• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Tang Pan, Tang Juxing, Lin Bin, Li Faqiao, Sun Miao, Qi Jing, Cui Hao, Wang Mengdie, Xiong Yan, Fu Yuanhui, Zhang Zhongkun, Yang Zhengkun, Yao Xiaofeng, Xie Jinling, Tao Gang, Yang Huanhuan. 2024. Mineralogical characteristics of tourmaline in the Jiama copper polymetallic deposit, Tibet: Insights into hydrothermal evolution[J]. Geology in China, 51(4): 1123−1138. DOI: 10.12029/gc20220911001
Citation: Tang Pan, Tang Juxing, Lin Bin, Li Faqiao, Sun Miao, Qi Jing, Cui Hao, Wang Mengdie, Xiong Yan, Fu Yuanhui, Zhang Zhongkun, Yang Zhengkun, Yao Xiaofeng, Xie Jinling, Tao Gang, Yang Huanhuan. 2024. Mineralogical characteristics of tourmaline in the Jiama copper polymetallic deposit, Tibet: Insights into hydrothermal evolution[J]. Geology in China, 51(4): 1123−1138. DOI: 10.12029/gc20220911001

Mineralogical characteristics of tourmaline in the Jiama copper polymetallic deposit, Tibet: Insights into hydrothermal evolution

Funds: Supported by National Key Research and Development Program of China (No.2022YFC2905004), the Natural Science Foundation of Sichuan (No.23NSFSC4281), Research Fund of Southwest University of Science and Technology (No.22zx7127), the National Natural Science Foundation of China (No.41902097, No.42072313, No.41902101), the Basic Research Service Fee of the Chinese Academy of Geological Sciences (No.KJ2102, No.KK2017), and Selection of Key Survey Blocks for Strategic Minerals in Short Supply (Prediction of Deep Part of Important Mines and Selection of Peripheral Exploration Blocks) (No. DD20230362).
More Information
  • Author Bio:

    TANG Pan, male, born in 1989, associate professor, mainly engaged in research of exploration and evaluation of porphyry−skarn deposit; E-mail: tangpan168@163.com

  • Corresponding author:

    TANG Juxing, male, born in 1964, professor, mainly engaged in study of mineral deposit and exploration; E-mail: tangjuxing@126.com.

  • Received Date: September 10, 2022
  • Revised Date: October 27, 2022
  • This paper is the result of mineral exploration engineering.

    Objective 

    Hornfels, as an important part of the Jima porphyry copper polymetallic system, is host rocks and a lithologic trap for ore−forming fluid. However, the origin of tourmaline in hornfels is unknown, which restricts the further understanding of the mineralization.

    Methods 

    We carried out detailed drilling logging, petrographic observations and major element analyses of tourmaline with distinctive occurrences in hornfels from the Jiama deposit to elucidate the genesis of tourmaline and evolution of magmatic hydrothermal fluids.

    Results 

    Four types of tourmalines in hornfels from the Jiama deposit have been identified in this study: 1) Tur−I, tourmaline occurring as cement in hydrothermal breccias; 2) Tur−II, quartz + tourmaline ± pyrite vein; 3) Tur−III, tourmaline ± pyrite ± chalcopyrite vein; 4) porphyritic tourmaline ± pyrite. Tourmaline with distinctive occurrences in hornfels, which belongs to alkali group and dravite−schorl solid solution series, has a wide range of Al2O3, Fe/(Fe+Mg) and Na/(Na+Ca). X□Al(NaMg)−1, Fe2+Mg−1 and Fe3+Al−1 exchange dominates the substitutions of Tur−I−IV.

    Conclusions 

    Tourmaline in hornfels with complicated zoning texture has a very variable compositions, indicating that the tourmaline is caused by different degrees of mixing of magmatic hydrothermal fluid and formation fluid, and the water−rock interaction between magmatic hydrothermal fluid and reduced hornfels may play an important role on the mineralization. The various textures and compositions of tourmaline with distinctive occurrences in hornfels from Jiama record some detailed information related to evolution of magmatic hydrothermal fluid, and can provides evidence for understanding the mineralization.

