Citation: | MIAO Zhongying, ZHENG Mianping, LOU Pengcheng, ZHANG Xuefei, SUN Haitao, ZHANG Zhen, XU Qihui, DU Xuemiao. The deep source and shallow mineralization model of potash deposits in the Simao Basin: Evidence from Sr isotope[J]. GEOLOGY IN CHINA, 2022, 49(6): 1923-1935. DOI: 10.12029/gc20220616 |
This paper is the result of the geological survey engineering.
The Simao Basin hosts the only pre-Quaternary solid potash deposit in China, but the genesis of this deposit has been still controversial. An objective understanding of deposit genesis as well as rational construction of a metallogenic model is not only fundamental scientific issues that need to be addressed urgently in the study of potash mineral deposits, but also have a bearing on the choice of the direction for potash resource exploration in the basin.
This study focuses on Sr isotope geochemical characteristics of the samples from salt rocks, overlying and underlying clastic rocks and clastic rocks within the salt rocks in Wells L-2 and MZK-3 of the Simao Basin.
The results show that: (1) The bulk-rock 87Sr/86Sr values from the Well L-2 samples are 0.708220-0.727458, with an average of 0.712776; the 87Sr/86Sr values of water-insoluble matter within the salt rock are 0.711342-0.741999, with an average of 0.716574; (2) The 87Sr/86Sr values of the clastic rock overlying and underlying the salt layer in Well MZK-3 range from 0.713318-0.723147 and 0.712470-0.738988, with an average of 0.717255 and 0.719307, respectively; (3) The 87Sr/86Sr values of the clastic rock corrected by 87Rb tore cover their initial sedimentary state are 0.710880-0.727678, with an average of 0.712828; (4) The 87Sr/86Sr values of salt rock are all significantly lower than the average value of the continental weathering system, with some individual samples having 87Sr/86Sr values larger than modern seawater.
Based on the existing research results of the basic geology and potash deposit geology in the Simao Basin, combined with the Sr isotope geochemical characteristics of salt rocks and clastic rocks, it can be concluded that: The potash-bearing salt rocks and clastic rocks are in different Sr isotope equilibrium systems; the matter source of potash-bearing salt rock is mainly seawater, and the recharge of terrestrial freshwater into the evaporation basin during the salinization process would increase 87Sr/86Sr values of the samples. The clastic rocks were deposited in the terrestrial environment and were in the eodiagenesis substage A before contacting with solid salt rock or brine; a more rational potash metallogenic model is that the deep source salt migrated to the surface through faults formed by strike-slip pull-apart process during the deposition period of the Mengyejing Formation, capturing the unconsolidated clastic rocks in the eodiagenesis substage As they migrated from the height to the catchment basin, and forming the present-day clastic-bearing salt rocks. After migrating into the catchment basin, parts of the clastic-bearing salt rocks underwent dissolution and recrystallization, resulting in the formation of salt rock with relatively purer composition. The subsequent deposition of the clastic rocks formed a protective layer against rock salt dissolution. Early-formed potash deposits were influenced by the Cenozoic Himalayan movement, leading to the modification not only in physical structure but also in mineral component.
Butterfield D A, Nelson B K, Wheat C G, Mottl M J, Roe K K. 2011. Evidence for basaltic Sr in midocean ridge-flank hydrothermal systems and implications for the global oceanic Sr isotope balance[J]. Geochimica et Cosmochimica Acta, 65(22): 4141-4153.
|
Chen Yaokun, Liao Zongting, Wei Zhihong, Li Minghui. 2004. Characteristics and tectonic evolution of the Lanping-Simao mesozoic basin[J]. Petroleum Geology & Experiment, 26(3): 219-222(in Chinese with English abstract).
|
Dessert C, Dupr B, Franois L M, Schott J, Gaillardet J, Chakrapani G, Bajpai S. 2001. Erosion of deccan traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater[J]. Earth and Planetary Science Letters, 188(3): 459-474.
|
Dickin A P. 2005. Radiogenic Isotope Geology[M]. Cambridge: Cambridge University Press.
