Citation: | Li Yang, Song Yang, Tang Juxing, Chen Wei, Sun Hao. 2024. Distribution, types and metallogenic regularity of antimony deposits in Tibet[J]. Geology in China, 51(5): 1570−1600. DOI: 10.12029/gc20230227001 |
This paper is the result of mineral exploration engineering.
Antimony (Sb) is one of the strategic minerals in China, thus it is imperative to construct a new antimony resource base. This study analyzes and summarizes the geological characteristics, deposit types, spatial and temporal distribution, and ore−forming sources of Sb、Sb−Au、Sb−Pb−Zn deposits in Tibet, and preliminarily summarizes the metallogenic laws of antimony deposits in Tibet, which is of great significance for guiding the new round of ore prospecting breakthroughs.
This paper collected and investigated the data of Sb deposits in Tibet from published literatures around the world, and combined with the latest regional geological survey results, to clarify the relationship between the mineralization of Sb deposits (prospects) in Tibet and the formation and evolution of the Tibetan Plateau from factors of geological characteristics, genetic types and geochemistry.
The Sb deposits in Tibet are mainly of hydrothermal type. The ore bodies are mainly endowed in clastic rocks and carbonate rocks. The mantle materials have contributions to the Sb mineralization. The mineralization age is mainly from the Early Cretaceous to the Miocene (about 20 Ma). The Sb mineralization is mainly related to the collisional granitic magmatism and the post−collisional extensional magmatism. The distribution of Sb deposits in Tibet is controlled by various layered structures, faults, folds and other tectonic structures, and the ore−bearing strata are late Triassic and Jurassic−Cretaceous strata.
The Sb deposits in Tibet have the characteristics of zonal distribution, which can be divided into four major Sb metallogenic belts from west to east: western Tibet, southern Tibet, northern Tibet and eastern Tibet. The Cenozoic era is the most important metallogenic period of Sb deposits in Tibet, and the intracontinental extensional background after the strong uplift of the Tibetan Plateau is conducive to the Sb mineralization. According to the metallogenic characteristics of Sb deposits in Tibet, an applicable exploration model is proposed to provide a scientific basis for the prospecting breakthrough of Sb deposits.
[1] |
Anderson C G. 2012. The metallurgy of antimony[J]. Chemie der Erde−Geochemistry, 72(4): 3−8.
|
[2] |
Aung M O, Lv X B, Khin Z, Than H, Sun B, Munir M A A. 2020. Ore geology, fluid inclusions, and (H−O−S−Pb) isotope geochemistry of the sediment−hosted antimony mineralization, Lyhamyar Sb deposit, Southern Shan Plateau, Eastern Myanmar: Implications for ore genesis[J]. Minerals, 296(10): 1−25.
|
[3] |
A Wangjia Cuo, Zheng Youye, Yang Wantao, SuoLang Ouzhu. 2017. Mineral typomorphic characteristics and source of ore-forming materials of keyue lead-zinc polymetallic deposit, Southern Tibet[J]. Geological Science and Technology Information, 36(3): 53−63 (in Chinese with English abstract).
|
[4] |
Behzad M, Ebrahim T F, Bruce Y. 2019. Ore geology, fluid inclusions and O−S stable isotope characteristics of Shurab Sb−polymetallic vein deposit, eastern Iran[J]. Geochemistry, 79: 307−322. doi: 10.1016/j.geoch.2018.12.004
|
[5] |
Bianba Renqing, Chen Li, Zhou Weide. 2019. Geological characteristics of gold−antimony ore formation and prospect analysis of Lachung gold−antimony mine in Tsomei County, Tibet[J]. Western Resources, (6): 36−37 (in Chinese).
|
[6] |
Boyle R W, Jonasson I R. 1984. The geochemistry of antimony and its use as an indicator element in geochemical prospecting[J]. Journal of Geochemical Exploration, 20(3): 223−302. doi: 10.1016/0375-6742(84)90071-2
|
[7] |
Bu Xichuan, Liu Shian. 2018. Charcteristics and genesis of the ore deposit in the Jiangxi Province[J]. World Nonferrous Metals, (19): 110−112 (in Chinese with English abstract).
|
[8] |
Cao H W, Zou H, Leon B, Zhang L K, Zhang Z, Li Z Q. 2019. The Laqiong Sb−Au deposit: Implications for polymetallic mineral systems in the Tethys−Himalayan zone of southern Tibet, China[J]. Gondwana Research, 72: 83−96. doi: 10.1016/j.gr.2019.02.010
|
[9] |
Chen J, Huang Z L, Yang R D, Du L J, Liao M Y. 2021. Gold and antimony metallogenic relations and ore−forming process of Qinglong Sb(Au) deposit in Youjiang basin, SW China: Sulfide trace lements and sulfur isotopes[J]. Geoscience Frontiers, 12: 1−19.
|
[10] |
Chen J, Yang R D, Du L J, Gao J B, Zheng L L, Huang Z L. 2020. Multistage fluid sources and evolution of Qinglong Sb−(Au) deposit in northern margin of Youjiang basin, SW China: REE geochemistry and Sr−H−O isotopes of ore−related jasperoid, quartz and fluorite[J]. Ore Geology Reviews, 127: 1−18.
|
[11] |
Chen S S, Shi R D, Fan W M, Zou H B, Liu D L, Huang Q S, Gong X H, Yi G D, Wu K. 2016. Middle Triassic volcanic rocks in the Northern Qiangtang (Central Tibet): Geochronology, petrogenesis, and tectonic implications[J]. Tectonophysics, 666: 90−102. doi: 10.1016/j.tecto.2015.10.017
|
[12] |
Chen Wenqing, Zhan Yong. 2018. Geological characteristics and mineral search potential of Pulonglang pyrite in Lang County, Tibet[J]. East China Science and Technology (General), (7): 349−350 (in Chinese).
|
[13] |
Chen Wenxi, Wang Jian. 2009. Correlation of Upper Triassic strata in Qiangtang Basin, northern Tibet[J]. Geology in China, 36(4): 809−818 (in Chinese with English abstract).
|
[14] |
Chen Yuchuan, Wang Denghong, Li Houmin, Xiong Xiaoxian, Gao Lan, Xu Zhigang. 2010. Classification Scheme of Important Mineral Prediction Types[M]. Beijing: Geological Publishing House, 1−222(in Chinese).
|
[15] |
Chen Yuchuan, Wang Denghong. 2001. Study of Himalayan Epigenetic Mineralization[M]. Beijing: Seismological Press(in Chinese).
|
[16] |
Chen Yuchuan. 1999. Prospective Evaluation of Mineral Resources in Major Mineral Formation Zones in China[M]. Beijing: Seismological Press (in Chinese).
|
[17] |
Cheng W B, Peng Y W, Su J, Chi G X, Li G Q, Lv P R. 2021. Geology, geochemistry and genesis of Keyue: A newly discovered Pb−Zn−Sb−Ag polymetallic deposit associated with magmatic center in Southern Tibet, China[J]. Ore Geology Reviews, 139: 68−90.
|
[18] |
China Mineral Deposits Editorial Board. 1989. Mineral Deposits in China [M]. Beijing: Geological Publishing House, 1−544(in Chinese).
|
[19] |
China Nonferrous Metals Industry Corporation. 1996. The Geology and Case Study of Antimony Ore Deposits in China [M]. Beijing Institute of Mineral Geology (in Chinese).
|
[20] |
Chung S L, Chu M F, Zhang Y, Xie Y W, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q, Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 68(3/4): 173−196.
|
[21] |
Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Qi, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021−1024.
|
[22] |
Clark M, Royden L. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703−706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
|
[23] |
Dai Kegang. 2013. Geological Characteristics and Genesis of the Antimony Ore Deposit in the Shuanghu Special Area, Tibet[D]. Beijing: China University of Geosciences (Beijing), 1−54 (in Chinese with English abstract).
|
[24] |
Dayem K E, Molnar P, Clark M K, Houseman G A. 2009. Far−field lithospheric deformation in Tibet during continental collision[J]. Tectonics, 28: 1−9.
|
[25] |
Deng Wanming. 1998. Cenozoic Intraplate Volcanic Rocks in the Northern Qinghai−Tibet Plateau[M]. Beijing: Geological Publishing House(in Chinese).
|
[26] |
Deng Zhou, Zhang Gangyang, Zheng Youye, Chen Youliang. 2019. S−Pb isotope constrains for origin of ore−forming material in Cheqiongzhuobu antimony deposit in southern Tibet[J]. Journal of Hefei University of Technology (Natural Science), 42(3): 337−345 (in Chinese with English abstract).
|
[27] |
Dewey J F, Shackleton R M, Chengfa C, Sun Y Y. 1988. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences, 327(1594): 379−413. doi: 10.1098/rsta.1988.0135
|
[28] |
Dill H G. 1998. Evolution of Sb mineralisation in modern fold belts: A comparison of the Sb mineralisation in the Central Andes (Bolivia) and the Western Carpathians (Slovakia)[J]. Minerals, 33: 359−378.
|
[29] |
Ding J H, Zhang Y, Ma Y B, Wang Y, Zhang J B, Zhang T T. 2021. Metallogenic characteristics and resource potential of antimony in China[J]. Journal of Geochemical Exploration, 230: 106834. doi: 10.1016/j.gexplo.2021.106834
|
[30] |
Ding Jianhua, Yang Yiheng, Deng Fan. 2013. Resource potential and metallogenic prognosis of antimony deposits in China[J]. Geology in China, 40(3): 846−858 (in Chinese with English abstract).
|
[31] |
Ding Lin, Cai Fulong, Zhang Qinghai, Zhang Liyun, Xu Qiang, Yang Di, Liu Deliang, Zhong dalai. 2009. Foreland basin systems and tectonic evolution of the Ganges−Himalayan collisional orogenic belt[J]. Geoscience, 44(4): 1289−1311 (in Chinese with English abstract).
|
[32] |
Ding Lin, Satybaev Maksatbek, Cai Fulong, Wang Houqi, Song Peiping, Ji Weiqiang, Xu Qiang, Zhang Liyun, Qasim Muhammad, Baral Upendra. 2017. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences, 47(3): 293−309 (in Chinese with English abstract).
|
[33] |
Du Xiaofei. 2014. Fluid Inclusions in the Keyue Pb−Zn−Sb−Ag Deposit, Lhunze County, Tibet[D]. Chengdu: Chengdu University of Technology, 1−64 (in Chinese with English abstract).