    Highlights
    The various textures and compositions of tourmaline trace evolution of magmatic hydrothermal fluid.
  • [1]
    Allegre J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Scharer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariepy C, Gopel C, Li T, Xiao X C, Chang C F. 1984. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 307: 17−22. doi: 10.1038/307017a0
    [2]
    Baksheev I A, Prokofev V Y, Zaraisky G P, Chitalin A F, Yapaskurt V O, Nikolaev Y N, Tikhomirov P L, Nagornaya E V, Rogacheva L l, Gorelikova N V, Kononov O V. 2012. Tourmaline as a prospecting guide for the porphyry−styledeposits[J]. European Journal of Mineralogy, 24(6): 957−979. doi: 10.1127/0935-1221/2012/0024-2241
    [3]
    Chung S L, Chu M F, Zhang Y Q, Xie Y W, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q, Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post−collisional magmatism[J]. Earth−Science Reviews, 68: 173−196.
    [4]
    Codeço M S, Weis P, Trumbull R B, Pinto F, Lecumberri−Sanchez P, Wilke F D H. 2017. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W−Sn–Cu deposit, Portugal[J]. Chemical Geology, 468: 1−16. doi: 10.1016/j.chemgeo.2017.07.011
    [5]
    Dutrow B L, Henry D J. 2011. Tourmaline: A geologic DVD[J]. Elements, 7: 301−306. doi: 10.2113/gselements.7.5.301
    [6]
    Feng Yonggang, Liang Ting, Wang Mengxi, Zhang Ze, Hao Yuanyuan, Cen Jubiao, Dong Ziyan. 2022. Geochemistry of tourmaline from granitic pegmatites in East Qinling and its implications for mineralization[J]. Acta Petrologica Sinica, 38(2): 428−444 (in Chinese with English abstract).
    [7]
    Griffin W L, Slack J F, Ramsden A R, Qin T T, Ryan C G. 1996. Trace elements in tourmalines from massive sulfides deposits and tourmalinites: Geochemical controls and exploration applications[J]. Economic Geology, 91(4): 657−675. doi: 10.2113/gsecongeo.91.4.657
    [8]
    Guo Jia, Yan Haibo, Ling Mingxing, Zhang Rongqing. 2020. Chemical composition of tourmaline in the biotite granite, the Dachang district: Insights into magmatic−hydrothermal evolution[J]. Acta Petrologica Sinica, 36(1): 171−183 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.16
    [9]
    Guo Wenbo, Zheng Wenbao, Tang Juxing, Ying Lijuan, Wang Yiyun, Lin Bin. 2014. Geochemical constraints on the source of metallogenic fluids and materials in the Jiama polymetallic Cu deposit, Tibet[J]. Geology in China, 41(2): 510−528 (in Chinese with English abstract).
    [10]
    Gupta S, Jayananda M, Fareeduddin. 2014. Tourmaline from the Archean G. R. Halli gold deposit, Chitradurga greenstone belt, Dharwar craton (India): Implications for the gold metallogeny[J]. Geoscience Frontiers, 5(6): 877−892. doi: 10.1016/j.gsf.2013.12.004
    [11]
    Han J S, Hollings P, Jourdan F, Zeng Y C, Chen H Y. 2020. Inherited Eocene magmatic tourmaline captured by the Miocene Himalayan leucogranites[J]. American Mineralogist, 105: 1436−1440. doi: 10.2138/am-2020-7608
