• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Wang Siyuan, Zhao Minmin, Diao Yujie, Ma Xin, Fu Lei, Wang Xuqing, Liu Ting, Chen Guan, Guo Peng. 2025. Application and evaluation method of the importance of ecological protection in Changdu City of the east Qinghai−Xizang Plateau[J]. Geology in China, 52(1): 264−277. DOI: 10.12029/gc20220517001
Citation: Wang Siyuan, Zhao Minmin, Diao Yujie, Ma Xin, Fu Lei, Wang Xuqing, Liu Ting, Chen Guan, Guo Peng. 2025. Application and evaluation method of the importance of ecological protection in Changdu City of the east Qinghai−Xizang Plateau[J]. Geology in China, 52(1): 264−277. DOI: 10.12029/gc20220517001

Application and evaluation method of the importance of ecological protection in Changdu City of the east Qinghai−Xizang Plateau

Funds: Supported by the projects of Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements (No.2022KFKTC002), Research on Land & Space Evaluation and Ecological Restoration of Changdu City (Sr−20−009), China Geological Survey (No.DD20190534).
More Information
  • Author Bio:

    WANG Siyuan, male, born in 1989, senior engineer, engaged in environmental geology research; E-mail: wangsiyuan@mail.cgs.gov.cn

  • Corresponding author:

    ZHAO Minmin, female, born in 1990, senior engineer, engaged in ecohydrological research; E-mail: zminmin@mail.cgs.gov.cn.

  • Received Date: May 16, 2022
  • Revised Date: October 18, 2022
  • Available Online: January 01, 2025
  • This paper is the result of ecological geological survey engineering.

    Objective 

    Changdu City serves as a critical ecological corridor on the eastern Qinghai−Xizang Plateau. The ecosystem service evaluation methodology recommended by the existing "dual evaluation" guidelines fails to adequately capture the unique characteristics of the ecosystem within the study area. This paper enhances the assessment methodology regarding the significance of ecological protection, thereby improving the feasibility of integrating the research findings into practical ecological conservation efforts. The evaluation outcomes will provide a foundational basis for establishing ecological protection boundaries and inform subsequent ecological restoration initiatives.

    Methods 

    In light of the distinctive characteristics of the plateau environment, the evaluation system incorporates carbon sequestration and freeze−thaw erosion processes. Utilizing enhanced methodologies for assessing ecosystem services and ecological sensitivity, this study evaluates the significance of ecological protection in Changdu City.

    Results 

    The highly significant ecological protection zone in Changdu City encompasses 51.35% of the total land area and is primarily categorized into two distinct types. The first category consists of regions exhibiting favorable ecological conditions that play crucial roles in water and soil conservation; These areas are predominantly located in the mountainous regions along the Jinsha River, Lancang River, and Nujiang River. The second category comprises areas experiencing vegetation degradation, land desertification, soil and water erosion, and other environmental challenges, which are mainly found in the northern part of Dingqing County, as well as the central and southern regions of Basu County and the western section of Bianba County.

    Conclusions 

    The majority of regions within Changdu City are situated in areas designated as critically important and significant for ecological protection, exhibiting robust ecosystem service functions. However, certain areas also demonstrate heightened sensitivity to ecological disturbances. Consequently, it is imperative to devise and rigorously implement tailored ecological protection measures that correspond to the specific characteristics of each area during the development process. This approach aims to mitigate the adverse impacts of various anthropogenic activities on the ecosystem in the context of climate change, thereby ensuring the integrity of the ecological barrier of the Qinghai−Xizang Plateau.