|
[34] |
Du Zezhong, Gu Xuexiang, Li Guanqing, Zhang Yongmei, Cheng Wenbin. 2011. Sulfur, lead isotope composition characteristics and the relevant instructive significance of the Lamuyouta Sb(Au) Deposit, South Tibet[J]. Geoscience, 25(5): 853−860 (in Chinese with English abstract).
|
[35] |
Editorial Committee of China Mineral Deposits. 1989. Mineral Deposits of China, vol. 1 [M]. Beijing: Geological Publishing House (in Chinese).
|
[36] |
European Commission. 2017. Study on the Review of the List of Critical Raw Materials[R]. Brussels: European Commission.
|
[37] |
Evangelos T, Platon N, Gamaletsos, Giovanni G, Micol B, Anthimos X, Anastasios Z, Dimitrios D, Yiannis P, Athanasios G. 2020. New insights into the mineralogy and geochemistry of Sb ores from Greece[J]. Minerals, 10: 236−252.
|
[38] |
Fan D L, Zhang T, Ye J. 2004. The Xikuangshan Sb deposit hosted by the Upper Devonian black shale series, Hunan, China[J]. Ore Geology Reviews, 24(1/2): 121−133.
|
[39] |
Fu Wei, Zhou Yongzhang, Yang Zhijun, Nie Fengjun, He Junguo, Li Wen. 2005. Characteristics of multi−horizon ore−bearing formations in southern Tibet Au−Sb metallogenic belt and its controlling factors[J]. Geotectonica et Metallogenia, 29(3): 321−327 (in Chinese with English abstract).
|
[40] |
Gao Wei. 2006. Study on Geological, Geochemical Characteristics and Genetic Gynamics of Shalagang Antimony Deposit in Southern Tibetan Detachment System[D]. Beijing: China University of Geosciences (Beijing), 1−87. (in Chinese with English abstract).
|
[41] |
Gao Yongfeng, Hou Zengqian, Wei Ruihua, Meng Xiangjin, Hu Hhuabin. 2006. The geochemistry and Sr−Nd−Pb isotopes of basaltic subvolcanics from the Gangdese: Constraints on depleted mantle source for post−collisional volcanisms in the Tibetan plateau[J]. Acta Petrologica Sinica, 22(3): 547−557 (in Chinese with English abstract).
|
[42] |
Guan Q, Zhu D C, Zhao Z D, Dong G C, Zhang L L, Li X W, Liu M, Mo X X, Liu Y S, Yuan H L. 2012. Crustal thickening prior to 38Ma in southern Tibet: Evidence from lower crust−derived adakitic magmatism in the Gangdese Batholith[J]. Gondwana Research, 21(1): 88−99. doi: 10.1016/j.gr.2011.07.004
|
[43] |
Hofstra A H, Marsh E E, Todorov T I, Emsbo P. 2013. Fluid inclusion evidence for a genetic link between simple antimony veins and giant silver veins in the Coeur d’Alene mining district, ID and MT[J]. Geofluids, 13(4): 475−493. doi: 10.1111/gfl.12036
|
[44] |
Hou Z Q, Zhang H R, Pan X F, Yang Z M. 2007. Sanjiang Tethyan metallogenesis in SW, China: Tectonic setting, metallogenic epochs and deposit types[J]. Ore Geology Review, 31(1/4): 48−87.
|
[45] |
Hou Z Q, Zhang H R, Pan X F, Yang Z M. 2011. Porphyry Cu (Mo−Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Review, 39(1): 21−45.
|
[46] |
Hou Zengqian, Mo Xuanxue, Yang Zhiming, Wang Anjian, Pan Guitang, Qu Xiaoming, Nie Fengjun. 2006. Metallogeneses in the collisional orogen of the Qinghai−Tibet Plateau: Tectonic setting, tempo−spatial distribution and ore deposit types[J]. Geology in China, 36(4): 809−818 (in Chinese with English abstract).
|
[47] |
Hou Zengqian, Wang Erqi, Mo Xuanxue, Ding Lin, Pan Guitang, Zhang Zhongjie. 2008. Collisional Orogeny and Mineralization in the Tibetan Plateau[M]. Beijing: Geological Publishing House(in Chinese).
|
[48] |
Hou Zenqian, Song Yucai, Li Zheng, Wang Zhaolin, Yang Zhiming, Yang Zhusen, Liu Yingchao, Tian Shihong, He Longqing, Chen Kaixu, Wang Fuchun, Zhao Chengxiang, Xue Wanwen, Lu Haifeng. 2008. Thrust−controlled sediments−hosted Pb−Zn−Ag−Cu deposits in eastern and northern margins of Tibetan orogenic belt: Geological features and tectonic northern model[J]. Mineral Deposits, 27(2): 123−144 (in Chinese with English abstract).
|
[49] |
Huang Feng, Xu Jifeng, Wang Baodi, Zeng Yunchuan, Liu Xijun, Liu Han, Yu Hongxia. 2020. Destiny of Neo−Tethyan lithosphere during India−Asia collision[J]. Earth Science, 45(8): 2765−2803 (in Chinese with English abstract).
|
[50] |
Jiang Sihong, Nie Fengjun, Hu Peng, Liu Yan, Lai Xinrong. 2007. Geochemical characteristics of the mafic dyke swarms in South Tibet[J]. Acta Geologica Sinica, 81(1): 60−72 (in Chinese with English abstract).
|
[51] |
Jin C S, Liu Q S, Liang W T, Andrew P R, Sun J M, Hu P X, Zhao X Y, Su Y L, Jiang Z X, Liu Z F, Duan Z Q, Yang H H, Yuan S H. 2018. Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India−Eurasia collision and Tibetan Plateau deformation[J]. Earth and Planetary Science Letters, 486: 41−53. doi: 10.1016/j.jpgl.2018.01.010
|
[52] |
Kohn M, Parkinson C D. 2002. Petrologic case for Eocene slab breakoff during the Indo−Asian collision[J]. Geology, 30: 591−594.
|
[53] |
Lan Z W, Zhang G Y, Cao R, Li Fei, Cao H W, Zou H. 2023. Apatite U−Pb geochronological and geochemical constraints on the Mazhala Au−Sb deposit in South Tibet, China[J]. Ore Geology Reviews, 158: 105503. doi: 10.1016/j.oregeorev.2023.105503
|
[54] |
Lang X H, Deng Y L, Wang X H, Tang J X, Yin Q, Xie F W, Yang Z Y, Li Z, He Q, Li L, Zhang Z, Jiang K. 2020. Geochronology and geochemistry of volcanic rocks of the Bima Formation, southern Lhasa subterrane, Tibet: Implications for early Neo−Tethyan sunduction[J]. Gondwana Research, 80: 335−349. doi: 10.1016/j.gr.2019.11.005
|
[55] |
Lang X H, Wang X H, Deng Y L, Tang J X, Xie F W, Zhou Y, Huang Y, Li Z, Yin Q, Jiang K. 2019. Early Jurassic volcanic rocks in the Xiongcun district, southern Lhasa subterrane, Tibet: Implications for the tectono−magmatic events associated with the early evolution of the Neo−Tethys Ocean[J]. Lithos, 340−341: 166−180. doi: 10.1016/j.lithos.2019.05.014
|
[56] |
Lee J, Hacker B R, Dinklage W S, Wang Y, Gans P, Calvert A, Wan J, Chen W, Blythe AE, McClelland W. 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints[J]. Tectonics, 19: 872−895. doi: 10.1029/1999TC001147
|
[57] |
Lee J, Hacker B, Wang Y. 2004. Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet[J]. Journal of Structural Geology, 26: 2297−2316. doi: 10.1016/j.jsg.2004.02.013
|
[58] |
Leech M L, Singh S, Jain A K, Klemperer S L, Manichavasgam R M. 2005 The onset of India−Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth and Planetary Science Letters, 234: 83−97.
|
[59] |
Li Baoliang, Wang Liqiang, Zhang Xiangguo, Pingcuo Duoji, Gao Teng, Wang Yong. 2022. Sulfur and lead isotope compositions and their geological significances in the Quzhen Sb mineralization section of the Hamuqu Sb−Au deposit, Tibet[J]. Acta Geoscientica Sinica, 43(2): 202−210 (in Chinese with English abstract).
|
[60] |
Li G M, Li J X, Zhao J X, Qin K Z, Cao M J, Noreen J E. 2015. Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: Evidence from U−Pb ages, petrochemistry and Sr–Nd–Hf isotopes[J]. Journal of Asian Earth Sciences, 105: 443−455. doi: 10.1016/j.jseaes.2015.02.017
|
[61] |
Li Guangming, Zhang Linkui, Jiao Yanjie, Xia Xiangbiao, Dong Suiliang, Fu Jiangang, Liang Wei, Zhang Zhi, Wu JianYang, Dong Lei, Huang Yong. 2017. First discovery and implications of Cuonadong superlarge Be−W−Sn polymetallic Tibet deposit in Himalayan metallogenic belt, southern Tibet[J]. Mineral Deposits, 36(4): 1003−1008 (in Chinese with English abstract).
|
[62] |
Li H L, Zhou Z K, Noreen J E, Kong H, Wu Q H, Xi X S. 2019. Fluid−zircon interaction during low−temperature hydrothermal processes: Implications for the genesis of the Banxi antimony deposit, South China[J]. Ore Geology Reviews, 114. 103137.
|
[63] |
Li H, Kong H, Guo B Y, Landry S T, Zhang Q, Wu Q H, Xi X S. 2020. Fluid inclusion, H−O−S isotope and rare earth element constraints on the mineralization of the Dong’an Sb deposit, South China[J]. Ore Geology Reviews, 126: 1025−1039.
|
[64] |
Li H, Wu Q H, Noreen J E, Zhou Z K, Kong H, Xi X S, Lin Z W. 2018. Geochemistry and geochronology of the Banxi Sb deposit: Implications for fluid origin and the evolution of Sb mineralization in central−western Hunan, South China[J]. Gondwana Research, 55: 112−134. doi: 10.1016/j.gr.2017.11.010
|
[65] |
Li J W, Hu R Z, Xiao J F, Zhuo Y Z, Yan J, Abiola O. 2020. Genesis of gold and antimony deposits in the Youjiang metallogenic province, SW China: Evidence from in situ oxygen isotopic and trace element compositions of quartz[J]. Ore Geology Reviews, 116: 1−16.
|
[66] |
Li Jingao, Wang Quanhai, Chen Jiankun, Yaoo Peng, Peng Yongmin. 2002. Study of metallogenic and prospecting models for the Shalagang antimony deposit, Gyangze, Tibet[J]. Journal of Chengdu University of Technology, 29(5): 533−538 (in Chinese with English abstract).