    [12]
    Harlaux M, Kouzmanov K, Gialli S, Laurent O, Rielli O, Dini A, Chauvet A, Menzies A, Kalinaj M, Fontbot´e L. 2020. Tourmaline as a tracer of late−magmatic to hydrothermal fluid evolution: The world−class San Rafael tin (−copper) deposit, Peru[J]. Economic Geology, 115: 1665−1697. doi: 10.5382/econgeo.4762
    [13]
    Henry D J, Guidotti C V. 1985. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite−grade metapelites of NW Maine[J]. American Mineralogist, 70: 1−15.
    [14]
    Henry D J, Dutrow B L. 1996. Metamorphic tourmaline and its petrologic applications[J]. Reviews in Mineralogy and Geochemistry, 33: 503−558.
    [15]
    Henry D J, Novák M, Hawthorne F C, Ertl A, Dutrow B L, Uher P, Pezzotta F. 2011. Nomenclature of the tourmaline−supergroup minerals[J]. American Mineralogist, 96: 895−913. doi: 10.2138/am.2011.3636
    [16]
    Hinsberg V J V, Henry D J, Marschall H R. 2011. Tourmaline: An ideal indicator of its host environment[J]. The Canadian Mineralogist, 49: 1−16. doi: 10.3749/canmin.49.1.1
    [17]
    Hou Z Q, Ma H W, Zaw K, Zhang Y Q. 2003. The Himalayan Yulong porphyry copper belt: Product of large−scale strike−slip faulting in Eastern Tibet[J]. Economic Geology, 98(1): 125−145.
    [18]
    Hou Zengqian, Yang Zhusen, Xu Wenyi, Mo Xuanxue, Ding Lin, Gao Yongfeng, Dong Fangliu, Li Guangming, Qu Xiaoming, Zhao Zhidan, Jiang Sihong, Meng Xiangjin, Li Zhenqing, Qin Kezhang, Yang Zhiming. 2006. Metallogenesis in Tibetan collisional orogenic belt: I. Mineralization in main−collisional transformation setting[J]. Mineral Deposits, 25 (4): 337–358 (in Chinese with English abstract).
    [19]
    Jia R X, Fang W X, Hu R Z. 2010. Mineral geochemical compositions of tourmalines and their significance in the Gejiu Tin polymetallic deposits, Yunnan, China[J]. Acta Geologica Sinica, 84(1): 155−166. doi: 10.1111/j.1755-6724.2010.00177.x
    [20]
    Lang X H, Tang J X, Li Z J, Huang Y, Ding F, Yang H H, Zhou Y. 2014. U–Pb and Re–Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC[J]. Journal of Asian Earth Sciences, 79: 608−622. doi: 10.1016/j.jseaes.2013.08.009
    [21]
    Launay G, Sizareta S, Guillou−Frottier L, Gloaguen E, Pinto F. 2018. Deciphering fluid flow at the magmatic−hydrothermal transition: A case study from the world−class Panasqueira W–Sn–(Cu) ore deposit (Portugal)[J]. Earth and Planetary Science Letters, 499: 1−12. doi: 10.1016/j.jpgl.2018.07.012
    [22]
    Li Zhenzhen, Qin Kezang, Pei Bin, Zhao Junxing, Shi Ruize, Zhao Zelong, Han Ri. 2020. Mineralogical features of tourmaline in Baiyinchagan Sn−Ag−Pb−Zn deposit, southern Great Xing'an Range, and its implications for magmatic−hydrothermal evolution[J]. Acta Petrologica Sinica, 36(12): 3797−3812 (in Chinese with English abstract).
    [23]