|
Eglington B M, Talma A S, Marais S, Matthews P E, Dixon J G P. 2003. Isotopic composition of pongola supergroup limestones from the buffalo river gorge, south Africa: Constraints on their regional depositional setting[J]. South African Journal of Geology, 106(1): 1-10. doi: 10.2113/1060001
|
Fang Lihua, Xia Zhiguang, Li Weiqiang, Yin Hongwei, Miao Zhongying, Liu Bin, Shao Chunjing. 2019. Sr isotope characteristics of salt rocks in Simao Basin, southwestern Yunnan and its implications[J]. Geological Journal of China Universities, 25(5): 679-685(in Chinese with English abstract).
|
Huang Sijing, Shi He, Zhang Meng, Shen Licheng, Wu Wenhui. 2002. Application of strontium isotope stratigraphy to diagenesis research[J]. Acta Sedimentologica Sinica, 20(3): 359-366(in Chinese with English abstract).
|
Liao Zongting, Chen Yaokun. 2005. Nature and evolution of Lanping-Simao basin prototype[J]. Journal of Tongji University (Natural Science), 33(11): 109-113(in Chinese with English abstract).
|
Liu Ying, Zheng Mianping, Zhang Zhen, Yu Changqing, Miao Zhongying, Zhang Kai, Gao Lei. 2017. Salt tectonic and prospecting potassium research in Simao Basin[J]. Geological Review, 63(3): 568-580(in Chinese with English abstract).
|
Ma Haizhou, Li Yongshou, Cheng Huaide, Qin Xiwei, Zhang Xiying, Miao Weiliang, Xu Jianxin, Li Binkai, Hai Qingyu. 2019. Metallogenic model and processes of the cretaceous potassium-bearing evaporites involving Changdu, Lanping-Simao and Khorat Basin[J]. Journal of Salt Lake Research, 27(1): 1-11(in Chinese with English abstract).
|
Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia[J]. Journal of Asian Earth Sciences, 20: 551-566. doi: 10.1016/S1367-9120(02)00022-6
|
Miao Z Y. 2018. New Sr isotope evidence to support the material source of the mengyejing potash deposit in the Simao Basin from ancient marine halite or residual sea[J]. Acta Geologica Sinica(English Edition), 92(2): 866-867. doi: 10.1111/1755-6724.13564
|
Miao Zhongying, Zheng Mianping, Zhang Xuefei, Zhang Zhen, Gao Yunzhi. 2019a. Geochemistry and sedimentology significance of sulfur isotope in the evaporite: A case from the MZK-3 well in the Simao Basin, southwestern China[J]. Acta Geologica Sinica, 93(5): 1166-1179(in Chinese with English abstract).
|
Miao Zhongying, Zheng Mianping, Zhang Xuefei, Zhang Zhen, Liu Jianhua, Gao Yunzhi, Zhai Xuefeng. 2019b. Sulfur isotope geochemistry of the Lower Cretaceous evaporite and its significance for potash mineralization in the Simao basin, southwest China[J]. Acta Geoscientica Sinica, 40(2): 279-290(in Chinese with English abstract).
|
Qu Yihua. 1997. On affinity of potassium bearing brine in Lanping-Simao basin, China to that in Ale basin, Thailand, and location of target areas for potassium hunting in former basin[J]. Geology of Chemical Minerals, 19(2): 10-13(in Chinese with English abstract).
|
Shuai Kaiye. 1987. Geologic-tectonic evolution and evaporite formation of Mesozoic-Cenozoic era in Yunnan[J]. Geoscience, 1(2): 207-229(in Chinese with English abstract).
|
Sone M, Metcalfe I. 2008. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 340: 166-179. doi: 10.1016/j.crte.2007.09.008
|
Tan Fuwen. 2002. The sedimentary characteristics of Simao triassic rear arc foreland basin, Yunnan Province[J]. Acta Sedimentologica Sinica, 20(4): 560-567(in Chinese with English abstract).
|
Veizer J, Compston W. 1974. 87Sr/86Sr composition of seawater during the Phanerozoic[J]. Geochimica et Cosmochimica Acta, 38: 1461-1484. doi: 10.1016/0016-7037(74)90099-4
|
Wang L C, Liu C L, Fei M M, Shen L J, Zhang H, Zhao Y J. 2015. First SHRIMP U-Pb zircon ages of the potash-bearing Mengyejing Formation, Simao Basin, southwestern Yunnan, China[J]. Cretaceous Research, 52: 238-250. doi: 10.1016/j.cretres.2014.09.008
|
Wang Licheng, Liu Chenglin, Shen Lijian, Bo Ying. 2018. Research advances in potash forming of the Simao Basin, Eastern Tethyan Realm[J]. Acta Geologica Sinica, 92(8): 1707-1723(in Chinese with English abstract).
