• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
DAN Yong, YAN Jianfei, ZHANG Qingyu, MA Long, NIE Guoquan, JI Shaocong. Geological characteristics and favorable area prediction of shale gas in Cambrian Wuxun Formation in the southwestern margin of Xuefeng uplift, China[J]. GEOLOGY IN CHINA. DOI: 10.12029/gc20220717001
Citation: DAN Yong, YAN Jianfei, ZHANG Qingyu, MA Long, NIE Guoquan, JI Shaocong. Geological characteristics and favorable area prediction of shale gas in Cambrian Wuxun Formation in the southwestern margin of Xuefeng uplift, China[J]. GEOLOGY IN CHINA. DOI: 10.12029/gc20220717001

Geological characteristics and favorable area prediction of shale gas in Cambrian Wuxun Formation in the southwestern margin of Xuefeng uplift, China

Funds: 

Supported by the project of China Geological Survey (No.DD20190722, No.DD20190723, No.DD20221658), Guangxi Natural Science Foundation of China (2020GXNSFAA297095, 2022GXNSFBA035454), Basic research expenses of Institute of Karst Geology, Chinese Academy of Geological Sciences (2022003).

More Information
  • Available Online: February 03, 2024
  • This paper is the result of shale gas geological survey engineering.[Object] In 2020, shale gas shows were first discovered in the Lower Cambrian Wuxun Formation on the southwestern margin of the Xuefeng uplift, but its accumulation conditions and exploration potential are unknown. [Methods] Based on field geological survey and drilling data, combined with organic geochemical analysis, a comprehensive study of the Lower Cambrian Wuxun Formation in the southwestern margin of Xuefeng was carried out. [Results] The results show that:(1) The shale of the Wuxun Formation was deposited in the carbonate outer ramp facies, which is different from the Longwangmiao Formation in central Sichuan at the same time. (2) The organic-rich shale is developed in the middle and lower parts of the Wuxun Formation, and the rock combination is calcareous carbonaceous shale intercalated with thin limestone, with a thickness of 30-80 m, and a long and narrow distribution in the northeast-southwest. (3) The average TOC content of shale organic matter is 1%, the organic matter type is I type sapropelic type, the average Ro is 2.02%, and the degree of thermal evolution is moderate.(4) The content of brittle minerals in shale ranges from 43% to 69%, with an average value of 59.2%, and the content of clay minerals ranges from 16% to 37%, with an average value of 28.2%.Therefore, shale has high siliceous content and high brittleness, which is easy for reservoir stimulation. (5) Shale is a low-porosity and low-permeability reservoir. Organic pores, intercrystalline pores, interlayer pores, and carbonate mineral dissolved pores provide storage space for shale gas enrichment, but at least four stages of structural fractures and The shale cleavage domain caused by tectonic action greatly improves the shale storage capacity. [Conclusion] Comprehensive evaluation indicators such as geochemistry, reservoir physical properties and preservation conditions suggest that the eastern flank of the Xingren syncline in the southwestern margin of Xuefeng can be a favorable area for shale gas exploration.
  • Related Articles

    [1]LÜ Peng, LU Xiaoli, LI Lu, XIANG Li, HONG Jinglan, FANG Qiuyun. Bibliometric analysis and inspiration of international research situation of nickel deposits[J]. GEOLOGY IN CHINA, 2024, 51(6): 2115-2119. DOI: 10.12029/gc20241106003
    [2]ZHANG Yutong, LÜ Peng, LU Xiaoli, XIANG Li, HONG Jinglan, CAI Xiuhua, ZHANG Mengbo, CHAI Xinxia, LI Lu. Bibliometric analysis and inspiration of international research situation of high−purity quartz[J]. GEOLOGY IN CHINA, 2024, 51(5): 1800-1805. DOI: 10.12029/gczhangyutong
    [3]LU Xiaoli, LÜ Peng, XIANG Li, HONG Jinglan, CAI Xiuhua, ZHANG Mengbo, CHAI Xinxia, LI Lu. Bibliometric analysis and inspiration of international research situation of natural gas hydrate[J]. GEOLOGY IN CHINA, 2024, 51(4): 1451-1454. DOI: 10.12029/gc20240401
    [4]LIN Liangjun, MA Zhen, GUO Xu, Zhang Zhenya, LI Yamin. Research on basic theory of urban geology[J]. GEOLOGY IN CHINA, 2020, 47(6): 1668-1676. DOI: 10.12029/gc20200605
    [5]FAN Jun, GUO Yuanyang, CHENG Yongsheng. An introduction to Deep Resources Exploration and Mining, a special project of National Key R&D Program of China[J]. GEOLOGY IN CHINA, 2019, 46(4): 919-926. DOI: 10.12029/gc20190420
    [6]WANG Tong, SHAO Longyi, XIA Yucheng, FU Xuehai, SUN Yuzhuang, SUN Yajun, JU Yiwen, BI Yinli, YU Jingchun, XIE Zhiqing, MA Guodong, WANG Qinwei, ZHOU Jin, JIANG Tao. Major achievements and future research directions of the coal geology in China[J]. GEOLOGY IN CHINA, 2017, 44(2): 242-262. DOI: 10.12029/gc20170203
    [7]MO Xuan-xue. A review and prospect of geological researches on the Qinghai-Tibet Plateau[J]. GEOLOGY IN CHINA, 2010, 37(4): 841-853. DOI: 10.12029/gc20100401
    [8]Bradley S. Van Gosen. 天然石棉矿床地质学及其在公共卫生政策中的应用[J]. GEOLOGY IN CHINA, 2010, 37(3): 704-711. DOI: 10.12029/gc20100324
    [9]WANG Yang-gang, LI Yu-long, WANG Xin-chun, ZHANG Huai-dong. Research and realization of the Geologic Projects Management System based on GIS: A case study of the Strategic Mineral Prospect Survey projects management system[J]. GEOLOGY IN CHINA, 2010, 37(2): 542-549. DOI: 10.12029/gc20100230
    [10]LI Ting-dong. Status and development trend of geological map compilation in the world[J]. GEOLOGY IN CHINA, 2007, 34(2): 206-211. DOI: 10.12029/gc20070202

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return