    Lin Bin, Tang Juxing, Tang Pan, Zheng Wenbao, Greg Hall, Chen GuoLiang, Zhang Zhongkun. 2019. Polycentric complex mineralization model of porphyry system: A case study of Jiama superlarge deposit in Tibet[J]. Mineral Deposits, 38(6): 1204−1222 (in Chinese with English abstract).
    [24]
    Lin Bin, Tang Juxing, Tang Pan, Zhou Aorigele, Sun Miao, Qi Jing, Chen Guoliang, Zhang Zhongkun, Zhang Zebin, Wu Chunneng, Tian Zhichao, Dai Jingjing, Yang Zhengkun, Yao Xiaofeng. 2021. Preliminary study of first 3000 m scientific drilling in Jiama porphyry metallogenic system, Tibet[J]. Mineral Deposits, 40(6): 1119−1134 (in Chinese with English abstract).
    [25]
    London D, Manning D A C. 1995. Chemical variation and significance of tourmaline from Southwest England[J]. Economic Geology, 90(3): 495−519. doi: 10.2113/gsecongeo.90.3.495
    [26]
    Mo X X, Hou Z Q, Niu Y L, Dong G C, Qu X M, Zhao Z D, Yang Z M. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 96: 225−242. doi: 10.1016/j.lithos.2006.10.005
    [27]
    Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S, Ke S. 2008. Contribution of syncollision felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong vocanic succession in southern Tibet[J]. Chemical Geology, 250: 49−67. doi: 10.1016/j.chemgeo.2008.02.003
    [28]
    Novák M, Koda R, Filip J, Macek I, Vaculovi T. 2011. Compositional trends in tourmaline from intragranitic NYF pegmatites of the terbic pluton, Czech Republic: An electron microprobe, Mossbauer and LA−ICP−MS study[J]. The Canadian Mineralogist, 49(1): 359−380.
    [29]
    Qiu K F, Yu H C, Hetherington C, Huang Y Q, Yang T, Deng J. 2021. Tourmaline composition and boron isotope signature as a tracer of magmatic−hydrothermal processes[J]. American Mineralogist, 106: 1033−1044. doi: 10.2138/am-2021-7495
    [30]
    Slack J F, Trumbull R B. 2011. Tourmaline as a recorder of oreforming processes[J]. Elements, 7: 321−326.
    [31]
    Tang Juxing, Deng Shilin, Zheng Wenbao, Ying Lijuan, Wang Xiongwu, Zhong Kanghui, Qin Zhipeng, Ding Feng, Li Fengji, Tang Xiaoqian, Zhong Yufeng, Peng Huijuan. 2011. An exploration model for Jiama copper polymetallic deposit in Maizhokunggar County, Tibet[J]. Mineral Deposits, 30(2): 179−196 (in Chinese with English abstract).
    [32]
    Tang Juxing, Duo Ji, Liu Hongfei, Lang Xinghai, Zhang Jinshu, Zheng Wenbao, Ying Lijuan. 2012. Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic belt[J]. Acta Geoscientia Sinica, 33(4): 393−410 (in Chinese with English abstract).
    [33]
    Tang Juxing, Wang Denghong, Wang Xiongwu, Zhong Kanghui, Ying Lijuan, Zheng Wenbao, Li Fengjie, Guo Na, Qin Zhipeng, Yao Xiaofeng, Li Lei, Wang You, Tang Xiaoqian. 2010. Geological features and metallogenic model of the Jiama copper−polymetallic deposit in Tibet[J]. Acta Geoscientica Sinica, 31(4): 495−506 (in Chinese with English abstract).
    [34]