    Highlights
    (1) The significance of ecological protection in the eastern Qinghai−Xizang Plateau is assessed through the lenses of ecosystem services and ecological sensitivity; (2) In light of the unique environmental attributes of the plateau, the methodology for evaluating the importance of ecological protection has been enhanced.
  • [1]
    Barral M P, Oscar M N. 2012. Land−use planning based on ecosystem service assessment: A case study in the Southeast Pampas of Argentina[J]. Agriculture, Ecosystems & Environment, 154: 34–43.
    [2]
    Bonnesoeur V, Locatelli B, Guariguata M R, Ochoa–Tocachi B F, Vanacker V, Mao Z, Stokes A, Mathez–Stiefel S–L. 2019. Impacts of forests and forestation on hydrological services in the Andes: A systematic review[J]. Forest Ecology and Management, 433: 569−584. doi: 10.1016/j.foreco.2018.11.033
    [3]
    Cai X, Li Z, Liang Y. 2021. Tempo–spatial changes of ecological vulnerability in the arid area based on ordered weighted average model[J]. Ecological Indicators, 133: 108398. doi: 10.1016/j.ecolind.2021.108398
    [4]
    Guo Bing, Jiang Lin. 2017. Evaluation of freeze–thaw erosion in Qinghai–Tibet Plateau based on multi–source data[J]. Bulletin of Soil and Water Conservation, 37(4): 12−19 (in Chinese with English abstract).
    [5]
    Guo Changbao, Zhang Yongshuang, Jiang Wenliang, Shi Jusong, Meng Wen, Du Yuben, Ma Chuntian. 2017. Discussion on the environmental and engineering geological problems along the Sichuan Tibet Railway and its adjacent area[J]. Geoscience, 31(5): 877−889 (in Chinese with English abstract).
    [6]
    Guo Kun. 2018. Study on Vegetation Restoration and Selection of Sand–tolerant Grass species in Severe Sandy Land along the Qinghai–Tibet Railway[D]. Beijing: Beijing Forestry University, 1–59 (in Chinese with English abstract).
    [7]
    Jiang Yuehua, Ni Huayong, Zhou Quanping, Cheng Zhiyan, Duan Xuejun, Zhu Zhimin, Wu Jicun, Ren Haiyan, Fan Chenzi, Yang Jinwei, Chen Chao, Hu Jian, Wang Xiaolong, Jiang Xiaye, Liu Yongbing, Yang Hai, Guo Wei, Feng Naiqi, Wei Guagnqing, Jin Yang, Yang Hui, Liu Lin, Mei Shijia, Zhang Hong, Chen Pengjun, Yuan Jihai, Qi Qiuju, Lü Jinsong, Gu Xuan, Liu Peng. 2021. Key technology of ecological restoration demonstration in the Yangtze River Economic Zone and its application[J]. Geology in China, 48(5): 1305−1333 (in Chinese with English abstract).
    [8]
    Liu Yi, Shi Peidong, Liu Miao, Xu Kairan, Zhang Ning, Jiang Peng, Wang Weijia, Jiang Yuge. 2024. Spatial pattern of water conservation function and ecological management suggestions in the catchment area of the upper reaches of Qinhe River in the Yellow River Basin from 1990 to 2020[J]. Geology in China, 51(6): 1917−1929 (in Chinese with English abstract).
    [9]
    Mo Xuanxue. 2010. A review and prospect of geological researches on the Qinghai–Tibet Plateau[J]. Geology in China, 37(4): 841−853 (in Chinese with English abstract).
    [10]
    Naidoo R, Balmford A, Costanza R, Fisher B, Green R E, Lehner B, Malcolm T, Ricketts T H. 2008. Global mapping of ecosystem services and conservation priorities[J]. Proceedings of the National Academy of Sciences, 105(28): 9495−9500. doi: 10.1073/pnas.0707823105
    [11]
    Nie Y, Liu W, Liu Q, Hu X, Westoby M J. 2020. Reconstructing the Chongbaxia Tsho glacial lake outburst flood in the Eastern Himalaya: Evolution, process and impacts[J]. Geomorphology, 370: 107393. doi: 10.1016/j.geomorph.2020.107393
    [12]
