Citation: | LI Juan, ZHENG Jia, LEI Xiaodong, DU Jingran, LI Fu, JIA Zilong, LIU Aihua. Analysis of quaternary thermal properties and influencing factors on shallow geothermal energy exploitation in Beijing plain[J]. GEOLOGY IN CHINA, 2022, 49(5): 1543-1554. DOI: 10.12029/gc20220512 |
This paper is the result of the geothermal geological survey engineering.
Thermal properties are important parameters for the evaluation and utilization of shallow geothermal energy resources.
In this work, we collected 695 quaternary samples from alluvial and diluvial fans in Beijing plain. Then thermal properties and geotechnical parameters were tested, and the characteristics of thermal properties and their influence on shallow geothermal energy extraction were analyzed.
The results show that the average range of quaternary samples in Beijing plain is 1.465-2.022 W/(m·K) for thermal conductivity, 0.450×10-6-0.841×10-6 m2/s for thermal diffusion, and 2.323-3.080 MJ/(m3 · K) for specific heat, respectively. There is a linear relationship between the thermal conductivity (λ) and the thermal diffusivity (κ) with correlation equations λ =1.6973κ + 0.6127. The finer the particles size of quaternary loose sediments, the lower the thermal conductivity. The thermal conductivity increases rapidly with the moisture content within the range of 0-5% and tends to stabilize within the range of 5%-20%. The thermal conductivity decreases with the increase of water content within the range of 20%-40%. Under natural state, the thermal conductivity increases with the increase of the density and decreases with the increase of the pore ratio. When the sample temperature is in the range of 0-40 ℃, the thermal conductivity first decreases and then increases and keeps lowest at 20 ℃.
Thermal properties of the quaternary vary with geological conditions. They are related to the storage, collection and diffusion capacity of shallow geothermal energy. The larger the thermal conductivity, thermal diffusivity and specific heat capacity, the greater the soil heat storage and thermal conductivity.
Cai Xiangmin, Luan Yingbo, Guo Gaoxuan, Liang Yanan. 2009. 3D Quaternary geological structure of Beijing plain[J]. Geology in China, 36(5): 1021-1029(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.05.007
|
Cai Xiangmin, Zhang Lei, Guo Gaoxuan, You Shina, Fang Tongming, Lü Jinbo, Liang Yanan. 2016. New progress in the study of Quaternary geology in Beijing plain[J]. Geology in China, 43(3): 1055-1066 (in Chinese with English abstract).
|
Chen Chi, Zhu Chuanqing, Tang Boning, Chen Tiange. 2020. Progress in the study of the influencing factors of rock thermal conductivity[J]. Progress in Geophysics, 35(6): 2047-2057 (in Chinese with English abstract).
|
Cheng Chao, Yu Wengang, Jia Wanting, Lin Haiyu, Li Lianqing. 2017. Research progress and development tendency about thermal physical properties of rocks[J]. Advances in Earth Science, 32(10): 1072-1083(in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.2017.10.1072
|
Cho W J, Kwon S. 2010. Estimation of the thermal properties for partially saturated granite[J]. Engineering Geology, 115: 132-138. doi: 10.1016/j.enggeo.2010.06.007
|
Du Yizhen, Li Ren, Wu Tonghua, Xie Changwei, Xiao Yao, Hu Guojie, Wang Tianye. 2015. Study of soil thermal conductivity: research status and advances[J]. Journal of Glaciology and Geocryology, 37(4): 1067-1074(in Chinese with English abstract).
|
Ghuman B S, Lal R. 1985. Thermal conductivity, thermal diffusivity and thermal capacity of some Nigerian soils[J]. Soil Science, 139(1): 74-80. doi: 10.1097/00010694-198501000-00011
|
Han Zaisheng, Ran Weiyan, Tong Hongbing, Liu Zhiming. 2007. Exploration and evaluation of shallow geothermal energy[J]. Geology in China, 34(6): 1115-1121 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2007.06.018
|
Kavanaugh S P. 2000. Field tests for ground thermal properties-methods and impact on ground-source heat pumps design[J]. American Society of Heating Refrigerating and Air-Conditioning Engineers Trans, 104(2): 347-355.
|
Lei Xiaodong, Hu Shengbiao, Li Juan, Jiang Guangzheng, Yang Quanhe, Li Qiaoling. 2018a. Characteristics of heat flow and geothermal distribution in the northwest Beijing plain[J]. Chinese Journal of Geophysics, 61(9): 3735-3748(in Chinese with English abstract).