    Tang Juxing, Wang Qin, Yang Huanhuan, Gao Xin, Zhang Zebin, Zou Bin. 2017. Mineralization, exploration and resource potential of porphyry−skarn−epithermal copper polymetallic deposits in Tibet[J]. Acta Geoscientica Sinica, 38(5): 571−613 (in Chinese with English abstract).
    [35]
    Tang P, Tang J X, Lin B, Wang L Q, Zheng W B, Leng Q F, Gao X, Zhang Z B, Tang X Q. 2019. Mineral chemistry of magmatic and hydrothermal biotites from the Bangpu porphyry Mo (Cu) deposit, Tibet[J]. Ore Geology Reviews, 115: 103122.
    [36]
    Tang P, Tang J X, Wang Y, Lin B, Zheng W B, Leng Q F, Zhang Z B, Yang Y, Wu C N, Qi J, Li Y X. 2020. Zircon U−Pb geochronology, geochemistry, S−Pb−Hf isotopic compositions, and mineral chemistry of the Xin'gaguo skarn Pb−Zn deposit, Tibet, China[J]. Geological Journal, 55(6): 4790−4809. doi: 10.1002/gj.3713
    [37]
    Tang P, Tang J X, Wang Y, Lin B, Leng Q F, Zhang Q Z, He L, Zhang Z B, Sun M, Wu C N, Qi J, Li Y X, Dai S J. 2021. Genesis of the Lakang’e porphyry Mo (Cu) deposit, Tibet: Constraints from geochemistry, geochronology, Sr−Nd−Pb−Hf isotopes, zircon and apatite[J]. Lithos, 380–381: 1−38.
    [38]
    Tang Pan, Tang Juxing, Zheng Wenbao, Leng Qiufeng, Lin Bin, Tang Xiaoqian, Wang Hao, Gao Xin, Zhang Zebin, Zhou Hongbing. 2017. Is Tongshan orebody in the Jiama copper−polymetallic Deposit Manto−type ore?[J]. Acta Geoscientica Sinica, 38(5): 829−838 (in Chinese with English abstract).
    [39]
    Tang Pan, Chen Yuchuan, Tang Juxing, Zheng Wenbao, Leng Qiufeng. 2016. Characteristics and geological signifi−cance of biotites in Jiama porphyry deposit system, Tibet[J]. Mineral Deposits, 35(4): 846−866 (in Chinese with English abstract).
    [40]
    van Hinsberg V J, Henry D J, Marschall H R. 2011. Tourmaline: An ideal indicator of its host environment[J]. The Canadian Mineralogist, 49: 1−16. doi: 10.3749/canmin.49.1.1
    [41]
    Wang Denghong, Tang Juxing, Ying Lijuan, Lin Bin, Ding Shuai. 2011. Hornfels feature in the Jiama ore deposit, Tibet and its significance on deep prospecting[J]. Acta Petrologica Sinica, 27(7): 2103−2108 (in Chinese with English abstract).
    [42]
    Wang L Q, Tang J X, Yang Y, Li Z, Lin B. 2018. Zircon U−Pb geochronology, geochemistry, and S−Pb isotopic compositions of the Lietinggang iron polymetallic deposit, Tibet, China[J]. Ore Geology Review, 98: 62−79. doi: 10.1016/j.oregeorev.2018.05.017
    [43]
    Wang Weiping, Tang Juxing. 2011. Rock types and genetic significance of hornfels and location prediction of concealed porphyry bodies in Jiama copper polymetallic deposit, Tibet[J]. Mineral Deposits, 30(6): 1017−1038 (in Chinese with English abstract).
    [44]
    Wang Yiyun, Zheng Wenbao, Chen Yuchuan, Tang Juxing, Leng Qiufeng, Tang Pan, Ding Shuai, Zhou Yun. 2017. Descussion on the mechanism of seperation of copper and molybdenum in Jima porphyry deposit system, Tibet[J]. Acta Petrologica Sinica, 33(2): 495−514 (in Chinese with English abstract).