|
[67] |
Li Pu. 1955. Preliminary introduction of eastern Tibet[J]. Scientific Bulletin, (7): 62−71 (in Chinese).
|
[68] |
Li Tingdong. 1995. The uplifting process and mechanism of the Qinhai−Tibet Plateau[J]. Acta Geoscientia Sinica, (1): 1−9 (in Chinese with English abstract).
|
[69] |
Li Tingdong. 2002. New progress in the geoscience study of the Qinghai−Tibet Plateau[J]. Geological Bulletin of China, 21(7): 370−376 (in Chinese with English abstract).
|
[70] |
Li W C, Yu H iJ, Gao X, Liu X L, Wang J H. 2017. Review of Mesozoic multiple magmatism and porphyry Cu−Mo (W) mineralization in the Yidun Arc, eastern Tibet Plateau[J]. Ore Geology Reviews, 90: 795−812. doi: 10.1016/j.oregeorev.2017.03.009
|
[71] |
Li Yingxu, Li Guangming, Dong Lei, Zhang Linkui, Wu Jianyang, Zhou Bangguo, Xia Xiangbiao, Dai Zuowen. 2018. Geology and exploration potential of the Mazhala gold deposit, Cuomei Xizang: An approach[J]. Sedimentary Geology and Tethyan Geology, 38(3): 88−98 (in Chinese with English abstract).
|
[72] |
Li Zhitai, Xu Kang, Wang Lianfeng, Wang Qiang, Jiang Yingde. 2020. Metamorphic evolution of the kyanite−staurolite micaschist from the Ramba Dome, Tibet: Insights into the petrogenesis of Himalayan Eocene leucogranite[J]. Geotectonica et Metallogenia, 44(6): 1190−1207 (in Chinese with English abstract).
|
[73] |
Liang Wei, Li Guangming, Basang Yuandan, Zhang Linkui, Fu Jiangang, Huang Yong, Zhang Zhi, Wang Yiyun, Cao Huawen. 2021. Metallogenesis of Himalaya gneiss dome: An example from Cuonadong gneiss dome in Zhaxikang ore concentration area[J]. Mineral Deposits, 40(5): 932−948 (in Chinese with English abstract).
|
[74] |
Liang Wei, Yang Zhusen, Zheng Yuanchuan. 2015. The Zhaxikang Pb−Zn polymetallic deposit: Ar−Ar age of sericite and its metallogenic significance[J]. Acta Geologica Sinica, 89(3): 560−568 (in Chinese with English abstract).
|
[75] |
Liang Wei, Zheng Yuanchuan, Yang Zhusen, Li Zhenqing, Liu Yingchao, Liu Yunfei, Li Qiuyun, Sun Qingzhong, Fu Qianq, Hou Zengqian. 2014. Multiphase and polystage metallogenic process of the Zhaxikang large−size Pb−Zn−Ag−Sb polymetallic deposit in southern Tibet and its implications[J]. Acta Petrologica et Mineralogica, 33(1): 64−78 (in Chinese with English abstract).
|
[76] |
Liang Wei. 2014. Metallogenesis of Au−Sb−Pb−Zn Mineralization in Tethys Himalaya Belt, South Tibet, China[D]. Beijing: China University of Geosciences (Beijing), 1−151 (in Chinese with English abstract).
|
[77] |
Lin Bin, Tang Juxing, Zheng Wenbao, Wang Yiyun, Gao Yiming, Lin Xin, Yang Huanhuan, Leng Qiufeng, Li Xiaotong, Tang Xiaoqian, Fu Yangang. 2016. A preliminary study of geological features and metallogenic epoch in Keyue Zn−polymetallic deposit, Tibet[J]. Mineral Deposits, 35(1): 33−50 (in Chinese with English abstract).
|
[78] |
Liu Hong, Li Guangming, Huang Hanxiao, Zhang Linkui, Lu Menghong, Lan Shuangshuang, Xie Hui. 2019. The discovery of the Late Triassic porphyry type Cu deposit from Gangdise metallogenic belt, Tibet[J]. Geology in China, 46(5): 1238−1240 (in Chinese with English abstract).
|
[79] |
Liu Y C, Hou Z Q, Yang Z S, Tian S H, Song Y C, Yu Y S, Ma W. 2016. Geology and chronology of the Zhaofayong carbonate−hosted Pb−Zn ore cluster: Implication for regional Pb−Zn metallogenesis in the Sanjiang belt, Tibet[J]. Gondwana Research, 35: 15−26. doi: 10.1016/j.gr.2016.03.015
|
[80] |
Liu Yingchao, Hou Zengqian, Yu Yushuai, Tian Shihong, Li Yulong, Yang Zhusen. 2013. Characteristics and genesis of Lalongla MVT−like deposit in Changdu region, Tibet[J]. Acta Petrologica Sinica, 29(4): 1407−1426 (in Chinese with English abstract).
|
[81] |
Liu Yuqi, Zhang Zhi, Li Guangming, Qing Chengshi, Zhang Linkui, Ling Chen, Ma Guotao. 2021. Geological characteristics and source of ore−forming materials of Xialonggang lead−zinc deposit in Zhaxikang ore concentration area, Tibet: Constraint of in−situ S isotope of sulfide[J]. Mineralogy and Petrology, 41(1): 93−105 (in Chinese with English abstract).
|
[82] |
Lu L, Qin Y, Li Z F, Yan L L, Jin X, Zhang K J. 2019. Diachronous closure of the Shuanghu Paleo−Tethys Ocean: Constraints from the Late Triassic Tanggula arcrelated volcanism in the East Qiangtang subterrane, Central Tibet[J]. Lithos, 328−329: 182−199. doi: 10.1016/j.lithos.2019.01.034
|
[83] |
Luo K, Zhou J X, Feng Y X, Tonguc U, Ai N, Zhao J X, Zhang J W. 2020. In situ U−Pb Dating of calcite from the South China Antimony metallogenic belt[J]. Iscience, 23: 101575. doi: 10.1016/j.isci.2020.101575
|
[84] |
Luo Mei, Pang Fengchu, Li Juchu, Xu Zhizhong, Deng Wuzhong, Li Guanqing, Liu Lijun. 2014. Metallogenic series study of ore deposits in the Tibet Qiangtang−Sanjiang district[J]. Acta Geologica Sinica, 88(12): 2556−2571 (in Chinese with English abstract).
|
[85] |
Luosang Jiancuo. 2020. Exploration Model and Metallogenic Prediction of Jisong Lead−zinc Deposit in Southern Tibet[D]. Chengdu: Chengdu University of Technology, 1−93 (in Chinese with English abstract).
|
[86] |
Ma Guanqing. 1998. Basic regional geological features of Tibet[J]. Regional Geology of China, 17(1): 16−24 (in Chinese with English abstract).
|
[87] |
Meng Yumiao, Hu Ruizhong, Gao Jianfeng, Bi Xianwu, Huang Xiaowen. 2016. Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 35(4): 339−348 (in Chinese with English abstract).
|
[88] |
Miller M H. 1973. United States Mineral Resources[R]. Geological Survey Professional Paper 820, 45−50.
|
[89] |
Miao Huaqing, Li Guangming, Zhang Zhi, Xia Xiangbiao, Liang Wei. 2017. Origin of the Keyue Pb-Zn polymetallic deposit in southern Xizang: Evidences from sulfur and lead isotopic compositions[J]. Sedimentary Geology and Tethyan Geology, 37(2): 14−22 (in Chinese with English abstract).
|
[90] |
Mo Xuanxue, Hou Zengqian, Niu Yaoling, Dong Guochen, Qu Xiaoming, Zhao Zhidan, Yang Zhiming. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 96(1/2): 225−242. doi: 10.1016/j.lithos.2006.10.005
|
[91] |
Mo Xuanxue, Pan Guitang. 2006. From the Tethys to the formation of the Qinghai−Tibet Plateau: constrained by tectono−magmatic events[J]. Earth Science Frontiers, 13(6): 43−51 (in Chinese with English abstract).
|
[92] |
Mo Xuanxue, Zhao Zhidan, Deng Jinfu, Dong Guochen, Zhou Su, Guo Tieying, Zhang Shuangquan, Wang Liangliang. 2003. Response of volcanism to the India−asia collision[J]. Earth Science Frontiers, 10(2): 135−148 (in Chinese with English abstract).
|
[93] |
Mo Xuanxue. 2011. Magmatism and evolution of the Tibetan Plateau[J]. Geological Journal of China Universities, 17(3): 351−367 (in Chinese with English abstract).
|
[94] |
Nie Fengjun, Hu Peng, Jiang Sihong, Li Zhenqing, Liu Yan, Zhou Yongzhang. 2005. Type and temporal−spatial distribution of gold and Antimony deposits(prospects) in Southern Tibet, China[J]. Acta Geologica Sinica, 79(3): 373−385 (in Chinese with English abstract).
|
[95] |
Niu Lixian, Yu Lianghui, Zhang Shouting, Jia Wenlong, Xue Yazhou. 2012. Definition of China's predominant ore resources based on smart−roc[J]. Resources Industries, 14(1): 31−36 (in Chinese with English abstract).
|
[96] |
Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposit[J]. Economic Geology, 67(5): 551−578. doi: 10.2113/gsecongeo.67.5.551
|
[97] |
Olivier R, John L, Yves F. 2003. Antimony isotope variations in natural systems and implications for their use as geochemical tracers[J]. Chemical Geology, 200: 25−40. doi: 10.1016/S0009-2541(03)00121-9
|
[98] |
Ou Q, Wang Q, Zeng J P, Yang J H, Zhang H X, Xia X P, Chen Y W. 2021. Petrogenesis and tectonic implications of Middle Triassic basalts and rhyolites in the northern Qiangtang Block, central Tibet[J]. Journal of Asian Earth Sciences, 206: 104573. doi: 10.1016/j.jseaes.2020.104573
|
[99] |
Pan G T, Wang L Q, Li R S, Yuan S H, Ji W H, Yin F G, Zhang W P, Wang B D. 2012. Tectonic evolu−tion of the Qinghai−Tibet Plateau[J]. Journal of Asian Earth Sciences, 53: 3−14. doi: 10.1016/j.jseaes.2011.12.018
|
[100] |
Pan Guitang, Li Xingzhen, Wang Liquan, Ding Jun, Chen Zhiliang. 2002. Preliminary division of tectonic units of the Qinghai−Tibet Plateau and its adjacent regions[J]. Geological Bulletin of China, 21(11): 701−707 (in Chinese with English abstract).