|
Lei Xiaodong, Hu Shengbiao, Li Juan, Yang Quanhe, Han Yuda, Jiang Guangzheng, Zheng Jia. 2018b. Thermal properties analysis of bedrock in Beijing[J]. Progress in Geophysics, 33(5): 1814-1823 (in Chinese with English abstract).
|
Li Yi, Shao Mingan, Wang Wenyan, Wang Quanjiu, Zhang Jianfeng, Lai Jianbin. 2003. Influence of soil textures on the thermal properties[J]. Transactions of the Chinese Society of Agricultural Engineering, 19(4): 62-65 (in Chinese with English abstract). doi: 10.3321/j.issn:1002-6819.2003.04.014
|
Luan Yingbo, Wei Wanshun, Yu Yuan, Yang Junwei. 2014. Research on heat exchange ability of ground-source heat pump by field test of Beijing plain[J]. Geoscience, 28(5): 1046-1052(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2014.05.021
|
Luan Yingbo, Wei Wanshun, Zheng Guisen, Ji Xinnan. 2011. Statistical analysis of factors affecting the thermal conductivity of silty clay and fine sand in Beijing area[J]. Geoscience, 25(6): 1187-1194 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.06.019
|
Luan Yingbo, Zheng Guisen, Wei Wanshun. 2013. The experimental study of the factors affecting the rate of thermal conductivity of silty clay in Beijing plain[J]. Geology in China, 40(3): 981-988(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2013.03.028
|
Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan. 2021. The development and utilization of geothermal energy in the world[J]. Geology in China, 48(6): 1734-1747 (in Chinese with English abstract).
|
Miao Jinjie, Jin Jihong, Du Dong, Liu Hongwei, Bai Yaonan, Zhang Jing, Guo Xu. 2020. Valuation of groundwater environmental quality and causes of problems in the capital sub-center and key regions[J]. Geological Survey and Research, 43(3): 224-229, 286(in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2020.03.005
|
Peng Tao, Zhang Haichao, Ren Ziqiang, Shen Shuhao, Xu Shengping. 2014. Characteristics of rock thermal conductivity of coal measure strata in Huainan-Huaibei[J]. Coalfield Geological Journal of China Universities, 20(3): 470-475 (in Chinese with English abstract).
|
Peters-Lidard C D, Blackburn E, Liang X, Wood E F. 1998. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures[J]. Journal of the Atmospheric Sciences, 55(7): 1209-1224. doi: 10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2
|
Qiu Nansheng. 2002. Characters of thermal conductivity and radiogenic heat production rate in basins of Northwest China[J]. Chinese Journal of Geology, 37(2): 196-206(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2002.02.007
|
Ruan Chuanxia, Feng Shuyou, Mou Shuangxi, Cheng Wanqing, Zhao Sumin. 2017. An analysis of the characteristics of thermal physical properties and their influencing factors in the Tianjin area[J]. Hydrogeology & Engineer Geology, 44(5): 158-163(in Chinese with English abstract).
|
Song Xiaoqing, Jiang Ming, Peng Qin, Xiong Peiwen. 2019. Thermal property parameter and influencing factor analysis of main rock strata in Guizhou province[J]. Acta Geologica Sinica, 93(8): 2092-2103 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.08.018
|
Su Tianming, Liu Tong, Li Xiaozhao, Yu Jin, Xiao Lin. 2006. Test and analysis of thermal properties of soil in Nanjing district[J]. Journal of Mechanics and Engineering, 25(16): 1278-1283(in Chinese with English abstract).
|
Tarnawski V R, Gori F. 2002. Enhancement of the cubic cell soil thermal conductivity model[J]. International Journal of Energy Research, 26(2): 143-157. doi: 10.1002/er.772
|
Wang Guiling, Lu Chuan. 2022. Progress of geothermal resources exploitation and utilization technology driven by carbon neutralization target[J]. Geology and Resources, 31(3): 412-415(in Chinese with English abstract).
|
Wang Guiling, Wang Wanli, Zhang Wei, Ma Feng, Liu Feng. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing-Tianjin-Hebei region in China[J]. China Geology, 3(1): 173-181. doi: 10.31035/cg2020013
|
Wang Shuo, Wang Quanjiu, Fan Jun, Wang Weihua. 2012. Soil thermal properties determination and prediction model comparison[J]. Transactions of the Chinese Society of Agricultural Engineering, 28(5): 78-84 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-6819.2012.05.014
|
Wang Wanli, Wang Guiling, Zhu Xi, Lui Zhiming. 2017. Characteristics and potential of shallow geothermal resources in provincial capital cities of China[J]. Geology in China, 44(6): 1062-1073 (in Chinese with English abstract).