|
Wu Nanping, Jiang Shaoyong, Liao Qilin, Pan Jiayong, Dai Baozhang. 2003. Lead and sulfur isotope geochemistry and the ore sources of the vein-type copper deposits in Lanping-Simao Basin, Yunnan Province[J]. Acta Petrologica Sinica, 19(4): 799-807(in Chinese with English abstract).
|
Wu Tianzhu. 1981. Origin of the Mengyejing potash deposit in Yunnan[J]. Chemical Geology, (1): 1-8(in Chinese).
|
Xie Tao, Hu Shixue, Zhou Changyong, Zhang Qiyue, Huang Jinyuan, Wen Wen. 2019. Composition and evolution of strontium isotope from the fossiliferous layers of the Luoping biota, Yunnan[J]. Geology in China, 46(3): 642-650(in Chinese with English abstract).
|
Xu Zhiqin, Yang Jingsui, Li Wenchang, Li Huaqi, Cai Zhihui, Yan Zhen, Ma Changqian. 2013. Paleo-Tethys system and accretionary orogen in the Tibet plateau[J]. Acta Petrologica Sinica, 29(6): 1847-1860(in Chinese with English abstract).
|
Yang Jianxu, Yin Hongwei, Zhang Zhen, Zheng Mianping. 2013. Geologic setting of the potassium in the Lanping-Simao Basin, Yunnan Province[J]. Geotectonica et Metallogenia, 37(4): 633-640(in Chinese with English abstract).
|
Yang Xin, Zheng Jianjing, Liu Xingwang, Su Long, Liu Yuhu, Liu Yanhong. 2011. Dynamic basin-orogen coupling and sequence response process: Taking Lanping-Simao Basin, western Yunnan as a case[J]. Geoscience, 25(3): 447-455(in Chinese with English abstract).
|
Yin Fuguang, Pan Guitang, Wan Fang, Li Xingzhen, Wang Fangguo. 2006. Tectonic facies along the Nujiang-Lancangjiang-Jinshajiang orogenic belt in southwestern China[J]. Sedimentary Geology and Tethyan Geology, 26(4): 33-39(in Chinese with English abstract).
|
Yin Hongfu, Wu Shunbao, Du Yuansheng, Peng Yuanqiao. 1999. South China defined as part of tethyan archipelagic ocean system[J]. Earth Science——Journal of China University of Geosciences, 24(1): 1-12(in Chinese with English abstract).
|
Yin Jiyun, Sun Zhiming, Yang Zhenyu, Liang Qizhong. 1999. Cretaceous and Early Tertiary paleomagnetic results from the Lanping Basin and its geological implications[J]. Chinese Journal of Geophysics, 42(5): 648-659(in Chinese with English abstract).
|
Zheng Mianping, Zhang Zhen, Yin Hongwei, Tan Xiaohong, Yu Changqing, Shi Linfeng, Zhang Xuefei, Yang Jianxu, Jiao Jian, Wu Guopeng. 2014. A new viewpoint concerning the formation of the Mengyejing potash deposit in Jiangcheng, Yunnan[J]. Acta Geoscientica Sinica, 35(1): 11-24(in Chinese with English abstract).
|
Zheng Mianping, Zhang Zhen, Zhang Yongsheng, Liu Xifang, Yin Hongwei. 2012. Potash exploration characteristics in China: New understanding and research progress[J]. Acta Geoscientica Sinica, 33(3): 280-294(in Chinese with English abstract).
|
Zheng Zhijie, Yin Hongwei, Zhang Zhen, Zheng Mianping, Yang Jianxu. 2012. Strontium isotope characteristics and the origin of salt deposits in Mengyejing, Yunnan Province, SW China[J]. Journal of Nanjing University (Natural Sciences), 48(6): 719-727(in Chinese with English abstract).
