• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
LI Zhuang, SU Jingwen, DONG Changchun, YE Yonghong, YANG Yang. Hydrochemistry characteristics and evolution mechanisms of the groundwater in Dangtu area, Ma'anshan City, Anhui Province[J]. GEOLOGY IN CHINA, 2022, 49(5): 1509-1526. DOI: 10.12029/gc20220510
Citation: LI Zhuang, SU Jingwen, DONG Changchun, YE Yonghong, YANG Yang. Hydrochemistry characteristics and evolution mechanisms of the groundwater in Dangtu area, Ma'anshan City, Anhui Province[J]. GEOLOGY IN CHINA, 2022, 49(5): 1509-1526. DOI: 10.12029/gc20220510

Hydrochemistry characteristics and evolution mechanisms of the groundwater in Dangtu area, Ma'anshan City, Anhui Province

Funds: 

the project of China Geological Survey DD20160247

the project of China Geological Survey DD20190261

the project of China Geological Survey DD20221727

More Information
  • Author Bio:

    LI Zhuang, male, born in 1995, assistant engineer, mainly engaged in hydrogeology research; E- mail: lizhuang01@mail.cgs.gov.cn

  • Received Date: September 22, 2020
  • Revised Date: October 24, 2020
  • Available Online: September 25, 2023
  • This paper is the result of hydrogeological and environmental geological engineering.

    Objective 

    To understand the groundwater flow system in the middle and lower reaches of the Yangtze River plain and analyze its hydrochemical characteristics and evolution mechanism.

    Methods 

    Based on the basic characteristics of hydrochemistry in Dangtu area of Maanshan City, the hydrochemistry evolution of shallow groundwater in this area was analyzed by using multivariate statistical analysis, hydrochemistry maps, ion ratio and reverse hydrogeochemical simulation.

    Results 

    The results show that: (1) The groundwater in the study area is mainly alkaline water with low salinity. The cations in the groundwater are mainly Ca2+ and Mg2+, and the anions are mainly HCO3- and SO42-. (2)According to Shukarev classification, the hydrochemical types of groundwater in the study area can be divided into seven categories, among which the hydrochemical types of loose rock pore water-bearing rock group and clastic rock pore fissure water-bearing rock group are mainly HCO3-Ca type, HCO3-Ca · Na type, HCO3 · Cl-Ca · Na type and HCO3-Ca · Mg type. Chemical types of fractured water-bearing rock groups in bedrock are mainly HCO3 · SO4-Ca · Mg type and SO4 · HCO3-Ca · Mg type. (3) The over-standard rate of shallow groundwater samples in the study area is 46%, and the overall water quality is poor. The components with higher over- standard rate are Mn, CODMn, nitrate (calculated as N), Fe, As, ammonia nitrogen (calculated as N), etc. (4) The chemical composition of groundwater in the study area is mainly controlled by rock weathering. Besides, there is the positive cation alternate adsorption of Na- Ca. (5) The results of reverse hydrogeochemical simulation quantitatively verify that water- rock interaction plays a leading role in the formation and evolution of shallow groundwater components in this area.

    Conclusions 

    Groundwater in the study area is mainly low salinity and alkaline, which can be divided into loose rock pore water, clastic rock pore fissure water and bedrock fissure water. The main ion ratio and reverse hydrogeochemical simulation revealed that the chemical composition of shallow groundwater in this area was mainly formed after the groundwater leached calcite, dolomite and other carbonate minerals, quartz, feldspar and other silicate minerals, kaolinite and other clay minerals, rock salt and gypsum reached supersaturation.