|
[101] |
Pan Guitang, Wang Liquan, Yin Fuguang, Geng Quanru, Li Guangming, Zhu Dicheng. 2022. Researches on geological−tectonic evolution of Tibetan Plateau: A review, recent advances, and directions in the future[J]. Sedimentary Geology and Tethyan Geology, 42(2): 151−175 (in Chinese with English abstract).
|
[102] |
Pan Guitang, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhang Zhiyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−16 (in Chinese with English abstract).
|
[103] |
Panov B S, No L. 1989. The Xiguanshan antimony deposit, China[J]. International Geology Review, 31(1): 100−110. doi: 10.1080/00206818909465865
|
[104] |
Pavlova G G, Borisenko A S. 2009. The age of Ag−Sb deposits of Central Asia and their correlation with other types of ore systems and magmatism[J]. Ore Geology Reviews, 35(2): 164−185. doi: 10.1016/j.oregeorev.2008.11.006
|
[105] |
Peng Boyang, Chen Youliang, Liu Kun, He Zhongxiang, Yuan Wei. 2015. Exploring the mineralization pattern of antimony ore in Tibet[J]. Acta Mineralogica Sinica, 35(S1): 428−429 (in Chinese).
|
[106] |
Qi Xuexiang, Li Tianfu, Meng Xiangjin, Yu Chunlin. 2008. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault−fold belt in southern Tibet, and its constraint on antimony−gold polymetallic minerogenesis[J]. Acta Petrologica Sinica, 24(7): 1638−1648 (in Chinese with English abstract).
|
[107] |
Seal II R R, Schulz K J, DeYoung J H, Sutphin D M, Drew L J, Carlin J F, Berger B R. 2017. Antimony[R]. U. S. Geological Survey Professional Paper, 1802: 1−17.
|
[108] |
Shui X F, He Z Y, Reiner K, Zhang Z M, Lu T Y, Yan L L. 2018. Early Jurassic adakitic rocks in the southern Lhasa sub−terrane, southern Tibet: Petrogenesis and geodynamic implications[J]. Geological Magazine, 155(1): 132−148.
|
[109] |
Song Shaowei, Liu Ze, Zhu Dicheng, Wang Qing, Zhang Lixue, Zhang Liangliang, Zhao Zhidan. 2014. Zircon U−Pb chronology and Hf isotope of the Late Triassic andesitic magmatism in Dajiacuo, Tibet[J]. Acta Petrologica Sinica, 30(10): 3100−3112 (in Chinese with English abstract).
|
[110] |
Stampfli G M, Hochard C, Vérard C. 2013. The formation of Pangea[J]. Tectonophysics, 593: 1−19.
|
[111] |
Sun X, Zheng Y Y, Franco P, McCuaig T C, Yu M, Xia S L, Song Q J, Chang H F. 2018. Geology, S−Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb−Pb−Zn−Ag deposit in southern Tibet: Implications for multiple mineralization events at Zhaxi−kang[J]. Mineralium Deposita, 53(3): 435−458. doi: 10.1007/s00126-017-0752-6
|
[112] |
Sun X, Zheng Y Y, Pirajno F, Campbell M T, Yu M, Xia S L, Song Q J, Chang H F. 2017. Geology, S–Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb–Pb–Zn–Ag deposit in Southern Tibet: Implications for multiple mineralization events at Zhaxikang[J]. Mineralium Deposita, 53(3): 435−458.
|
[113] |
Sun X, Zheng Y Y, Wang C M, Zhao Z Y, Geng X B. 2016. Identifying geochemical anomalies associated with Sb−Au−Pb−Zn−Ag mineralization in North Himalaya, southern Tibet[J]. Ore Geology Reviews, 73: 1−20. doi: 10.1016/j.oregeorev.2015.10.020
|
[114] |
Sun Yunkai. 2010. On the Metamorphism and Its Tectonic Significance in Gangdise Orogenic Zone of Qinghai−Tibet Plateau[D]. Chengdu: Chengdu University of Technology, 1−82 (in Chinese with English abstract).
|
[115] |
Tan Jun, Liao Jie. 2021. Exploring the prospect of finding gold−antimony ore in Gawal area, Tsomei County, Tibet[J]. Inner Mongolia Coal Economy, 328(11): 192−194 (in Chinese with English abstract).
|
[116] |
Tang J X, Yang H H, Song Y, Wang L Q, Liu Z B, Li B L, Lin B. 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau[J]. China Geology, 4(1): 1−16.
|
[117] |
Tao Yan, Bi Xianwu, Xin Zhonglei, Zhu Feilin, Lao Mingyang, Li Yubang. 2011. Geology, geochemistry and origin of Lanuoma Pb−Zn−Sb deposit in Changdu area, Tibet[J]. Mineral Deposits, 30(4): 599−615 (in Chinese with English abstract).
|
[118] |
Tao Yan, Zhu Feilin, Xin Zhonglei, Zhu Feilin, Liao Mingyang, Li Yubang. 2010. Exploring the metallogenic model of Lhanoma Pb−Zn−Antimony polymetallic mine in Changdu, Tibet[J]. Mineral Deposits, 29(S1): 283−284 (in Chinese).
|
[119] |
Taylor M, Yin A, Ryerson F J, Kapp P, Ding L. 2003. Conjugate strike–slip faulting alongthe Bangong−Nujiang suture zone accommodates coeval east–west extension andnorth–south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 22(5): 1056.
|
[120] |
Tobgay T, Mc Quarrie N, Long S, Kohn M J, Corrie S L. 2012. The age and rate of displacement along the Main Central Thrust in the western Bhutan Himalaya[J]. Earth and Planetary Science Letters, 319−320: 146−158. doi: 10.1016/j.jpgl.2011.12.005
|
[121] |
UK House of Commons. 2011. Strategically Important Metals[R]. London: UK House of Commons.
|
[122] |
Wang C S, Dai J G, Zhao X X, Li Y L, Graham S, He D F, Ran B, Meng J. 2014. Outward−growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 621: 1−43. doi: 10.1016/j.tecto.2014.01.036
|
[123] |
Wang C, Ding L, Zhang L Y, Kapp P, Pullen A, Yue Y H. 2016. Petrogenesis of Middle−Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo−Tethyan oceanic lithosphere[J]. Lithos, 262: 320−333. doi: 10.1016/j.lithos.2016.07.021
|
[124] |
Wang D, Mathur R, Zheng Y Y, Qiu K F, Wu H J. 2021. Redox−controlled antimony isotope fractionation in the epithermal system: New insights from a multiple metal stable isotopic combination study of the Zhaxikang Sb−Pb−Zn−Ag deposit in Southern Tibet[J]. Chemical Geology, 584: 1−16.
|
[125] |
Wang D, Sun X, Zheng Y Y, Wu S, Xia S L, Chang H F, Yu M. 2017. Two pulses of mineralization and genesis of the Zhaxikang Sb−Pb−Zn−Ag deposit in southern Tibet: Constraints from Fe–Zn isotopes[J]. Ore Geology Reviews, 84: 347−363. doi: 10.1016/j.oregeorev.2016.12.030
|
[126] |
Wang D, Zheng Y Y, Mathur R, Jiang J S, Zhang S K, Zhang J F. 2019. Miao Yu Multiple mineralization events in the Zhaxikang Sb−Pb−Zn−Ag deposit and their relationship with the geodynamic evolution in the North Himalayan Metallogenic Belt, South Tibet[J]. Ore Geology Reviews, 105: 201−215. doi: 10.1016/j.oregeorev.2018.12.024
|
[127] |
Wang D, Zheng Y Y, Mathur R, Qiu K F, Wu H J, Ren H, Wang E R, Li Y J, Yi J Z. 2021. Zinc and cadmium isotopic constraints on ore formation and mineral exploration in epithermal system: A reconnaissance study at the Keyue and Zhaxikang Sb−Pb−Zn−Ag deposits in southern Tibet[J]. Ore Geology Reviews, 139: 1−20.
|
[128] |
Wang Da. 2018. The Isotope Geochemistry Research of the Zhaxikang Sb−Pb−Zn−Ag Deposit in Southern Tibet[D]. Beijing: China University of Geosciences (Beijing), 1−161 (in Chinese with English abstract).
|
[129] |
Wang Denghong, Chen Yuchuan, Xu Jue. 2005. Cenozoic Mineralization in China[M]. Beijing: Geological Publishing House, 1−778(in Chinese).
|
[130] |
Wang Q, Wyman D A, Xu J F, Dong Y H, Vasconcelos P M, Pearson N, Wan Y S, Dong H, Li C F, Yu Y S, Zhu T X, Feng X T, Zhang Q Y, Zi F, Chu Z Y. 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central−western Qiangtang high−K calc−alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 272(1/2): 158−171. doi: 10.1016/j.jpgl.2008.04.034
|
[131] |
Wang Qingfei, Deng Jun, Weng Weijun, Li Huajian, Wang Xuan, Li Gongjian. 2020. Cenozoic orogenic gold system in Tibet[J]. Acta Petrologica Sinica, 36(5): 1315−1353 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.05.02
|
[132] |
Wang Qiyu, Mou Chuanlong, Zhoukenken. 2012. Comparative Early Paleozoic sedimentation and tectonic−basin response in the north−south part of the Gondis−Himalayan region[C]//The 12th National Conference on Paleogeography and Sedimentology, 16−17(in Chinese with English abstract).
|
[133] |
Wang Wei. 2002. A preliminary investigation of the basic characteristics and genesis of the Meiduo antimony mine[J]. Tibetan Geology, (2): 37−44 (in Chinese with English abstract).
|
[134] |
Wang Yonglei, Chen Yuchuan, Wang Denghong, Xu Jue, Chen Zhenghui, Liang Ting. 2013. The principal antimony concentration areas in China and their resource potentials[J]. Geology in China, 40(5): 1366−1378 (in Chinese with English abstract).
|
[135] |
Wang Yonglei, Wang Denghong, Wang Yan, Xu jue, Ding Jianhua, Cai Jianhui, Huang Fan, Dai Hongzhang, Liang Ting, Wang Dongming, Jiang Biao, Fang Guicong, Lin Bin, Li Yang, Shu Zhiming, Luo Yunyi, Li Zhiming. 2021. Geology of Mineral Resources in China: Antimony Deposit [M]. Beijing: Geological Publishing House, 1−885(in Chinese).