|
Wei Wanshun, Li Ningbo, Zheng Guisen, Luan Yingbo, Yang Junwei, Yu Yuan, Li Xiang, Wang Lizhi. 2020. Study on genetic mechanism and control conditions of shallow geothermal energy in China [J]. Urban Geology, 15(1): 1-8(in Chinese with English abstract). doi: 10.3969/j.issn.1007-1903.2020.01.001
|
Wei Wanshun, Zheng Guisen, Luan Yingbo. 2010. Characteristics and influencing factors of the shallow geothermal field in Beijing plain area[J]. Geology in China, 37(6): 1733-1739 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2010.06.019
|
Xiao Lin, Li Xiaozhao, Zhao Xiaobao, Hu Zenghui, Wu Wei, Jiang Xinliang. 2009. Laboratory tests for precise relationship between thermal conductivity and moisture content of silt soil [J]. Journal of Engineering Geology, 17(2): 377-382 (in Chinese with English abstract).
|
Xiao Lin, Li Xiaozhao, Zhao Xiaobao, Yu Jin, Hu Zenghui, Ji Chengliang. 2008. Laboratory on influences of moisture content and porosity on thermal conductivity of soils[J]. Journal of PLA University of Science and Technology, 9(3): 241-246(in Chinese with English abstract).
|
Xu Shengping, Peng Tao, Wu Jiwen, Zhang Haichao, Ren Ziqiang. 2014. The characteristics of rock thermal conductivity of coal measure strata and their influence on geothermal field in Huainan-Huaibei coalfield[J]. Coal Geology & Exploration, 42(6): 76-81(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1986.2014.06.016
|
Xu Zhenzhang. 1992. A discussion of factors influencing thermophysical characteristics of rocks and their mechanisms[J]. Petroleum Exploration and Development, 19(6): 84-89 (in Chinese with English abstract).
|
Yao Wang, Guo Chihui, Zhuang Shurong, Chen Xijie, Jia Liqiong, Chen Zeyu, Xia Zilong, Wu Zhen. 2021. Major contribution to carbon neutrality by China's geosciences and geological technologies[J]. China Geology, 4(2): 329-352.
|
Zhou Yang, Mu Genxu, Liu Jianqiang, Zhang Hui, Zhang Le, Jin Guang. 2008. Shallow geothermal energy resources occurrence regularity of typical geomorphological units[J]. Geological Science and Technology Information, 37(4): 232-238(in Chinese with English abstract).
|
蔡向民, 栾英波, 郭高轩, 梁亚南. 2009. 北京平原第四系的三维结构[J]. 中国地质, 36(5): 1021-1029. doi: 10.3969/j.issn.1000-3657.2009.05.007
|
蔡向民, 张磊, 郭高轩, 尤世娜, 方同明, 吕金波, 梁亚楠. 2016. 北京平原地区第四纪地质研究新进展[J]. 中国地质, 43(3): 1055-1066. http://geochina.cgs.gov.cn/geochina/article/abstract/20160327?st=search
|
陈驰, 朱传庆, 唐博宁, 陈天戈. 2020. 岩石热导率影响因素研究进展[J]. 地球物理学进展, 35(6): 2047-2057. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202006001.htm
|
程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 2017. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 32(10): 1072-1083. doi: 10.11867/j.issn.1001-8166.2017.10.1072
|
杜宜臻, 李韧, 吴通华, 谢昌卫, 肖瑶, 胡国杰, 王田野. 2015. 土壤热导率的研究现状及其进展[J]. 冰川冻土, 37(4): 1067-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201504025.htm
|
韩再生, 冉伟彦, 佟红兵, 刘志明. 2007. 浅层地热能勘查评价[J]. 中国地质, 34(6): 1115-1121. doi: 10.3969/j.issn.1000-3657.2007.06.018
|
雷晓东, 胡圣标, 李娟, 姜光政, 杨全合, 李巧灵. 2018a. 北京平原区西北部大地热流与深部地温分布特征[J]. 地球物理学报, 61(9): 3735-3748. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809021.htm
|
雷晓东, 胡圣标, 李娟, 杨全合, 韩宇达, 姜光政, 郑佳. 2018b. 北京地区基岩地层热物性参数特征[J]. 地球物理学进展, 33(5): 1814-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805007.htm
|
李毅, 邵明安, 王文焰, 王全九, 张建丰, 来剑斌. 2003. 质地对土壤热性质的影响研究[J]. 农业工程学报, 19(4): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200304013.htm
|
栾英波, 卫万顺, 郑桂森, 季鑫楠. 2011. 影响北京地区粉质黏土和细砂的热导率因素统计分析[J]. 现代地质, 25(6): 1187-1194.