|
陈跃昆, 廖宗廷, 魏志红, 李明辉. 2004. 兰坪-思茅中生代盆地的特征及构造演化[J]. 石油实验地质, 26(3): 219-222. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200403001.htm
|
方礼桦, 夏芝广, 李伟强, 尹宏伟, 苗忠英, 刘斌, 邵春景. 2019. 滇西南思茅盆地盐岩Sr同位素特征及其对区域成盐作用的启示[J]. 高校地质学报, 25(5): 679-685. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201905004.htm
|
黄思静, 石和, 张萌, 沈立成, 武文慧. 2002. 锶同位素地层学在碎屑岩成岩研究中的应用[J]. 沉积学报, 20(3): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200203000.htm
|
廖宗廷, 陈跃昆. 2005. 兰坪-思茅盆地原型的性质及演化[J]. 同济大学学报(自然科学版), 33(11): 109-113. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200511021.htm
|
刘璎, 郑绵平, 张震, 于常青, 苗忠英, 张凯, 高磊. 2017. 滇西南思茅盆地盐构造研究及找钾初探[J]. 地质论评, 63(3): 568-580. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201703003.htm
|
马海州, 李永寿, 程怀德, 秦西伟, 张西营, 苗卫良, 许建新, 李斌凯, 海擎宇. 2019. 昌都-兰坪-呵叻成盐带白垩纪成盐成钾过程[J]. 盐湖研究, 27(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201901002.htm
|
苗忠英, 郑绵平, 张雪飞, 张震, 高运志. 2019a. 蒸发岩中硫同位素的地球化学特征及其沉积学意义——以思茅盆地MZK-3井为例[J]. 地质学报, 93(5): 1166-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201905013.htm
|
苗忠英, 郑绵平, 张雪飞, 张震, 刘建华, 高运志, 翟雪峰. 2019b. 思茅盆地下白垩统蒸发岩硫同位素地球化学特征及其钾盐成矿意义[J]. 地球学报, 40(2): 279-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201902004.htm
|
曲懿华. 1997. 兰坪-思茅盆地与泰国呵叻盆地含钾卤水同源性研究——兼论该区找钾有利层位和地区[J]. 化工矿产地质, 19(2): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC702.001.htm
|
帅开业. 1987. 云南中、新生代地质构造演化与蒸发岩建造[J]. 现代地质, 1(2): 207-229. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ198702004.htm
|
谭富文. 2002. 云南思茅三叠纪弧后前陆盆地的沉积特征[J]. 沉积学报, 20(4): 560-567. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200204004.htm
|
王立成, 刘成林, 沈立建, 伯英. 2018. 东特提斯域思茅盆地钾盐成矿研究进展[J]. 地质学报, 92(8): 1707-1723. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201808013.htm
|
吴南平, 蒋少涌, 廖启林, 潘家永, 戴宝章. 2003. 云南兰坪-思茅盆地脉状铜矿床铅、硫同位素地球化学与成矿物质来源研究[J]. 岩石学报, 19(4): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200304022.htm
|
吴天柱. 1981. 云南勐野井钾盐矿床的成因[J]. 化工地质, (1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC198101000.htm
|
谢韬, 胡世学, 周长勇, 张启跃, 黄金元, 文芠. 2019. 云南含罗平生物群层位锶同位素组成与演化[J]. 中国地质, 46(3): 642-650. http://geochina.cgs.gov.cn/geochina/article/abstract/20190314?st=search
|
许志琴, 杨经绥, 李文昌, 李化启, 蔡志慧, 闫臻, 马昌前. 2013. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm
|
杨尖絮, 尹宏伟, 张震, 郑绵平. 2013. 滇西兰坪-思茅盆地成钾地质条件分析[J]. 大地构造与成矿学, 37(4): 633-640. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304009.htm
|
杨鑫, 郑建京, 刘兴旺, 苏龙, 刘玉虎, 刘燕红. 2011. 动态"盆山"耦合关系及其层序响应过程: 以滇西兰坪-思茅盆地为例[J]. 现代地质, 25(3): 447-455. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201103006.htm
|