  • An Lesheng, Zhao Quansheng, Ye Siyuan, Liu Guanqun, Ding Xigui. 2012. Hydrochemical characteristics and formation mechanism of shallow groundwater in the Yellow River Delta[J]. Environmental Science, 33(2): 370-378(in Chinese with English abstract).
    Bretzler A, Osenbruck K, Gloaguen R, Ruprecht J S, Kebede S, Stadler S. 2011. Groundwater origin and flow dynamics in active rift systems——A multi-isotope approach in the Main Ethiopian Rift[J]. Journal of Hydrology Amsterdam, 402(3/4): 274-289.
    Bozau E, Haussler S, van Berk W. 2015. Hydrogeochemical modelling of corrosion effects and barite scaling in deep geothermal wells of the North German Basin using PHREEQC and PHAST[J]. Geothermics, 53: 540-547. doi: 10.1016/j.geothermics.2014.10.002
    Craig H. 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702-1703.
    Chen Suozhong, Tao Yun, Pan Ying. 2002. Environmental geological problems caused by excess drawing groundwater and countermeasures in the Suzhou, Wuxi and Changzhou Area[J]. Journal of Nanjing Normal University(Natural Science Edition), 25(2): 67-72(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4616.2002.02.014
    China Geological Survey. 2012. Handbook of Hydrogeology[M]. Beijing: Geological Publishing House, 108-109(in Chinese).
    Chen Yuanming, Gao Zhipeng, Chen Zongliang, Li Wei, Wang Qian, Ma Xuemei, Guo Huaming. 2019. Distribution characteristics and genesis of strontium-bearing mineral water in Tailai basin[J]. Geology in China, 46(6): 1-11(in Chinese with English abstract).
    Ding Zhili, Zou Ning, Wang Zhengxiang. 2008. Distribution and characteristics of underground water resources quantity in the Yangtze River Basin[J]. Yangtze River, 39(17): 73-75(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4179.2008.17.025
    Dong Weihong, Meng Ying, Wang Yushan, Wu Xiancang, Lü Ying, Zhao Hui. 2017. Hydrochemical characteristics and formation of the shallow groundwater in Fuijin, Sanjiang Plain[J]. Journal of Jilin University(Earth Science Edition), 47(2): 542-553(in Chinese with English abstract).
    Farid I, Zouari K, Rigane A. 2015. Origin of the groundwater salinity and geochemical processes in detrital and carbonate aquifers: Case of Chougafiya basin (Central Tunisia)[J]. Journal of Hydrology, 530: 508-532. doi: 10.1016/j.jhydrol.2015.10.009
    Fang Zhan, Bian Jianmin, Sun Xiaoqing, Tian Xupeng. 2017. Mineral water formation mechanism and process modeling in Fusong County[J]. Science Technology and Engineering, 17(14): 39-44(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2017.14.006
    Gibbs Ronald J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088
    Guan Yu. 2011. Practical Multi-dimensional Statistical Analysis[M]. Hangzhou: Zhejiang University Press, 188-213(in Chinese with English abstract).
    Guo Huaming, Guo Qi, Jia Yongfeng, Liu Zeyun, Jiang Yuxiao. 2013. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 35(3): 83-96(in Chinese with English abstract).
    Guo Xiaodong, Zhao Haiqing. 2014. Hydrochemical characteristics and correlation analysis of groundwater in Htunchun Basim[J]. Geology in China, 41(3): 1010-1017(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2014.03.026
    Helgeson H C, Garrels R M, Mackenzie F T. 1969. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-II. Applications[J]. Geochimica et Cosmochimica Acta, 33(4): 455-481. doi: 10.1016/0016-7037(69)90127-6
    Han Y, Wang G, Iii C A C, Han Y, Wang G C, Cravotta C A, Hu, W Y, Bian, Y Y, Zhang, Z W, Liu Y Y. 2013. Hydrogeochemical evolution of Ordovician limestone groundwater in Yanzhou, North China[J]. Hydrological Processes, 27(16): 2247-2257. doi: 10.1002/hyp.9297