|
[136] |
Wang Yonglei, Xu Jue, Zhang Changqin, Wang Chenghui, Chen Zhenghui, Huang Fan. 2014. Summary of metallogenic regularities of Antimony deposits in China[J]. Acta Geologica Sinica, 88(12): 2208−2215 (in Chinese with English abstract).
|
[137] |
Wen C, Pan G T, Zhang X F, Wang L Q, Zhoujia X L. 2021. Tectonic evolution and multi−episodic metallogenesis of the Sanjiang Paleo−Tethys multi−arc−basin−terrane system, SW Tibetan Plateau[J]. Journal of Asian Earth Sciences, 221: 104932. doi: 10.1016/j.jseaes.2021.104932
|
[138] |
Williams H, Turner S, Kelley S, Harris N. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east−west extension and its relationship to postcollisional volcanism[J]. Geology, 29(4): 339−342.
|
[139] |
Wu J D. 1993. Antimony vein deposits of China[J]. Ore Geology Reviews, 8(3/4): 213−232.
|
[140] |
Xiao Qiming, Zeng Duren, Jin Fuqiu, Yang Mingyue, Yang Zhifang. 1992. Time−space distribution feature and exploration guide of China's Sb−deposits[J]. Geology and Prospecting, (12): 9−14 (in Chinese with English abstract).
|
[141] |
Xie Y L, Li L M, Wang B G, Li G M, Liu H F, Li Y X, Dong S L, Zhou J J. 2017. Genesis of the Zhaxikang epithermal Pb−Zn−Sb deposit in southern Tibet, China: Evidence for a magmatic link[J]. Ore Geology Reviews, 80: 891−909. doi: 10.1016/j.oregeorev.2016.08.007
|
[142] |
Xie Yuling, Yang Kejun, Li Yingxu, Li Guangming, Qu Yunwei, Dong Lei. 2019. Mazhala gold−antimony deposit in southern Tibet: The characteristics of ore−forming fluids and the origin of gold and antimony[J]. Earth Science, 44(6): 1998−2016 (in Chinese with English abstract).
|
[143] |
Xing L, Li W C, Liu J, Zang M, Yang F C, Liu H, Liu W G, Li G, Liu B. 2022. Mineralization timing and genesis of the Qukulekedong Au–Sb deposit in the East Kunlun Orogenic Belt, northern Tibetan Plateau: Constraints from arsenopyrite Re–Os ages, zircon U−Pb ages, and Lu−Hf isotopes[J]. Ore Geology Reviews, 143: 1−20.
|
[144] |
Xizang Bureau of Geology and Mineral Resources. 1993. Regional Geology of Tibet[M]. Beijing: Geological Publishing House(in Chinese).
|
[145] |
Xizang Bureau of Geology and Mineral Resources. 1997. Rock Stratigraphy of Tibet Autonomous Region[M]. Wuhan: China University of Geosciences Press, 229(in Chinese).
|
[146] |
Xu C X, Yin R S, Peng J T, Hurley J P, Lepak R F, Gao J F, Feng X B, Hu R Z, Bi X W. 2018. Mercury isotope constraints on the source for sediment−hosted lead−zinc deposits in the Changdu area, southwestern China[J]. Mineralium Deposita, 53: 339−352. doi: 10.1007/s00126-017-0743-7
|
[147] |
Xu Z Q, Dilek Y, Yang J S, Liang F H, Liu F, Ba D Z, Cai Z H, Li G W, Dong H W, Ji S C. 2015. Crustal structure of the Indus−Tsangpo suture zone and its ophiolites in southern Tibet[J]. Gondwana Research, 27(2): 507−524. doi: 10.1016/j.gr.2014.08.001
|
[148] |
Xu Zhigang, Chen Yuchuan, Wang Denghong Chen Zhenghui, Li Houmin. 2008. Zoning Scheme of Mineralization in China[M]. Beijing: Geological Publishing House, 1−138(in Chinese).
|
[149] |
Yan Shenghao, Yu Jinjie, Zhao Yixin, Xu Zhizhong, Wan Anjian, Su Denqkui. 2003. Geological and geochemical characteristics of ore−hosted siliceous rocks in Meiduo Antimony Deposit, Tibet[J]. Mineral Deposits, 22(2): 149−157 (in Chinese with English abstract).
|
[150] |
Yan Shenghao, Yu Jinjie, Zhao Yixin, Xu Zhizhong, Wang Anjian, Teng Rongli. 2004. Geology and geochemistry of the Meiduo antimony ore belt in northern Tibet: Its origin and geodynamic setting[J]. Acta Geoscientica Sinica, 25(5): 541−548 (in Chinese with English abstract).
|
[151] |
Yan Yucheng. 2017. Exploring the genesis of the Ranoma Pb−Zn polymetallic deposit[J]. Xinjiang Nonferrous Metals, 40(5): 22−25 (in Chinese with English abstract).
|
[152] |
Yang Zhusen, Hou Zengqian, Gao Wei, Wang Haiping, Li Zhenqing, Meng Xiangjin, Qu Xiaoming. 2006. Metallogenic characteristics and genetic model of antimony and gold deposits in South Tibetan detachment system[J]. Acta Geologica Sinica, 80(9): 1377−1391 (in Chinese with English abstract).
|
[153] |
Yang Z S, Hou Z Q, Meng X J, Liu Y C, Fei H C, Tian S H, Li Z Q, Gao W. 2009. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogens[J]. Ore Geology Review, 36(1/3): 194−212.
|
[154] |
Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan−Tibetan orogen.[J]. Annual Review of Earth and Planetary Sciences, 28(1): 211−280. doi: 10.1146/annurev.earth.28.1.211
|
[155] |
Yin Fuguang. 2003. Nature and origin of the central uplift in the Qiangtang Basin[J]. Geotectonica et Metallogenia, 27(2): 143−145 (in Chinese with English abstract).
|
[156] |
You Qin. 2015. The Study on Primary Halos of the Nongruri Gold Deposit, Tibet[D]. Chengdu: Chengdu University of Technology, 1−99 (in Chinese with English abstract).
|
[157] |
Yu Jinjie. 2001. Mineralization of Antimony Metallogenic Zone in Northern Tibet and A Simple Comparison of Antimony Metallogenic Zones in Northern Tibet and Southern Tibet[D]. Beijing: Chinese Academy of Geological Sciences, 1−91 (in Chinese with English abstract).
|
[158] |
Zeng G P, Gong Y J, Hu X L, Xiong S F. 2017b. Geology, fluid inclusions, and geochemistry of the Zhazixi Sb−W deposit, Hunan, South China[J]. Ore Geology Reviews, 91: 1025−1039. doi: 10.1016/j.oregeorev.2017.08.001
|
[159] |
Zeng G P, Gong Y J, Wang Zhaofei F, Hu X L, Xiong S F. 2017a. Structures of the Zhazixi Sb−W deposit, South China: Implications for ore genesis and mineral exploration[J]. Journal of Geochemical Exploration, 182: 10−21. doi: 10.1016/j.gexplo.2017.07.010
|
[160] |
Zeng L S, Gao L, Xie K J, Zeng J L. 2011. Mid−Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: Melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 303(3/4): 251−266. doi: 10.1016/j.jpgl.2011.01.005
|
[161] |
Zhai D G, Mathur R, Liu S G, Liu J J, Godfrey L, Wang K X, Xu J W, Vervoort J. 2021. Antimony isotope fractionation in hydrothermal systems[J]. Geological Journal, 306: 84−97.
|
[162] |
Zhai Q G, Jahn B, Wang J, Su L, Mo X X, Wang K L, Tang S H, Lee H Y. 2013. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U−Pb dating, geochemical and Sr−Nd−Hf isotopic characteristics[J]. Lithos 168−169: 186−199.
|
[163] |
Zhai W, Sun X M, Yi J Z, Zhang X G, Mo R W, Zhou F, Wei H X, Zeng Q G. 2014. Geology, geochemistry, and genesis of orogenic gold−antimony mineralization in the Himalayan Orogen, South Tibet, China[J]. Ore Geology Reviews, 58: 68−90. doi: 10.1016/j.oregeorev.2013.11.001
|
[164] |
Zhai Wei, Zheng Siqi, Sun Xiaoming, Wei Hhuixiao, Mo Ruwei, Zhang Llingyu, Zhou Feng, Yi Jianzhou. 2018. He−Ar isotope compositions of orogenic Mazhala Au−Sb and Shalagang Sb deposits in Himalayan orogeny, southern Tibet: Constrains to ore−forming fluid origin[J]. Acta Petrologica Sinica, 34(12): 3525−3538 (in Chinese with English abstract).
|
[165] |
Zhang Changlin. 2013. Characteristics and Mineralization Prediction of the Lhanoma Pb−Zn Deposit in Changdu, Tibet[D]. Beijing: China University of Geosciences (Beijing), 1−45 (in Chinese with English abstract).
|
[166] |
Zhang Gangyang, Zheng Youye, Zhang Jianfang, Zhang Sukun, Fan Zihui. 2011. Ore−control structural and geochronologic constrain in Shalagang antimony deposit in southern Tibet, China[J]. Acta Petrologica Sinica, 27(7): 2143−2149 (in Chinese with English abstract).
|
[167] |
Zhang Gangyang. 2012. Metallogenic Model and Prospecting Potential in Southern Tibet Au−Sb Polymetallic Belt[D]. Beijing: China University of Geosciences (Beijing), 1−197 (in Chinese with English abstract).
|
[168] |
Zhang Guolin, Yao Jinyan, Gu Xiangping. 1998. Time and spatial distribution regularities and deposit types of antimony in China[J]. Mineral Resources and Geology, (5): 306−312 (in Chinese with English abstract).
|
[169] |
Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y, Zhang B. 2012. Tectonics of the northern Himalaya since the India−Asia collision[J]. Gondwana Research, 21(4): 939−960. doi: 10.1016/j.gr.2011.11.004
|
[170] |
Zhang Jianfang, Zheng Youye, Zhang Gangyang, Gao Shunbao, Ye Xianren, Zhang Zhong, Liu Minyuan, Li Jiqiu. 2010. Genesis of Zhaxikang Pb−Zn−Sb−Ag Deposit in Northern Himalaya: Constraints from multi−isotope geochemistry[J]. Earth Science, 35(6): 1000−1010 (in Chinese with English abstract).
|
[171] |
Zhang Jianfang, Zheng Youye, Zhang Gangyang, Gong Ruijun. 2011. Geologic characteristic and mineralization of Mazhala gold}ntimony deposit in Northern Himalaya[J]. Gold Geology, 1(32): 20−24 (in Chinese with English abstract).