    Niu Xiaonan, Ni Huan, Chen Guoguang, Zhang Dingyuan, Zhang Jing, Zhang Jie, Wu Jiayu. 2022. Evaluation of ecological conservation importance of Fujian Province[J]. Acta Ecologica Sinica, 42(3): 1−12 (in Chinese with English abstract).
    [13]
    Opdam P, Nassauer J I, Wang Z, Albert C, Bentrup G, Castella J–C, Mcalpine C, Liu J, Sheppard S, Swaffield S. 2013. Science for action at the local landscape scale[J]. Landscape Ecology, 28(8): 1439−1445. doi: 10.1007/s10980-013-9925-6
    [14]
    Peng J, Liu Z, Liu Y, Wu J, Han Y. 2012. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent[J]. Ecological Indicators, 14(1): 28−39. doi: 10.1016/j.ecolind.2011.08.011
    [15]
    Peng J, Zhao S, Dong J, Liu Y, Meersmans J, Li H, Wu J. 2019. Applying ant colony algorithm to identify ecological security patterns in megacities[J]. Environmental Modelling & Software, 117: 214−222.
    [16]
    Ren Dezhi, Ge Liwen, Wang Ruihong, Zhang Na, Pan Gang. 2016. Carbon storage and spatial pattern of forest vegetation in Changdu, Tibet[J]. Chinese Journal of Ecology, 35(4): 903−908 (in Chinese with English abstract).
    [17]
    Ruiz M, Romero E, Pérez M, Fernández I. 2012. Development and application of a multi–criteria spatial decision support system for planning sustainable industrial areas in Northern Spain[J]. Automation in Construction, 22: 320−333. doi: 10.1016/j.autcon.2011.09.009
    [18]
    Sun X Y, Zhang R J, Huang W, Sun A, Lin L J, Xu H, Jiang D C. 2019. The response between glacier evolution and eco–geological environment on the Qinghai–Tibet Plateau[J]. China Geology, 2(1): 1–7.
    [19]
    Tucker C J. 1979. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing and Environment, 8(2): 127−150. doi: 10.1016/0034-4257(79)90013-0
    [20]
    Wang C, Tang C, Fu B, Lü Y, Xiao S, Zhang J. 2022. Determining critical thresholds of ecological restoration based on ecosystem service index: A case study in the Pingjiang catchment in southern China[J]. Journal of Environmental Management, 303: 114220. doi: 10.1016/j.jenvman.2021.114220
    [21]
    Wang Chenghu, Gao Guiyun, Yang Shixin, Yao Rui, Hung Luyuan. 2019. Analysis and prediction of stress fields of Sichuan—Tibet railway area based on contemporary tectonic stress field zoning in Western China[J]. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242−2253 (in Chinese with English abstract).
    [22]
    Wang Lixia, Zou Chagnxin, Wang Yan, Lin Naifeng, Wu Dan, Jiang Hong, Xu Delin. 2017. Methods to identify the boundary of ecological protection red line regions using GIS: A case study in Changping, Beijing[J]. Acta Ecologica Sinica, 37(18): 6176−6185 (in Chinese with English abstract).
    [23]
    Wang Liyan, Xiao Yan, Jiang Ling, Ouyang Zhiyun. 2017. Assessment and analysis of the freeze–thaw erosion sensitivity on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 39(1): 61−69 (in Chinese with English abstract).
    [24]
    Wang Siyuan, Zhao Minmin, Yan Jing, Ma Xin, Diao Yujie, Fu Lei, Luo Qian. 2021. Evaluation on the importance of ecological protection in Changdu section of the Sichuan–Tibet railway[J]. Geoscience, 35(1): 234−243 (in Chinese with English abstract).
    [25]
    Wu J. 2013. Landscape sustainability science: Ecosystem services and human well–being in changing landscapes[J]. Landscape Ecology, 28(6): 999−1023. doi: 10.1007/s10980-013-9894-9
    [26]
    Xiang J, Li X, Xiao R, Wang Y. 2021. Effects of land use transition on ecological vulnerability in poverty–stricken mountainous areas of China: A complex network approach[J]. Journal of Environmental Management, 297: 113206. doi: 10.1016/j.jenvman.2021.113206