    Hou Xiangmeng. 2016. The underground water quality and contamination assessment in Wanjiang City[J]. Journal of Changchun Institute of Technology(Natural Sciences Edition), 17(2): 56-59, 63(in Chinese with English abstract).
    Huang Jinyu, Jiang Yuehua, Su Jingwen, Zhang Taili. 2016. Analysis of the special distribution of groundwater survey points in the Yangtze River Delta[J]. Acta Geologica Sinica, 90(10): 2948-2961(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.10.030
    Hou Dandan. 2019. Prediction and propsecting of copper and in the central-south Ningwu volcanic basin[J]. Contributions to Geology and Mineral Resources Research, 34(3): 331-338(in Chinese with English abstract).
    Jia Junyuan, Jiang Yuehua, Zhou Xun, Zhou Quanping, Li Yunfeng. 2011. A preliminary study on hydrochemical and isotope characteristics of groundwater in Hangjiahu area[J]. East China Geology, 32(2): 150-156(in Chinese with English abstract).
    Jin Ming. 2014. On geological and geochemical characteristics and genesis of iron deposit in Yangzhuang of Dangtu in Anhui[J]. Journal of Geology, 38(2): 206-218(in Chinese with English abstract).
    Kamtchueng B T, Fantong W Y, Ueda A, Tiodjio E R, Anazawa K, Wirmvem M J, Mvondo J O, Nkamdjou L S, Kusakabe M. 2014. Assessment of shallow groundwater in Lake Nyos catchment (Cameroon, Central-Africa): Implications for hydrogeochemical controls and uses[J]. Environmental Earth Sciences, 72(9): 3663-3678. doi: 10.1007/s12665-014-3278-6
    Lei Jing, Zhang Lin, Deng Yujie, Huang Zhanfeng. 2012. Research on utilization and protection of groundwater resources in Yangtze River Basin[J]. Yangtze River, 43(3): 48-51(in Chinese with English abstract). .
    Li Peiyue, Wu Jianhua, Qian Hui. 2013. Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China[J]. Environmental Earth Sciences, 69(7): 2211-2225.
    Liu Yi, Ma Ming, Shen Xuehua, Fang Jie, She Hongjian, Zeng Yong. 2018. Metallogenic geological characteristics and ore-controlling factors of the ore fields in Nanjing-Wuhu Basin[J]. Advances in Geosciences, 8(3): 640-652(in Chinese with English abstract).
    Li Xiansuo. 2019. Geological Characteristics and Genesis of Copper-Gold Deposits in Maanshan-Wuhu Area of Ningwu Basin[D]. Hefei: Hefei University of Technology(in Chinese with English abstract).
    Ningwu Research Group. 1978. Magnetite Porphyry Deposit in Ningwu Area[M]. Beijing: Geological Publishing House, 1-320(in Chinese).
    Nesbitt H W, Young G M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochim. Cosmochim. Acta, 48(7): 1523-1534.
    Piper A. 1944. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses[J]. Eos Transactions American Geophysical Union, 25(6): 914-923.
    Pavlovskiy I, Selle B. 2015. Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer systems[J]. Groundwater, 53: 156-165.
    Parkhurst D, Appelo C. 1999. User's guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-reaction, One-dimensional Transport and Geochemical Calculations[M]. U.S. Geological Survey Water. Resour. Invest. Rep., 99-4259.
    Qian Hui, Ma Zhiyuan, Li Peiyue. 2012 Hydrogeochemistry[M]. Beijing: Geological Publishing House, 216-217(in Chinese with English abstract).
    Reddy A G S, Kumar K N. 2010. Identification of the hydrogeochemical processes in groundwater using major ion chemistry: A case study of Penna-Chitravathi river basins in Southern India[J]. Environmental Monitoring and Assessment, 170(1/4): 365-382.
    Stallard R F, Edmond J M. 1983. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load[J]. Journal of Geophysical Research: Oceans, 88(14): 9671-9688.
    Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. 1993. Fundamentals of Hydrogeology[M]. Beijing: Geological Publishing House, 14-15(in Chinese with English abstract).