|
[172] |
Zhang Jianfang. 2010. The Genesis Study of Zhaxikang Lead Zinc Antimony Silver Deposit, North Himalayan[D]. Wuhan: China University of Geosciences, 1−96 (in Chinese with English abstract).
|
[173] |
Zhang Jinjiang, Ding Lin. 2003. East−west extension in tibetan plateau and its significance to tectonic evolution[J]. Chinese Journal of Geology, 38(2): 179−189 (in Chinese with English abstract).
|
[174] |
Zhang Lei, Zhong Kanghui, Zhao Hongfei, Bai Ronglong. 2016. Analysis of the mineralization and metallogenic model of Meiduo hydrothermal antimony−silver deposit[J]. Sichuan Nonferrous Metals, (1): 12−15 (in Chinese with English abstract).
|
[175] |
Zhang Min, Liu Xianfan, Feng Dexin, Huang Yupeng, Li Wei, Dong Yi. 2013. Mineral characterization of the Lanoma lead−antimony−zinc deposit in Tibet[J]. Geological Journal of China Universities, 19: 204−205 (in Chinese with English abstract).
|
[176] |
Zhang Sukun. 2013. Geological and Geochemistrical Characteristics of Zhaxikang Antimony Polymetallic Deposit, Southern Tibet[D]. Beijing: China University of Geosciences (Beijing), 1−119 (in Chinese with English abstract).
|
[177] |
Zhang Suoxu, Liu Boen, Ma Penglin. 2019. The relevant enlightenment of the strategic adjustment of critical minerals in the United States[J]. Natural Resource Economics of China, 32(7): 38−45 (in Chinese with English abstract).
|
[178] |
Zhang Tianyu, Li Congying, Sun Saijun, Hao Xiluo. 2020. Geochemical characteristics of antimony and genesis of antimony deposits in South China[J]. Acta Petrologica Sinica, 36(1): 44−54 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.06
|
[179] |
Zhang Z J, Wang Y H, Houseman G A, Xu T, Wu Z B, Yuan X H, Chen Y, Tian X B, Bai Z M, Teng J W. 2014. The Moho beneathwestern Tibet: Shear zones and eclogitization in the lower crust[J]. Earth and Planetary Science Letters, 408: 370−377. doi: 10.1016/j.jpgl.2014.10.022
|
[180] |
Zhang Z Y, Xie G Q, Olin P. 2020. Texture, in−situ geochemical, and S isotopic analyses of pyrite and arsenopyrite from the Longshan Sb−Au deposit, southern China: Implications for the genesis of intrusion−related Sb−Au deposit[J]. Ore Geology Reviews, 143: 347−363.
|
[181] |
Zhang Zhi, Li Guangming, Zhang Linkui. 2022. Exploration and research progresses of rare metals in Himalayan belt, Tibet[J]. Sedimentary Geology and Tethyan Geology, 42(2): 176−188 (in Chinese with English abstract).
|
[182] |
Zhao Yiming, Wu Liangshi, Bai Ge. 2004. Mineralization Pattern of Major Metal Deposits in China[M]. Beijing: Geological Publishing House, 194−221(in Chinese).
|
[183] |
Zheng W B, Liu B L, McKinley J M, Cooper M R, Wang L. 2021. Geology and geochemistry−based metallogenic exploration model for the eastern Tethys Himalayan metallogenic belt, Tibet[J]. Journal of Geochemical Exploration, 224: 1−20.
|
[184] |
Zheng Youye, Liu Minyuan, Sun Xiang, Yuan Enhui, Tian Iiming, Zheng Haitao, Zhang Gangyang, Zhang Lihua. 2012. Type, discovery process and significance of Zhaxikang antimony polymetallic ore deposit, Tibet[J]. Earth Science, 37(5): 1003−1014 (in Chinese with English abstract).
|
[185] |
Zheng Youye, Wang Da, Yi Jianzhou, Yu Zezhang, Jiang Zongyang, Li Xiaoxia, Shi Gongwen, Xu Jian, Liang Yuchun, Dou Xiaofeng, Ren Huan. 2022. Antimony mineralization and prospecting orientation in the North Himalay−an metallogenic belt, Tibet[J]. Earth Science Frontiers, 29(1): 200−230 (in Chinese with English abstract).
|
[186] |
Zheng Youye, Zhao Yongxin, Wang Ping, Fan Wenyu, Chen Jing, Cao Xinzhi, Zhang Xiaobao. 2004. Significant progress in the study of mineralization rules and mineralization search in the gold−antimony metallogenic belt of southern Tibet[J]. Earth Science (Journal of China University of Geosciences), 29(1): 44−45 (in Chinese with English abstract).
|
[187] |
Zhou Delai, Zhong Kanghui, Feng Dexin, Li Guanqing, Gou Jin, Han Wenwen. 2011. Lead−zinc polymetallic deposits in the Tibet Autonomous Region La Nuoma geological characteristics and exploration potential analysis and then discuss[J]. Sichuan Nonferrous Metals, (4): 15−20 (in Chinese with English abstract).
|
[188] |
Zhou Ji. 2018. Study on the Mineralization of Zhaxikang lead−zinc−antimony Polymetallic Deposit in Longzi County, Tibet[D]. Beijing: China University of Geosciences (Beijing), 1−84 (in Chinese with English abstract).
|
[189] |
Zhou Q, Li W C, Qing C S, Lai Y, Li Y X, Liao Z W, Wu J Y, Wang S W, Dong L, Tian E Y. 2017. Origin and tectonic implications of the Zhaxikang Pb−Zn−Sb−Ag deposit in northern Himalaya: Evidence from structures, Re−Os−Pb−S isotopes, and fluid inclusions[J]. Mineralium Deposita, 53(4): 585−600.
|
[190] |
Zhou Tiancheng. 2015. Characteristics of Gold−Bearing Minerals and its Significance in Gold−Antimony Polymetallic Metallogenic Belt, Southern Tibet[D]. Beijing: China University of Geosciences (Beijing), 1−62 (in Chinese with English abstract).
|
[191] |
Zhou Yanjing, Li Jianwu, Wang Gaoshang, Xia Ye, Qiu Nanping. 2014. Distribution and development situation of global antimony resources[J]. China Mining Magazine, 23(10): 13−16 (in Chinese with English abstract).
|
[192] |
Zhou Z J, Chen Z L, Han F B, Han S Q, Wang Z X, Xiao W F, Shen T, Wu J J. 2018. Fluid inclusion and isotope geochemistry of the Atebayue Sb deposit, South Tianshan Orogen, Kyrgyzstan[J]. Geological Journal, 53: 1050−1060. doi: 10.1002/gj.2943
|
[193] |
Zhu D C, Chung S L, Mo X X, Zhao Z D, Niu Y L, Sonbiao G, Yang Y H. 2009. The 132 Ma Comei−Bunbury large igneous province: Remnants identified in present−day southeastern Tibet and southwestern Australia[J]. Geology, 37: 583−586.
|
[194] |
Zhu D C, Mo X X, Pan G T, Zhao Z D, Dong G C, Shi Y R, Liao Z L, Wang L Q, Zhou C Y. 2008. Petrogenesis of the earliest Early Cretaceous mafic rocks from the cona area of the eastern Tethyan Himalaya in south Tibet: Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere[J]. Lithos, 100: 147−173. doi: 10.1016/j.lithos.2007.06.024
|
[195] |
Zhu D C, Zhao Z D, Niu Y L, Mo X X, Chung S L, Hou Z Q, Wang L Q, Wu F Y. 2011b. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 301(1/2): 241−255. doi: 10.1016/j.jpgl.2010.11.005
|
[196] |
Zhu D C, Zhao Z D, Niu Y L, Yildirim D, Hou Z Q, Mo X X. 2013. The origin and pre−Cenozoic evolution of the Tibetan plateau[J]. Gondwana Research, 23: 1429−1454. doi: 10.1016/j.gr.2012.02.002
|
[197] |
Zhu D C, Zhao Z D, Niu Y L, Yildirim D, Mo X X. 2011a. Lhasa Terrane in south−ern Tibet came from Australia[J]. Geology, 39: 727−730.
|
[198] |
Zou Guangfu. 2016. Geotectonic evolution and mineralization of the Qinghai−Tibet Plateau[C]//Proceedings of the Conference on New Advances in Spatial Information Technology for Resources, Environment and Geology. Chengdu: College of Geosciences, Chengdu University of Technology, 3−6(in Chinese).
|
[199] |
阿旺加措, 郑有业, 杨万涛, 索朗欧珠. 2017. 藏南柯月铅锌多金属矿床矿物标型特征及成矿物质来源[J]. 地质科技情报, 36(3): 53−63.
|
[200] |
边巴仁青, 陈黎, 周维德. 2019. 西藏措美县拉琼金锑矿成矿地质特征及找矿远景分析[J]. 西部资源, (6): 36−37. doi: 10.3969/j.issn.1672-562X.2019.06.015
|
[201] |
补西川, 刘世安. 2018. 安多县尕尔西姜锑矿矿床特征及矿床成因[J]. 世界有色金属, (19): 110−112.
|
[202] |
陈文庆, 詹勇. 2018. 西藏朗县普容朗辉锑矿地质特征及找矿潜力[J]. 华东科技(综合), (7): 349−350.
|
[203] |
陈文西, 王建. 2009. 藏北羌塘盆地晚三叠世地层特征与对比[J]. 中国地质, 36(4): 809−818.
|
[204] |
陈毓川. 1999. 中国主要成矿区带矿产资源远景评价[M]. 北京: 地震出版社.
|
[205] |
陈毓川, 王登红. 2001. 喜马拉雅期内生成矿作用研究[M]. 北京: 地震出版社.
|
[206] |
陈毓川, 王登红, 李厚民, 熊先孝, 高兰, 徐志刚. 2010. 重要矿产预测类型划分方案[M]. 北京: 地质出版社, 1−222.
|
[207] |
代克刚. 2013. 西藏自治区双湖特别区阿尕陇巴锑矿地质特征及找矿方向[D]. 北京: 中国地质大学(北京), 1−54.
|
[208] |
邓万明. 1998. 青藏高原北部新生代板内火山岩[M]. 北京: 地质出版社.
|
[209] |
邓舟, 张刚阳, 郑有业, 陈友良. 2019. 藏南车穷卓布锑矿S、Pb同位素对成矿物质来源的指示[J]. 合肥工业大学学报(自然科学版), 42(3): 337−345.