    [45]
    Xie F W, Tang J X, Chen Y C, Lang X H. 2018. Apatite and zircon geochemistry of Jurassic porphyries in the Xiongcun district, southern Gangdese porphyry copper belt: Implications for petrogenesis and mineralization[J]. Ore Geology Reviews, 96: 98−114. doi: 10.1016/j.oregeorev.2018.04.013
    [46]
    Xue Jianling, Xu Hong, Gao Yiming, Huang Jingyi. 2006. Mineralogical characteristics of tourmaline in the Houxianyu boron deposit in Liaoning and their significance for rock and ore formation[J]. Geology in China, 33(6): 1386−1392 (in Chinese with English abstract).
    [47]
    Yang S Y, Jiang S Y, Zhao K D, Jiang Y H, Ling H F, Luo L. 2012. Geochronology, geochemistry and tectonic significance of two Early Cretaceous A−type granites in the Gan−Hang Belt, Southeast China[J]. Lithos, 150: 155−170. doi: 10.1016/j.lithos.2012.01.028
    [48]
    Yang Z M, Cooke D R. 2019. Porphyry copper deposits in China[J]. Society of Economic Geologists Special Publication, 22: 133−187.
    [49]
    Yang Z M, Hou Z Q, White N C, Chang Z S, Li Z Q, Song Y. 2009. Geology of the post−collisional porphyry copper–molybdenum deposit at Qulong, Tibet[J]. Ore Geology Review, 36: 133−159. doi: 10.1016/j.oregeorev.2009.03.003
    [50]
    Yao Xiaofeng, Ye Tianzhu, Tang Juxing, Zheng Wenbao, Ding Shuai, Li Yongsheng, Zheng Shimin. 2014. The effect of Si−Ca interface on skarn formation and pollymetallic mineralization in the Jiama deposit, Tibet[J]. Geology in China, 41(5): 1577−1593 (in Chinese with English abstract).
    [51]
    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan−Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211−280. doi: 10.1146/annurev.earth.28.1.211
    [52]
    Ying Lijuan, Tang Juxing, Wang Denghong, Zheng Wenbao, Qin Zhipeng, Zhang Li. 2011. Zircon shrimp U−Pb dating of porphyry vein from the Jiama copper polymetallic deposit in Tibet and its significance[J]. Acta Petrologica Sinica, 27(7): 2095−2102 (in Chinese with English abstract).
    [53]
    Ying Lijuan, Wang Denghong, Tang Juxing, Chang Zhesheng, Qu Wenjun, Zheng Wenbao, Wang Huan. 2010. Re−Os dating of molybdenite from the Jiama copper polymetallic deposit in Tibet and its metallogenic significance[J]. Acta Geologica Sinica, 84(8): 1165−1174 (in Chinese with English abstract).
    [54]
    Yu J M, Jiang S Y. 2003. Chemical composition of tourmaline from the Yunlong tin deposit, Yunnan, China: Implications for ore genesis and mineral exploration[J]. Mineralogy and Petrology, 77(1): 67−84.
    [55]
    Yu M, Feng C Y, Mao J W, Zhao Y M, Li D X. 2017. Multistage skarn−related tourmaline from Galinge deposit, Qiman Tagh, western China: A fluid evolution perspective[J]. The Canadian Mineralogist, 55: 3−19. doi: 10.3749/canmin.1600043
    [56]