殷鸿福, 吴顺宝, 杜远生, 彭元桥. 1999. 华南是特提斯多岛洋体系的一部分[J]. 地球科学——中国地质大学学报, 24(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX901.000.htm
|
尹福光, 潘桂棠, 万方, 李兴振, 王方国. 2006. 西南"三江"造山带大地构造相[J]. 沉积与特提斯地质, 26(4): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200604004.htm
|
尹济云, 孙知明, 杨振宇, 梁其中. 1999. 滇西兰坪盆地白垩纪-早第三纪古地磁结果及其地质意义[J]. 地球物理学报, 42(5): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199905008.htm
|
郑绵平, 张震, 尹宏伟, 谭筱虹, 于常青, 施林峰, 张雪飞, 杨尖絮, 焦建, 武国朋. 2014. 云南江城勐野井钾盐成矿新认识[J]. 地球学报, 35(1): 11-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401003.htm
|
郑绵平, 张震, 张永生, 刘喜方, 尹宏伟. 2012. 我国钾盐找矿规律新认识和进展[J]. 地球学报, 33(3): 280-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203002.htm
|
郑智杰, 尹宏伟, 张震, 郑绵平, 杨尖絮. 2012. 云南江城勐野井盐类矿床Sr同位素特征及成盐物质来源分析[J]. 南京大学学报(自然科学版), 48(6): 719-727. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201206006.htm
|
1. |
王强,李五福,王秉璋,王涛,周金胜,马林,李玉龙,袁博武,王春涛,王军,张新远,刘建栋,薛尔堃,胡万龙,黄彤宇,李旺超. 与碱性岩-碳酸岩杂岩共生的铌-稀土成矿作用——兼论东昆仑大格勒铌-稀土矿床中的碱性岩-碳酸岩杂岩成因. 大地构造与成矿学. 2024(01): 1-37 .
![]() | |
2. |
张照伟,钱兵,王亚磊,李文渊. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨. 中国地质. 2024(02): 371-384 .
![]() | |
3. |
李思奥,包亚文,梁慨慷,高旭,许瑶,张铭杰,李立武,李中平. 东昆仑古生代镁铁质岩浆镍钴成矿条件——希望沟地区超镁铁质岩C-He-Ne-Ar同位素制约. 岩石学报. 2024(07): 2153-2168 .
![]() | |
4. |
Xue-peng Duan,Fan-cong Meng,Zong-qi Wang,Xiao-fei Yu. Metallogenic characteristics of Shitoukengde intrusion and its implications for Ni-Co-(Cu) sulfide mineralization in East Kunlun. China Geology. 2024(04): 714-729 .
![]() |
|
5. |
王秉璋,张金明,李五福,王泰山,金婷婷,付长垒. 昆仑河早古生代两期埃达克质侵入岩的发现及其对东昆仑碰撞造山过程的启示. 岩石学报. 2023(03): 763-784 .
![]() | |
6. |
赵云川,胡俊,周洪兵,何志威. 东昆仑那更银矿床斜长花岗岩锆石U-Pb年代学、地球化学特征与地质意义. 矿物学报. 2023(05): 640-652 .
![]() | |
7. |
张照伟,钱兵,王亚磊,李文渊. 中国西北地区岩浆铜镍矿床地质特点与找矿潜力. 西北地质. 2021(01): 82-99 .
![]() | |
8. |
张照伟,王亚磊,邵继,李文渊. 东昆仑夏日哈木超大型岩浆镍钴硫化物矿床成矿特征. 矿床地质. 2021(06): 1230-1247 .
![]() | |
9. |
李文渊,王亚磊,钱兵,刘月高,韩一筱. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨. 地学前缘. 2020(02): 276-293 .
![]() | |
10. |
潘彤,张勇. 东昆仑夏日哈木铜镍矿区榴辉岩地球化学特征及成矿响应. 大地构造与成矿学. 2020(03): 447-464 .
![]() | |
11. |
刘超,王亚磊,张照伟,刘月高,韩一筱,董一博,冷馨. 东昆仑夏日哈木矿床镍黄铁矿、磁黄铁矿成因认识及钴赋存特征. 西北地质. 2020(02): 183-199 .
![]() | |
12. |
张照伟,钱兵,王亚磊,李文渊,张江伟,尤敏鑫. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示. 西北地质. 2020(03): 153-168 .
![]() | |
13. |
Zhao-wei Zhang,Ya-lei Wang,Chi-yuan Wang,Bing Qian,Wen-yuan Li,Jiang-wei Zhang,Min-xin You. Mafic-ultramafic magma activity and copper-nickel sulfide metallogeny during Paleozoic in the Eastern Kunlun Orogenic Belt, Qinghai Province, China. China Geology. 2019(04): 467-477 .
![]() |