|
[210] |
丁建华, 杨毅恒, 邓凡. 2013. 中国锑矿资源潜力及成矿预测[J]. 中国地质, 40(3): 846−858.
|
[211] |
丁林, 蔡福龙, 张清海, 张利云, 许强, 杨迪, 刘德亮, 钟大赉. 2009. 冈底斯—喜马拉雅碰撞造山带前陆盆地系统及构造演化[J]. 地质科学, 44(4): 1289−1311.
|
[212] |
丁林, Satybaev Maksatbek, 蔡福龙, 王厚起, 宋培平, 纪伟强, 许强, 张利云, Qasim Muhammad, Baral Upendra. 2017. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学: 地球科学, 47(3): 293−309.
|
[213] |
杜晓飞. 2014. 西藏隆子县柯月铅锌锑银矿床流体包裹体研究[D]. 成都: 成都理工大学, 1−64.
|
[214] |
杜泽忠, 顾雪祥, 李关清, 章永梅, 程文斌, 景亮兵, 张兴国. 2011. 藏南拉木由塔锑(金)矿床S、Pb同位素组成及指示意义[J]. 现代地质, 25(5): 853−860.
|
[215] |
付伟, 周永章, 杨志军, 聂凤军, 何俊国, 李文. 2005. 藏南多层位金锑含矿建造特征及其控矿因素制约[J]. 大地构造与成矿学, 29(3): 321−327.
|
[216] |
高伟. 2006. 藏南拆离带沙拉岗锑矿床地质地球化学特征及成因机制研究[D]. 北京: 中国地质大学(北京), 1−87.
|
[217] |
高永丰, 侯增谦, 魏瑞华, 孟祥金, 胡华斌. 2006. 冈底斯基性次火山岩地球化学Sr−Nd−Pb同位素特征: 碰撞后火山作用亏损地幔区的约束[J]. 岩石学报, 22(3): 547−557.
|
[218] |
侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型[J]. 中国地质, 36(4): 809−818.
|
[219] |
侯增谦, 宋玉财, 李政, 王召林, 杨志明, 杨竹森, 刘英超, 田世洪, 何龙清, 陈开旭, 王富春, 赵呈祥, 薛万文, 鲁海峰. 2008a. 青藏高原碰撞造山带Pb−Zn−Ag−Cu矿床新类型: 成矿基本特征与构造控矿模型[J]. 矿床地质, 27(2): 123−144.
|
[220] |
侯增谦, 王二七, 莫宣学, 丁林, 潘桂棠, 张中杰. 2008b. 青藏高原碰撞造山与成矿作用[M]. 北京: 地质出版社.
|
[221] |
黄丰, 许继峰, 王保弟, 曾云川, 刘希军, 刘函, 余红霞. 2020. 印度—亚洲大陆碰撞过程中新特提斯洋岩石圈的命运[J]. 地球科学, 45(8): 2765−2803.
|
[222] |
黄卫. 2002. 美多锑矿的基本特征和成因初探[J]. 西藏地质, (2): 37−44.
|
[223] |
江思宏, 聂凤军, 胡朋, 刘妍, 赖新荣. 2007. 藏南基性岩墙群的地球化学特征[J]. 地质学报, 81(1): 60−72. doi: 10.3321/j.issn:0001-5717.2007.01.008
|
[224] |
李保亮, 王立强, 张相国, 平措多吉, 高腾, 王勇. 2022. 西藏哈姆曲锑(金)矿床曲珍矿段S、Pb同位素组成及意义[J]. 地球学报, 43(2): 202−210. doi: 10.3975/cagsb.2021.041501
|
[225] |
李光明, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳, 董磊, 黄勇. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 36(4): 1003−1008.
|
[226] |
李金高, 王全海, 陈健坤, 姚鹏, 彭勇民. 2002. 西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究[J]. 成都理工学院学报, 29(5): 533−538.
|
[227] |
李璞. 1955. 西藏东部地质的初步认识[J]. 科学通报, (7): 62−71.
|
[228] |
李廷栋. 1995. 青藏高原隆升的过程和机制[J]. 地球学报, (1): 1−9.
|
[229] |
李廷栋. 2002. 青藏高原地质科学研究的新进展[J]. 地质通报, 21(7): 370−376. doi: 10.3969/j.issn.1671-2552.2002.07.002
|
[230] |
李应栩, 李光明, 董磊, 张林奎, 吴建阳, 周邦国, 夏祥标, 代作文. 2018. 西藏马扎拉金矿区外围地质特征与找矿方向[J]. 沉积与特提斯地质, 38(3): 88−98. doi: 10.3969/j.issn.1009-3850.2018.03.010
|
[231] |
李志泰, 徐扛, 王连峰, 王强, 蒋映德. 2020. 西藏然巴地区十字石‒蓝晶石云母片岩变质作用研究: 对始新世淡色花岗岩成因的启示[J]. 大地构造与成矿学, 44(6): 1190−1207.
|
[232] |
梁维, 李光明, 巴桑元旦, 张林奎, 付建刚, 黄勇, 张志, 王艺云, 曹华文. 2021. 喜马拉雅带片麻岩穹窿成矿作用−−以扎西康矿集区错那洞穹窿为例[J]. 矿床地质, 40(5): 932−948.
|
[233] |
梁维, 杨竹森, 郑远川. 2015. 藏南扎西康铅锌多金属矿绢云母Ar−Ar年龄及其成矿意义[J]. 地质学报, 89(3): 560−568.
|
[234] |
梁维, 郑远川, 杨竹森, 李振清, 刘英超, 刘云飞, 李秋耘, 孙清钟, 付强, 侯增谦. 2014. 藏南扎西康铅锌银锑多金属矿多期多阶段成矿特征及其指示意义[J]. 岩石矿物学, 33(1): 64−78.
|
[235] |
梁维. 2014. 特提斯喜马拉雅金锑铅锌成矿带成矿作用研究[D]. 北京: 中国地质大学(北京), 1−151.
|
[236] |
林彬, 唐菊兴, 郑文宝, 王艺云, 高一鸣, 林鑫, 杨欢欢, 冷秋锋, 李晓童, 唐晓倩, 付燕刚. 2016. 西藏柯月锌多金属矿床地质特征及成矿时代初步研究[J]. 矿床地质, 35(1): 33−50.
|
[237] |
刘洪, 李光明, 黄瀚霄, 张林奎, 吕梦鸿, 兰双双, 解惠. 2019. 西藏冈底斯成矿带发现晚三叠世斑岩型铜矿[J]. 中国地质, 46(5): 1238−1240. doi: 10.12029/gc20190524
|
[238] |
刘英超, 侯增谦, 于玉帅, 田世洪, 李玉龙, 杨竹森. 2013. 西藏昌都地区拉拢拉类 MVT 铅锌矿床矿化特征与成因研究[J]. 岩石矿物学杂志, 29(4): 1407−1426.
|
[239] |
刘宇奇, 张志, 李光明, 卿成石, 张林奎, 凌晨, 马国桃. 2021. 西藏扎西康矿集区夏隆岗铅锌矿床地质特征及其成矿物质来源研究: 硫化物原位S同位素制约[J]. 矿物岩石, 41(1): 93−105.
|
[240] |
罗梅, 潘凤雏, 李巨初, 徐志忠, 邓午忠, 李关清, 刘丽君. 2014. 西藏羌塘—三江区金属矿床成矿系列研究[J]. 地质学报, 88(12): 2556−2571.
|
[241] |
洛桑尖措. 2020. 西藏山南吉松铅锌矿床勘查模型与成矿预测[D]. 成都: 成都理工大学, 1−93.
|
[242] |
马冠卿. 1998. 西藏区域地质基本特征[J]. 中国区域地质, 17(1): 16−24.
|
[243] |
孟郁苗, 胡瑞忠, 高剑峰, 毕献武, 黄小文. 2016. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 35(4): 339−348.
|
[244] |
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造−岩浆事件的约束[J]. 地学前缘, 13(6): 43−51.
|
[245] |
莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度—亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 10(2): 135−148. doi: 10.3321/j.issn:1005-2321.2003.03.013
|
[246] |
莫宣学. 2011. 岩浆作用与青藏高原演化[J]. 高校地质学报, 17(3): 351−367. doi: 10.3969/j.issn.1006-7493.2011.03.001
|
[247] |
缪华清, 李光明, 张志, 夏祥标, 梁维. 2017. 藏南柯月铅锌矿床成矿物质来源: 来自硫—铅同位素的证据[J]. 沉积与特提斯地质, 37(2): 14−22.
|
[248] |
聂凤军, 胡朋, 江思宏, 李振清, 刘妍, 周永章. 2005. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 79(3): 373−385. doi: 10.3321/j.issn:0001-5717.2005.03.009
|
[249] |
牛丽贤, 余良晖, 张寿庭, 贾文龙, 薛亚洲. 2012. 中国优势矿产资源界定研究: 基于SMART−ROC简易多属性评等技术[J]. 资源与产业, 14(1): 31−36. doi: 10.3969/j.issn.1673-2464.2012.01.006
|
[250] |
潘桂棠, 李振兴, 王立全, 丁俊, 陈智梁. 2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 21(11): 701−707. doi: 10.3969/j.issn.1671-2552.2002.11.002
|
[251] |
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521−533. doi: 10.3321/j.issn:1000-0569.2006.03.001
|
[252] |
潘桂棠, 王立全, 尹福光, 耿全如, 李光明, 朱弟成. 2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质, 42(2): 151−175.
|
[253] |
潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−16. doi: 10.3969/j.issn.1000-3657.2009.01.001
|
[254] |
彭渤洋, 陈友良, 刘堃, 何忠庠, 袁为. 2015. 西藏地区锑矿成矿规律探讨[J]. 矿物学报, 35(S1): 428−429.
|
[255] |
戚学祥, 李天福, 孟祥金, 于春林. 2008. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J]. 岩石学报, 24(7): 1638−1648.
|
[256] |
宋绍玮, 刘泽, 朱弟成, 王青, 张立雪, 张亮亮, 赵志丹. 2014. 西藏打加错晚三叠世安山质岩浆作用的锆石U−Pb年代学和Hf同位素[J]. 岩石学报, 30(10): 3100−3112.
|
[257] |
孙云锴. 2010. 青藏高原冈底斯造山带变质地质作用及其大地构造意义[D]. 成都: 成都理工大学, 1−82.