    Yu Miao, Feng Chengyou, Liu Hongchuan, Li Dingwu, Zhao Yiming, Li Daxin, Liu Jiannan, Wang Hui. 2016. Mineralogy, element geochemistry and genesis of tourmaline from Galinge skarn deposit, Qinghai Province[J]. Mineral Deposits, 35(1): 69−84 (in Chinese with English abstract).
    [57]
    Zhang S T, Lu J J, Zhang R Q, Liang X L, Ma D S, Li R C, Wu J W. 2021. Tourmaline as an indicator for late−magmatic to hydrothermal fluid evolution of the Neoproterozoic Baotan tin deposit, South China[J]. Ore Geology Review, 139: 104504.
    [58]
    Zhang Z M, Dong X, Santosh M, Zhao G C. 2014. Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet[J]. Gondwana Research, 25: 170−189.
    [59]
    Zhang Zebin, Tang Juxing, Tang Pan, Chen Guoliang, Zhang Zhongkun, Gao Xin, Yang Yang. 2019. The origin of the mafic microgranular enclaves from Jiama porphyry Cu polymetallic deposit, Tibet: Implications for magma mixing/mingling and mineralization[J]. Acta Petrologica Sinica, 35(3): 934−952 (in Chinese with English abstract).
    [60]
    Zhang Zhongkun, Lin Bin, Chen Guoliang, Zou Bing, Yang Zhengkun, Tang Pan, Gao Xin, Qi Jing, Li Faqiao, Gao Futai, Jiao Haijun, Sun Jianjun, Li Yajun, Su Wei. 2021. The diagenesis−mineralization−structure coupling relationship of South−Pit skarn thick ore body in the Jiama super large−sized deposit, Tibet[J]. Geology in China, 48(6): 1804−1817 (in Chinese with English abstract).
    [61]
    Zhao X Y, Yang Z S, Zheng Y C, Liu Y C, Tian S H, Fu Q. 2015. Geology and genesis of the post−collisional porphyry–skarn deposit at Bangpu, Tibet[J]. Ore Geology Reviews, 70: 486−509. doi: 10.1016/j.oregeorev.2014.09.014
    [62]
    Zheng W B, Tang J X, Zhong K H, Ying L J, Leng Q F, Ding S, Lin B. 2016. Geology of the Jiama porphyry copper–polymetallic system, Lhasa Region, China[J]. Ore Geology Reviews, 74: 151−169. doi: 10.1016/j.oregeorev.2015.11.024
    [63]
    Zhong Kanghui, Li Lei, Zhou Huiwen, Bai Jingguo, Li Wei, Zhong Wanting, Zhang Yongqiang, Lin Jiqing, Zheng Fanshi, Huang Xiaoyu, Lu Biao, Lei Bo. 2012. Features of Jiama (Gyama)−Kajunguo thrust−gliding nappe tectonic[J]. Acta Geoscientica Sinica, 33(4): 411−423 (in Chinese with English abstract).
    [64]
    Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre−Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 23: 1429−1454. doi: 10.1016/j.gr.2012.02.002
    [65]
    凤永刚, 梁婷, 王梦玺, 张泽, 郝媛媛, 岑炬标, 董紫. 2022. 东秦岭花岗伟晶岩中电气石地球化学特征及成矿指示意义[J]. 岩石学报, 38(2): 428−444. doi: 10.18654/1000-0569/2022.02.08
    [66]
    郭佳, 严海波, 凌明星, 章荣清. 2020. 广西大厂地区黑云母花岗岩中电气石的化学组成及其对岩浆热液演化的指示[J]. 岩石学报, 36(1): 171−183. doi: 10.18654/1000-0569/2020.01.16
    [67]
    郭文铂, 郑文宝, 唐菊兴, 应立娟, 王艺云, 林彬. 2014. 西藏甲玛铜多金属矿床流体、成矿物质来源的地球化学约束[J]. 中国地质, 41(2): 510−528. doi: 10.3969/j.issn.1000-3657.2014.02.015
    [68]
    侯增谦, 杨竹森, 徐文艺, 莫宣学, 丁林, 高永丰, 董方浏, 李光明, 曲晓明, 李光明, 赵志丹, 江思宏, 孟祥金, 李振清, 秦克章, 杨志明. 2006. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用[J]. 矿床地质, 25(4): 337−358. doi: 10.3969/j.issn.0258-7106.2006.04.001