    Sun Houyun, Mao Qigui, Wei Xiaofeng, Zhang Huiqiong, Xi Yuze. 2018. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin[J]. Geology in China, 45(6): 1128-1141(in Chinese with English abstract)
    Ta M M, Zhou X, Guo J, Wang X Y, Wang Y, Xu Y Q. 2020. The evolution and sources of major ions in hot springs in the Triassic Carbonates of Chongqing, China[J]. Water, 12(4): 1194.
    Usunoff E J, Amado Guzmán-Guzmán. 1989. Multivariate analysis in hydrochemistry: An example of the use of factor and correspondence analyses[J]. Groundwater, 27(1): 27-34.
    Umar R, Absar A. 2003. Chemical characteristics of groundwater in parts of the Gambhir River basin, Bharatpur District, Rajasthan, India[J]. Environmental Geology, 44(5): 535-544.
    Wang Shan, Sun Jicao, Li Zhenghong. 2005. Groundwater quality evaluation in the delta area of the Yangtze River[J]. Hydrogeology & Engineering Geology, 32(6): 30-33(in Chinese with English abstract).
    Wu Xiayi, Li Jihong, Jiang Su, Dai Luofang. 2013. Quality evaluation of shallow groundwater in Jiangsu area of Yangtze River Delta[J]. Ground Water, 35(6): 11-13(in Chinese).
    Wang Xiaoxi, Wang Wenke, Wang Zhoufeng, Zhao Jiali, Xie Hailan, Wang Xiaodan. 2014. Hydrochemical characteristics and formation mechanism of river water and groundwater along the downstream Luanhe River, northeastern China[J]. Hydrogeology & Engineering Geology, 41(1): 25-33, 73(in Chinese with English abstract).
    Wang Yang. 2019. Hydrochemical Characteristics and Source Determination of the Inrush Water in Sijiaying Iron Mine[D]. Tangshan: NorthChina University of Science and Technology(in Chinese with English abstract).
    Xiang Dongjin. 2005. Applied Multivariate Statistical Analysis[M]. Wuhan: China University of China Press, 157-171(in Chinese with English abstract).
    Yang N, Wang G C, Shi Z M, Zhao D, Jiang W J, Guo L, Liao F, Zhou P P. 2018. Application of multiple approaches to investigate the hydrochemistry evolution of groundwater in an arid region: Nomhon, Northwestern China[J]. Water, 10(11): 1667.
    Yuan Renmao, Chen Suozhong, Tao Yun, Xu Haipeng. 2001. Problems in exploiting groundwater and sustainable development countermeasures in Suxichang Area[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(4): 537-542(in Chinese with English abstract).
    Zeng Zhaohua. 1996. The background features and formation of chemical elements of groundwater in the area of the Middle and Lower Beaches of the Yangtze River[J]. Acta Geologica Sinica, 70(3): 262-269(in Chinese with English abstract). .
    Zhang Renquan, Liang Xing, Jin Menggui, Wan Li, Yu Qingchun. 2011. Fundamentals of Hydrogeology[M]. Beijing: Geological Publishing House, 51-52(in Chinese with English abstract).
    Zhao J, Fu G, Lei K, Li Y W. 2011. Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management[J]. Journal of Environmental Sciences, 23(9): 1460-1471.
    Zhou Xun, Liu Lin, Ye Yonghong. 2018. Contents and distribution pattern of rare earth elements in phreatic water from Nantong Area along the Yangtze River and their hydrochemical indication significance[J]. Bulletin of Geological Science and Technology, 37(3): 210-218.
    Zhou Xun, Hu Fusheng, He Jiangtao, Wang Xusheng, Fang Bin. 2014. Introduction to Groundwater Science[M]. Beijing: Geological Publishing House, 108-110(in Chinese with English abstract).
    Zhou Changsong, Zou Shengzhang, Zhu Danni, Lin Yongsheng, Wang Jia, Fan Lianjie, Li Jun, Lan Funing, Li Yanqing, Deng Rixin, Miao Xiongyi. 2020. Characteristics, causes and development suggestions of high quality metasilicate groundwater in Zhaojue area, Sichuan Province[J]. Geology in China, 49(3): 849-859(in Chinese with English abstract).
    陈锁忠, 陶芸, 潘莹. 2002. 苏锡常地区地下水超采引发的环境地质问题及其对策[J]. 南京师范大学学报: 自然科学版, 25(2): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSF200202015.htm