|
栾英波, 郑桂森, 卫万顺. 2013. 北京平原区粉质黏土热导率影响因素实验研究[J]. 中国地质, 40(3): 981-988. http://geochina.cgs.gov.cn/geochina/article/abstract/20130328?st=article_issue
|
栾英波, 卫万顺, 于湲, 杨俊伟. 2014. 北京平原区地源热泵换热能力现场测试研究[J]. 现代地质, 28(5): 1046-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201405022.htm
|
马冰, 贾凌霄, 于洋, 王欢. 2021. 世界地热能开发利用现状与展望[J]. 中国地质, 48(6): 1734-1747. http://geochina.cgs.gov.cn/geochina/article/abstract/20210606?st=search
|
苗晋杰, 靳继红, 杜东, 刘宏伟, 白耀楠, 张竞, 郭旭. 2020. 首都副中心及重点区域地下水环境质量评价与问题成因[J]. 地质调查与研究, 43(3): 224-229, 286. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202003004.htm
|
彭涛, 张海潮, 任自强, 沈书豪, 徐胜平. 2014. 两淮煤田煤系地层岩石热导率特征[J]. 高校地质学报, 20(3): 470-475. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201403013.htm
|
邱楠生. 2002. 中国西北部盆地岩石热导率和生热率特征[J]. 地质科学, 37(2): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200202006.htm
|
阮传侠, 冯树友, 牟双喜, 程万庆, 赵苏民. 2017. 天津地区地层热物性特征及影响因素分析[J]. 水文地质工程地质, 44(5): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201705026.htm
|
宋小庆, 江明, 彭钦, 熊沛文. 2019. 贵州主要岩石地层热物性参数特征及影响因素分析[J]. 地质学报, 93(8): 2092-2103. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201908018.htm
|
苏天明, 刘彤, 李晓昭, 俞缙, 肖琳. 2006. 南京地区土体热物理性质测试与分析[J]. 岩石力学与工程学报, 25(6): 1278-1283. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200606032.htm
|
王贵玲, 陆川. 2022. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 31(3): 412-425. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202203011.htm
|
王烁, 王全九, 樊军, 王卫华. 2012. 土壤导热率测定及其计算模型的对比分析[J]. 农业工程学报, 28(5): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201205015.htm
|
王婉丽, 王贵玲, 朱喜, 刘志明. 2017. 中国省会城市浅层地热能开发利用条件及潜力评价[J]. 中国地质, 44(6): 1062-1073. http://geochina.cgs.gov.cn/geochina/article/abstract/20170602?st=search
|
卫万顺, 李宁波, 郑桂森, 栾英波, 杨俊伟, 李翔, 于湲, 王立志. 2020. 中国浅层地热能成因机理及其控制条件研究[J]. 城市地质, 15(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ202001002.htm
|
卫万顺, 郑桂森, 栾英波. 2010. 北京平原区浅层地温场特征及其影响因素研究[J]. 中国地质, 37(6): 1733-1739. http://geochina.cgs.gov.cn/geochina/article/abstract/20100619?st=search
|
肖琳, 李晓昭, 赵晓豹, 胡增辉, 武伟, 蒋新亮. 2009. 粉土热导率与含水量关系的实验研究[J]. 工程地质学报, 17(2): 377-382. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200903018.htm
|
肖琳, 李晓昭, 赵晓豹, 俞缙, 胡增辉, 纪成亮. 2008. 含水量与孔隙率对土体热导率影响的室内实验[J]. 解放军理工大学学报, 9(3): 241-247. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200803009.htm
|
徐胜平, 彭涛, 吴基文, 张海潮, 任自强. 2014. 两淮煤田煤系岩石热导率特征及其对地温场的影响[J]. 煤田地质与勘探, 42(6): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201406018.htm
|
徐振章. 1992. 试论影响岩石热物理性质的因素及机制[J]. 石油勘探与开发, 19(6): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199206013.htm
|
周阳, 穆根胥, 刘建强, 张卉, 张乐, 金光. 2018. 典型地貌单元浅层地热能资源量赋存规律[J]. 地质科技情报, 37(4): 232-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804032.htm
|