|
[258] |
谭军, 廖杰. 2021. 西藏措美县嘎瓦勒地区金锑矿找矿远景探讨[J]. 内蒙古煤炭经济, 328(11): 192−194. doi: 10.3969/j.issn.1008-0155.2021.11.094
|
[259] |
陶琰, 毕献武, 辛忠雷, 朱飞霖, 廖名扬, 李玉帮. 2011. 西藏昌都地区拉诺玛铅锌锑多金属矿床地质地球化学特征及成因分析[J]. 矿床地质, 30(4): 599−615. doi: 10.3969/j.issn.0258-7106.2011.04.002
|
[260] |
陶琰, 朱飞霖, 辛忠雷, 朱飞霖, 廖名扬, 李玉帮. 2010. 西藏昌都地区拉诺玛铅锌锑多金属矿成矿模式探讨[J]. 矿床地质, 29(S1): 283−284.
|
[261] |
王达. 2018. 藏南扎西康锑铅锌银矿床同位素地球化学研究[D]. 北京: 中国地质大学(北京), 1−161.
|
[262] |
王登红, 陈毓川, 徐珏. 2005. 中国新生代成矿作用[M]. 北京: 地质出版社, 1−778.
|
[263] |
王启宇, 牟传龙, 周恳恳. 2012. 冈底斯−喜马拉雅地区南北部早古生代沉积对比与构造−盆地响应[J]. 第十二届全国古地理学及沉积学学术会议, 2.
|
[264] |
王庆飞, 邓军, 翁伟俊, 李华健, 王璇, 李龚健. 2020. 青藏高原新生代造山型金成矿系统[J]. 岩石学报, 36(5): 1315−53. doi: 10.18654/1000-0569/2020.05.02
|
[265] |
王永磊, 陈毓川, 王登红, 徐珏, 陈郑辉, 梁婷. 2013. 中国锑矿主要矿集区及其资源潜力探讨[J]. 中国地质, 40(5): 1366−1378. doi: 10.3969/j.issn.1000-3657.2013.05.003
|
[266] |
王永磊, 王登红, 王岩, 徐珏, 丁建华, 蔡剑辉, 黄凡, 代鸿章, 梁婷, 王东明, 江彪, 方贵聪, 林彬, 李阳, 舒志明, 罗允义, 李智明. 2021. 中国矿产地质志—锑矿卷[M]. 北京: 地质出版社, 1−885.
|
[267] |
王永磊, 徐珏, 张长青, 王成辉, 陈郑辉, 黄凡. 2014. 中国锑矿成矿规律概要[J]. 地质学报, 88(12): 2208−2215.
|
[268] |
西藏自治区地质矿产局. 1993. 西藏区域地质志[M]. 北京: 地质出版社.
|
[269] |
西藏自治区地质矿产局. 1997. 西藏自治区岩石地层[M]. 武汉: 中国地质大学出版社.
|
[270] |
肖启明, 曾笃仁, 金富秋, 杨明跃, 阳志芳. 1992. 中国锑矿床时空分布规律及找矿方向[J]. 地质与勘探, (12): 9−14.
|
[271] |
谢玉玲, 杨科君, 李应栩, 李光明, 曲云伟, 董磊. 2019. 藏南马扎拉金−锑矿床: 成矿流体性质和成矿物质来源[J]. 地质学报, 44(6): 1998−2016.
|
[272] |
徐志刚, 陈毓川, 王登红, 陈郑辉, 李厚民. 2008. 中国成矿区带划分方案[M]. 北京: 地质出版社, 1−138.
|
[273] |
闫升好, 余金杰, 赵以辛, 徐志忠, 王安建, 粟登逵. 2003. 藏北美多锑矿床容矿硅质岩的地质地球化学特征及成因[J]. 矿床地质, 22(2): 149−157.
|
[274] |
闫升好, 余金杰, 赵以辛, 徐志忠, 王安建, 滕荣丽. 2004. 藏北美多锑矿带地质地球化学特征及其地球动力学背景探讨[J]. 地球学报, 25(5): 541−548. doi: 10.3321/j.issn:1006-3021.2004.05.009
|
[275] |
闫玉城. 2017. 拉诺玛铅锌多金属矿矿床成因探讨[J]. 新疆有色金属, 40(5): 22−25.
|
[276] |
杨竹森, 侯增谦, 高伟, 王海平, 李振清, 孟祥金, 曲晓明. 2006. 藏南拆离系锑金成矿特征与成因模式[J]. 地质学报, 80(9): 1377−1391. doi: 10.3321/j.issn:0001-5717.2006.09.013
|
[277] |
尹福光. 2003. 羌塘盆地中央隆起性质与成因[J]. 大地构造与成矿学, 27(2): 143−145. doi: 10.3969/j.issn.1001-1552.2003.02.006
|
[278] |
游钦. 2015. 西藏弄如日金矿原生晕研究[D]. 成都: 成都理工大学, 1−99.
|
[279] |
余金杰. 2001. 藏北锑矿带矿床地质特征及与藏南锑矿带粗略对比[D]. 北京: 中国地质科学院, 1−91.
|
[280] |
翟伟, 郑思琦, 孙晓明, 韦慧晓, 莫儒伟, 张凌宇, 周峰, 易建洲. 2018. 藏南喜马拉雅造山带造山型马扎拉Au−Sb矿床和沙拉岗Sb矿床流体包裹体He−Ar同位素组成: 对成矿流体来源的制约[J]. 岩石学报, 34(12): 3525−3538.
|
[281] |
张昌林. 2013. 西藏昌都地区拉诺玛铅锌矿矿床特征及成矿预测[D]. 北京: 中国地质大学(北京), 1−45.
|
[282] |
张刚阳, 郑有业, 张建芳, 张苏坤, 樊子晖. 2011. 西藏沙拉岗锑矿控矿构造及成矿时代约束[J]. 岩石学报, 27(7): 2143−2149.
|
[283] |
张刚阳. 2012. 藏南金锑多金属成矿带成矿模式与找矿前景研究[D]. 北京: 中国地质大学(北京), 1−197.
|
[284] |
张国林, 姚金炎, 谷相平. 1998. 中国锑矿床类型及时空分布规律[J]. 矿产与地质, (5): 306−312.
|
[285] |
张建芳. 2010. 北喜马拉雅扎西康铅锌锑银矿床成因研究[D]. 武汉: 中国地质大学(武汉), 1−96.
|
[286] |
张建芳, 郑有业, 张刚阳, 高顺宝, 叶先仁, 张众, 刘敏院, 李及秋. 2010. 北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约[J]. 地球科学−中国地质大学学报, 35(6): 1000−1010.
|
[287] |
张建芳, 郑有业, 张刚阳, 龚瑞君. 2011. 西藏北喜马拉雅马扎拉金锑矿床地质特征及成矿作用[J]. 黄金地质, 1(32): 20−24.
|
[288] |
张进江, 丁林. 2003. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 38(2): 179−189. doi: 10.3321/j.issn:0563-5020.2003.02.005
|
[289] |
张磊, 钟康惠, 赵洪飞, 白荣龙. 2016. 美多热液型锑银矿床成矿模式探讨[J]. 四川有色金属, (1): 12−15. doi: 10.3969/j.issn.1006-4079.2016.01.003
|
[290] |
张民, 刘显凡, 冯德新, 黄玉蓬, 李伟, 董毅. 2013. 西藏拉诺玛铅锑锌矿床矿物特征分析[J]. 高校地质学报, 19(增刊): 204−205.
|
[291] |
张苏坤. 2013. 藏南扎西康锑多金属矿床地质与地球化学特征[D]. 北京: 中国地质大学(北京), 1−119.
|
[292] |
张所续, 刘伯恩, 马朋林. 2019. 美国关键矿产战略调整对我国的相关启示[J]. 中国国土资源经济, 32(7): 38−45.
|
[293] |
张天羽, 李聪颖, 孙赛军, 郝锡荦. 2020. 锑的地球化学性质与华南锑矿带成因初探[J]. 岩石学报, 36(1): 44−54. doi: 10.18654/1000-0569/2020.01.06
|
[294] |
张志, 李光明, 张林奎. 2022. 西藏喜马拉雅带稀有金属矿勘查与研究进展[J]. 沉积与特提斯地质, 42(2): 176−188.
|
[295] |
赵一鸣, 吴良士, 白鸽, 袁忠信. 2004. 中国主要金属矿床成矿规律[M]. 北京: 地质出版社, 194−221.
|
[296] |
郑有业, 王达, 易建洲, 余泽章, 蒋宗洋, 李晓霞, 史功文, 许剑, 梁遇春, 豆孝芳, 任欢. 2022. 西藏北喜马拉雅成矿带锑金属成矿作用及找矿方向[J]. 地学前缘, 29(1): 200−230.
|
[297] |
郑有业, 赵永鑫, 王苹, 范文玉, 陈静, 曹新志, 张晓保. 2004. 藏南金锑成矿带成矿规律研究及找矿取得重大进展[J]. 地球科学: 中国地质大学学报, 29(1): 44−45.
|
[298] |
郑有业, 刘敏院, 孙祥, 原恩会, 田立明, 郑海涛, 张刚阳, 张立华. 2012. 西藏扎西康锑多金属矿床类型、发现过程及意义[J]. 地球科学(中国地质大学学报), 37(5): 1003−1014.
|
[299] |
《中国矿床》编委会. 1989. 中国矿床[M]. 北京: 地质出版社, 1−544.
|
[300] |
中国有色金属工业总公司地质勘查总局. 1996. 中国锑矿地质及矿床实例[M]. 北京: 北京矿产地质研究所.
|
[301] |
周德来, 钟康惠, 冯德新, 李关清, 苟金, 韩文文. 2011. 西藏自治区拉诺玛铅锌多金属矿床成矿地质特征再研讨与找矿远景分析[J]. 四川有色金属, (4): 15−20. doi: 10.3969/j.issn.1006-4079.2011.04.004
|
[302] |
周继. 2018. 西藏隆子县扎西康铅锌锑多金属矿成矿作用研究[D]. 北京: 中国地质大学(北京), 1−84.
|
[303] |
周天成. 2015. 藏南金锑多金属成矿带载金矿物特征及其指示意义[D]. 北京: 中国地质大学(北京), 1−62.
|
[304] |
周艳晶, 李建武, 王高尚, 夏烨, 邱南平. 2014. 全球锑矿资源分布及开发现状[J]. 中国矿业, 23(10): 13−16. doi: 10.3969/j.issn.1004-4051.2014.02.004
|
[305] |
邹光富. 2016. 青藏高原的大地构造演化与成矿作用[C]//资源环境与地学空间信息技术新进展学术会议论文集. 成都: 成都理工大学地球科学学院, 3−6.
|