    陈远铭, 高志鹏, 陈宗良, 李伟, 王茜, 马雪梅, 郭华明. 2019. 泰莱盆地含锶矿泉水分布特征及成因[J]. 中国地质, 46(6): 1-11. https://cdmd.cnki.com.cn/Article/CDMD-11415-1019156711.htm
    丁志立, 邹宁, 王政祥. 2008. 长江流域地下水资源量分布及特征分析[J]. 人民长江, 39(17): 73-75. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200817024.htm
    方展, 卞建民, 孙晓庆, 田旭鹏. 2017. 吉林省抚松县矿泉水形成机理及过程模拟[J]. 科学技术与工程, 17(14): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201714006.htm
    管于. 2011实用多元统计分析[M]. 杭州: 浙江大学出版社, 188-213.
    郭华明, 郭琦, 贾永锋, 刘泽云, 姜玉肖. 2013. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 35(3): 83-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm
    郭晓东, 赵海卿. 2014. 晖春盆地地下水水化学特征分析[J]中国地质, 41(3): 1010-1017. http://geochina.cgs.gov.cn/geochina/article/abstract/20140326?st=search
    侯丹丹. 2019. 宁芜火山岩盆地中南段铜、金矿成矿规律和找矿预测[J]. 地质找矿论丛, 34(3): 331-338. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201903001.htm
    侯香梦. 2016. 皖江城市带地下水质量与污染评价[J]. 长春工程学院学报(自然科学版), 17(2): 56-59, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-CGCZ201602013.htm
    黄金玉, 姜月华, 苏晶文, 张泰丽. 2016. 长江三角洲地区地下水调查点特殊分布的评价方法解析[J]. 地质学报, 90(10): 2948-2961. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201610031.htm
    贾军元, 姜月华, 周迅, 周权平, 李云峰. 2011. 杭嘉湖地区水化学及同位素特征初步分析[J]. 华东地质, 32(2): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201102010.htm
    金明. 2014. 安徽当涂杨庄铁矿床地质地球化学特征与成因研究[J]. 地质学刊, 38(2): 206-218. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201402004.htm
    雷静, 张琳, 邓宇杰, 黄站峰. 2012. 长江流域地下水资源开发利用与保护研究[J]. 人民长江, 43(3): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201203019.htm
    李现锁. 2019. 宁芜盆地马鞍山-芜湖地区铜金矿床地质特征及成因研究[D]. 合肥: 合肥工业大学.
    刘一, 马明, 沈雪华, 方捷, 余虹剑, 曾勇. 2018. 宁芜地区矿田构造-建造特征与成矿控制分析[J]. 地球科学前沿, 8(3): 640-652.
    苗晋杰, 靳继红, 杜东, 刘宏伟, 白耀楠, 张竞, 郭旭. 2020. 首都副中心及重点区域地下水环境质量评价与问题成因[J]. 地质调查与研究, 43(3): 224-229+286. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202003004.htm
    宁芜研究项目编写小组. 1978. 宁芜玢岩铁矿[M]. 北京: 地质出版社, 1-196.
    钱会, 马致远, 李培月. 2012. 水文地球化学[M]. 北京: 地质出版社, 216-217.
    沈照理, 朱宛华, 钟佐燊. 1993. 水文地球化学基础[M]. 北京: 地质出版社, 14-15.
    孙厚云, 毛启贵, 卫晓锋, 张会琼, 葸玉泽. 2018. 哈密盆地地下水系统水化学特征及形成演化[J]. 中国地质, 45(6): 1128-1141. http://geochina.cgs.gov.cn/geochina/article/abstract/20180604?st=search
    汪珊, 孙继朝, 李政红. 2005. 长江三角洲地区地下水环境质量评价[J]. 水文地质工程地质, 32(6): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200506007.htm
    汪洋. 2019. 司家营铁矿水化学特征及水源判别[D]. 唐山: 华北理工大学.
    王晓曦, 王文科, 王周锋, 赵佳莉, 谢海澜, 王小丹. 2014. 滦河下游河水及沿岸地下水水化学特征及其形成作用[J]. 水文地质工程地质, 41(1): 25-33, 73. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201401007.htm
    吴夏懿, 理继红, 姜素, 戴罗芳. 2013. 长江三角洲江苏地区浅层地下水质量评价[J]. 地下水, 35(6): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201306005.htm
    向东进. 2005. 实用多元统计分析[M]. 武汉: 中国地质大学出版社, 157-171.
    袁仁茂, 陈锁忠, 陶芸, 徐海鹏. 2001. 苏锡常地区地下水开发中的问题及其可持续发展对策[J]. 北京大学学报: 自然科学版, 37(4): 537-542. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200104016.htm
    张人权, 梁杏, 靳孟贵, 万力, 于青春. 2011. 水文地质学基础[M]. 北京: 地质出版社, 51-52.
    中国地质调查局. 2012. 水文地质手册[M]. 北京: 地质出版社, 108-109.
    中华人民共和国卫生部, 国家标准化管理委员会. 2018. 食品安全国家标准饮用天然矿泉水标准GB8537-2018[S]. 北京: 中国标准出版社.
    中华人民共和国国家质量监督检验检疫总局. 2017. 地下水质量标准GB/T14848-2017[S]. 北京. 中国标准出版社.
    周训, 胡伏生, 何江涛, 王旭升, 方斌. 2014. 地下水科学概论[M]. 北京: 地质出版社, 108-110.
    周迅, 刘林, 叶永红. 2018. 南通市沿江地区潜水稀土元素地球化学特征及其指示意义[J]. 地质科技情报, 37(3): 210-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803028.htm
    周晓妮, 王振兴, 苗青壮, 张冰. 2020. 漳河流域典型区浅层地下水水化学特征分析[J]. 地质调查与研究, 43(3): 265-270. " https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202003010.htm
    周长松, 邹胜章, 朱丹尼, 林永生, 王佳, 樊连杰, 李军, 蓝芙宁, 李衍青, 邓日欣, 缪雄谊. 2022. 四川昭觉地区优质偏硅酸地下水的特征、成因及其开发利用建议[J]. 中国地质, 49(3): 849-859. http://geochina.cgs.gov.cn/geochina/article/abstract/20220312?st=search

Catalog

    Article views (2550) PDF downloads (1793) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return