲玛矿床南坑矿段蚀变、矿化及含矿斑岩年代学[J]. 岩石学报, 35(3): 953-967. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903020.htm
|
1. |
焦天龙,李进文,郭向国,佘宏全,任程昊,李长俭. 内蒙古二道河铅锌银矿床成矿流体、物质来源及成因探讨. 中国地质. 2024(02): 426-442 .
![]() | |
2. |
王欣,李晓晨,任军喜,张革利,王晓伟. 凤县铅硐山—东塘子铅锌矿床“三位一体”成矿特征与找矿预测模型. 矿产勘查. 2024(05): 775-783 .
![]() | |
3. |
常宗东,刘玉林,董君鹏,张佳峰. 南秦岭北部裂陷带铅锌矿床控矿机理. 西安科技大学学报. 2023(02): 322-331 .
![]() | |
4. |
王瑞廷,李青锋,秦西社,张斌,王博闻,冀月飞. 南秦岭太白河地区石英二长闪长岩锆石U-Pb同位素年代学、地球化学及其地质意义. 现代地质. 2023(03): 562-572 .
![]() | |
5. |
杨海,徐学义,熊盛青,杨雪,高卫宏,范正国,贾志业. 凤太矿集区航空地球物理异常特征及找矿方向. 物探与化探. 2023(05): 1157-1168 .
![]() | |
6. |
王瑞廷,秦西社,李青锋,成欢,任朝辉,冀月飞. 西秦岭凤太铅锌矿集区成矿特征、找矿预测及勘查方法技术组合. 西北地质. 2023(05): 85-97 .
![]() | |
7. |
刘芳,王雷,王飞. 凤太矿集区基于MRAS证据权重法的金矿床找矿预测. 黄金. 2022(07): 17-21 .
![]() | |
8. |
王俊德,任彧仲,杜晓阳,夏文则,岳辉,孙朝阳,孙乐飞. 豫西上宫金矿床成矿流体特征. 黄金. 2022(12): 19-25 .
![]() | |
9. |
丁伟品,谢财富,黄诚,张斌,辛卓,詹华思,郑立龙,孔凡全,王红兵,黄福林. 川滇黔二叠系铅锌成矿物质来源:C-H-O-S-Pb同位素制约——以云南太平子铅锌矿为例. 中国地质. 2022(06): 1845-1861 .
![]() | |
10. |
王瑞廷,张革利,李青锋,张斌,成欢,冀月飞. 秦岭凤太铅锌-金矿集区成矿规律与找矿预测. 地球科学与环境学报. 2021(03): 528-548 .
![]() | |
11. |
张斌,张革利,陈浩,刘晨. 陕西凤县二里河铅锌矿床金属硫化物标型特征及地质意义. 世界地质. 2021(02): 265-272 .
![]() | |
12. |
李伟,张革利,王雷,王欣,张旭涛,董君鹏,马双宝. 陕西省凤太矿集区铅锌矿床特征及找矿预测地质模型. 矿产勘查. 2021(09): 1907-1915 .
![]() | |
13. |
李俊锋,吕斌,胡伟,杨贺杰. 河南省南召县南庄铅锌矿床地质特征与成因分析. 地质与资源. 2021(05): 555-560+622 .
![]() | |
14. |
王雷,王建涛,张革利. 基于MRAS证据权重法的陕西省凤县河口地区金矿找矿预测. 现代矿业. 2021(09): 54-57 .
![]() | |
15. |
周小康,李维成,董王仓,周彬. 陕西省铅锌矿资源特征及时空分布规律概论. 西北地质. 2020(03): 127-139 .
![]() | |
16. |
田振环,方长青. 尼泊尔加尼甚(Ganesh Himal)铅锌矿床构造控矿特征. 矿产勘查. 2020(11): 2530-2545 .
![]() | |
17. |
王备战,王瑞廷,王宏宇,张革利,李青锋. 陕西凤太矿集区深部铅锌矿产资源潜力及地球物理找矿方向. 地球科学与环境学报. 2020(06): 801-818 .
![]() |