    [27]
    Xu Mo, Jiang Liangwen, Li Xiao, Qi Jihong, Zhang Qiang, Li Xiao. 2021. Major engineering hydrogeological problems along the Ya’an–Linzhi section of the Sichuan–Tibet Railway[J]. Hydrogeology & Engineering Geology, 48(5): 13−22 (in Chinese with English abstract).
    [28]
    Xue Yiguo, Kong Fanmeng, Yang Weimin, Qiu Daohong, Su Maoxin, Fu Kang, Ma Xinmin. 2020. Main unfavorable geological conditions and engineering geological problems along Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(3): 445–468 (in Chinese with English abstract).
    [29]
    Zhang Q, Yuan R, Singh V P, Xu C Y, Fan K, Shen Z, Wang G, Zhao J. 2022. Dynamic vulnerability of ecological systems to climate changes across the Qinghai–Tibet Plateau, China[J]. Ecological Indicators, 134: 108483. doi: 10.1016/j.ecolind.2021.108483
    [30]
    Zhao Y, Chen D, Fan J. 2020. Sustainable development problems and countermeasures: A case study of the Qinghai–Tibet Plateau[J]. Geography and Sustainability, 1(4): 275−283. doi: 10.1016/j.geosus.2020.11.002
    [31]
    Zhao Z, Liu J, Peng J, Li S, Wang Y. 2015. Nonlinear features and complexity patterns of vegetation dynamics in the transition zone of North China[J]. Ecological Indicators, 49: 237−246. doi: 10.1016/j.ecolind.2014.08.038
    [32]
    Zheng Guangyu, Song Ci, Wu Zhanbo, Luo Yunwu, Huang Jubin, Li Hao, Cheng Chang. 2021. Study on the influence of linear engineering on regional vegetation in southeast Tibet Plateau[J]. Journal of Geological Hazards and Environment Preservation, 32(2): 110−112 (in Chinese with English abstract).
    [33]
    郭兵, 姜琳. 2017. 基于多源地空耦合数据的青藏高原冻融侵蚀强度评价[J]. 水土保持通报, 37(4): 12−19.
    [34]
    郭长宝, 张永双, 蒋良文, 石菊松, 孟文, 杜宇本, 马春田. 2017. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质, 31(5): 877−889. doi: 10.3969/j.issn.1000-8527.2017.05.001
    [35]
    郭坤. 2018. 青藏铁路沿线严重沙化段植被恢复及耐沙埋草种筛选研究[D]. 北京: 北京林业大学, 1–59.
    [36]
    姜月华, 倪化勇, 周权平, 程知言, 段学军, 朱志敏, 吴吉春, 任海彦, 范晨子, 杨晋炜, 陈超, 胡建, 王晓龙, 姜夏烨, 刘永兵, 杨海, 郭威, 冯乃琦, 魏广庆, 金阳, 杨辉, 刘林, 梅世嘉, 张鸿, 陈澎军, 袁继海, 齐秋菊, 吕劲松, 顾轩, 刘鹏. 2021. 长江经济带生态修复示范关键技术及其应用[J]. 中国地质, 48(5): 1305−1333. doi: 10.12029/gc20210501
    [37]
    刘义, 史佩东, 刘淼, 许凯然, 张宁, 姜鹏, 王玮迦, 姜禹戈. 2024. 1990—2020年黄河流域沁河上游汇水区水源涵养功能空间格局与生态治理建议[J]. 中国地质, 51(6): 1917−1929. doi: 10.12029/gc20220901001
    [38]
    莫宣学. 2010. 青藏高原地质研究的回顾与展望[J]. 中国地质, 37(4): 841−853. doi: 10.3969/j.issn.1000-3657.2010.04.002
    [39]
    牛晓楠, 倪欢, 陈国光, 张定源, 张景, 张洁, 吴佳瑜. 2022. 福建省生态保护重要性评价[J]. 生态学报, 42(3): 1−12.
    [40]
    任德智, 葛立雯, 王瑞红, 张娜, 潘刚. 2016. 西藏昌都地区森林植被碳储量及空间分布格局[J]. 生态学杂志, 35(4): 903−908.
    [41]
    王成虎, 高桂云, 杨树新, 姚瑞, 黄禄渊. 2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估[J]. 岩石力学与工程学报, 38(11): 2242−2253.
    [42]
    王丽霞, 邹长新, 王燕, 林乃峰, 吴丹, 姜宏, 徐德琳. 2017. 基于GIS识别生态保护红线边界的方法—以北京市昌平区为例[J]. 生态学报, 37(18): 6176−6185.
    [43]
    王莉雁, 肖燚, 江凌, 欧阳志云. 2017. 青藏高原冻融侵蚀敏感性评价与分析[J]. 冰川冻土, 39(1): 61−69.
    [44]
    王思源, 赵敏敏, 闫晶, 马鑫, 刁玉杰, 付雷, 罗倩. 2021. 川藏铁路西藏昌都段生态保护重要性评价[J]. 现代地质, 35(1): 234−243.
    [45]
    许模, 蒋良文, 李潇, 漆继红, 张强, 李晓. 2021. 川藏铁路雅安至林芝段重大工程水文地质问题[J]. 水文地质工程地质, 48(5): 13−22.
    [46]
    薛翊国, 孔凡猛, 杨为民, 邱道宏, 苏茂鑫, 傅康, 马新民. 2020. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报, 39(3): 445−468.
    [47]
    郑光玉, 宋词, 吴展波, 罗运武, 黄炬斌, 黎灏, 陈畅. 2021. 青藏高原东南部线性工程对区域植被的影响研究[J]. 地质灾害与环境保护, 32(2): 110−112. doi: 10.3969/j.issn.1006-4362.2021.02.021

Catalog

    Article views (2851) PDF downloads (220) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return