    [69]
    李真真, 秦克章, 裴斌, 赵俊兴, 施睿哲, 赵泽龙, 韩日. 2020. 大兴安岭南段白音查干Sn−Ag−Zn−Pb矿床电气石矿物学特征及对岩浆−热液演化过程的启示[J]. 岩石学报, 36(12): 3797−3812. doi: 10.18654/1000-0569/2020.12.14
    [70]
    林彬, 唐菊兴, 唐攀, 郑文宝, Greg Hall, 陈国良, 张忠坤. 2019. 斑岩成矿系统多中心复合成矿作用模型—以西藏甲玛超大型矿床为例[J]. 矿床地质, 38(6): 1204−1222.
    [71]
    林彬, 唐菊兴, 唐攀, 周敖日格勒, 孙渺, 祁婧, 陈国良, 张忠坤, 张泽斌, 吴纯能, 田志超, 代晶晶, 杨征坤, 姚晓峰. 2021. 青藏高原甲玛斑岩成矿系统首例3000 m科学深钻的初步认识[J]. 矿床地质, 40(6): 1119−1134.
    [72]
    唐菊兴, 邓世林, 郑文宝, 应立娟, 汪雄武, 钟康惠, 秦志鹏, 丁枫, 黎枫佶, 唐晓倩, 钟裕峰, 彭慧娟. 2011. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J]. 矿床地质, 30(2): 179−196. doi: 10.3969/j.issn.0258-7106.2011.02.002
    [73]
    唐菊兴, 多吉, 刘鸿飞, 郎兴海, 张金树, 郑文宝, 应立娟. 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J]. 地球学报, 33(4): 393−410.
    [74]
    唐菊兴, 王登红, 汪雄武, 钟康惠, 应立娟, 郑文宝, 黎枫佶, 郭娜, 秦志鹏, 姚晓峰, 李磊, 王友, 唐晓倩, 2010. 西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J]. 地球学报, 31(4): 495−506.
    [75]
    唐菊兴, 王勤, 杨欢欢, 高昕, 张泽斌, 邹兵. 2017. 西藏斑岩−矽卡岩−浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J]. 地球学报, 38(5): 571−613. doi: 10.3975/cagsb.2017.05.02
    [76]
    唐攀, 陈毓川, 唐菊兴, 郑文宝, 冷秋锋, 林彬 方向. 2016. 西藏甲玛斑岩矿床系统黑云母特征及其地质意义[J]. 矿床地质, 35(4): 846−866.
    [77]
    唐攀, 唐菊兴, 郑文宝, 冷秋锋, 林彬, 唐晓倩, 王豪, 高昕, 张泽斌, 周洪兵. 2017. 西藏甲玛铜多金属矿床铜山矿体为manto型矿体?[J]. 地球学报, 38(5): 829−838. doi: 10.3975/cagsb.2017.05.21
    [78]
    王登红, 唐菊兴, 应立娟, 林彬, 丁帅. 2011. 西藏甲玛矿区角岩特征及其对深部找矿的意义[J]. 岩石学报, 27(7): 2103−2108.
    [79]
    王崴平, 唐菊兴. 2011. 西藏甲玛铜多金属矿床角岩岩石类型、成因意义及隐伏斑岩岩体定位预测[J]. 矿床地质, 30(6): 1017−1038. doi: 10.3969/j.issn.0258-7106.2011.06.004
    [80]
    王艺云, 郑文宝, 陈毓川, 唐菊兴, 冷秋锋, 唐攀, 丁帅, 周云. 2017. 西藏甲玛斑岩成矿系统铜钼元素分离机制探讨[J]. 岩石学报, 33(2): 495−514.
    [81]
    薛建玲, 许虹, 高一鸣, 黄静宜. 2006. 辽宁后仙峪硼矿床中电气石的矿物学特征及其成岩成矿意义[J]. 中国地质, 33(6): 1386−1392. doi: 10.3969/j.issn.1000-3657.2006.06.023
    [82]
    姚晓峰, 叶天竺, 唐菊兴, 郑文宝, 丁帅, 李永胜, 甄世民. 2014. 西藏甲玛矿床硅钙界面对矽卡岩成岩及多金属成矿的影响[J]. 中国地质, 41(5): 1577−1593. doi: 10.3969/j.issn.1000-3657.2014.05.014
    [83]
    应立娟, 唐菊兴, 王登红, 郑文宝, 秦志鹏, 张丽. 2011. 西藏甲玛超大型铜矿区斑岩脉成岩时代及其与成矿的关系[J]. 岩石学报, 27(7): 2095−2102.
    [84]
    应立娟, 王登红, 唐菊兴, 畅哲生, 屈文俊, 郑文宝, 王焕. 2010. 西藏甲玛铜多金属矿辉钼矿Re−Os定年及其成矿意义[J]. 地质学报, 84(8): 1165−1174.
    [85]
    于淼, 丰成友, 刘洪川, 李定武, 赵一鸣, 李大新, 刘建楠, 王辉. 2016. 青海尕林格铁矿床电气石矿物学、元素地球化学及成因研究[J]. 矿床地质, 35(1): 69−84.
    [86]
    张泽斌, 唐菊兴, 唐攀, 陈国良, 张忠坤, 高昕, 杨阳. 2019. 西藏甲玛铜多金属矿床暗色包体岩石成因: 对岩浆混合和成矿的启示[J]. 岩石学报, 35(3): 934−952.
    [87]
    张忠坤, 林彬, 陈国良, 邹兵, 杨征坤, 唐攀, 高昕, 祁婧, 李发桥, 高福太, 焦海军, 孙建军, 李亚军, 苏伟. 2021. 西藏甲玛超大型矿床南坑厚大矽卡岩矿体的成岩−成矿−构造耦合关系[J]. 中国地质, 48(6): 1804−1817. doi: 10.12029/gc20210612
    [88]
    钟康惠, 李磊, 周慧文, 白景国, 李伟, 钟婉婷, 张勇强, 蔺吉庆, 郑凡石, 黄小雨, 陆彪, 雷波. 2012. 西藏甲玛−卡军果推−滑覆构造系特征[J]. 地球学报, 33: 411−423. doi: 10.3975/cagsb.2012.04.03

Catalog

    Article views (2336) PDF downloads (430) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return