• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Shen Jie, Xu Hao, Deng Hucheng, He Jianhua, Li Guofeng, Liu Yan, Song Weiguo, Deng Naier, Wu Jin. 2025. Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: A case study of Upper Paleozoic in Dingbei area of Ordos Basin[J]. Geology in China, 52(1): 315−330. DOI: 10.12029/gc20230421004
Citation: Shen Jie, Xu Hao, Deng Hucheng, He Jianhua, Li Guofeng, Liu Yan, Song Weiguo, Deng Naier, Wu Jin. 2025. Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: A case study of Upper Paleozoic in Dingbei area of Ordos Basin[J]. Geology in China, 52(1): 315−330. DOI: 10.12029/gc20230421004

Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: A case study of Upper Paleozoic in Dingbei area of Ordos Basin

Funds: Supported by the project of sichuan Science and Technology Program Outstanding Young Scientific Talents (No. 2020JDJQ0058).
More Information
  • Author Bio:

    SHEN Jie, born in 1999, master, mainly engaged in fine description of geostress field in unconventional oil and gas reservoirs; E-mail:1982510085@qq.com

  • Corresponding author:

    XU Hao, born in 1990, Ph.D., associate professor, mainly engaged in oil and gas field development geological research; E-mail:xuhao19@cdut.edu.cn

    WU Jin, born in 1988, Ph.D., senior engineer, mainly engaged in shale gas development geological research; E-mail: wujinouc@petrochina.com.cn.

  • Received Date: April 20, 2023
  • Revised Date: September 30, 2023
  • Available Online: February 03, 2024
  • This paper is the result of oil−gas exploration engineering.

    Objective 

    Dingbei area of Ordos Basin is rich in tight gas resources of Upper Paleozoic and has great exploration potential. However, faults are widely developed in this area, and the characteristics of geostress field near the fault zone are unknown, which seriously restricts oil and gas exploration and development in this area.

    Methods 

    This paper conducts a detailed analysis of the characteristics of the Upper Paleozoic geostress field in the study area based on differential strain experiment, acoustic emission experiment, logging interpretation of geostress size, wave velocity anisotropy experiment, paleomagnetism experiment, imaging logging and dipole acoustic logging data interpretation of geostress direction, numerical simulation and other methods, in order to find out the distribution characteristics and disturbance mechanism of the geostress field in Dingbei area.

    Results 

    The three−dimensional stress of Upper Paleozoic in Dingbei area has the characteristics of vertical principal stress>maximum principal stress>minimum principal stress, and the regional geostress field is mainly controlled by the fault zone, and the stress disturbance degree is related to the fault location, fault scale, fault genesis and other factors, among which the three−dimensional stress in the karst fault zone is relatively lowest. The direction of regional principal stress field is N35°E~N45°E. The direction of reservoir geostress is mainly controlled by the direction of regional principal stress field and fault zone, and the range and degree of geostress disturbance caused by different types of fault zones are different, among which the range of geostress disturbance is mainly affected by fault strike and fault length.

    Conclusions 

    Based on the research on the characteristics of geostress field, this paper clarifies the distribution characteristics and disturbance law of geostress size and direction in Dingbei area, discusses the disturbance mechanism of different genetic fault zones on geostress size, and establishes a prediction model for the disturbance width of geostress direction in the research area, which has important reference value for subsequent well pattern deployment and fracturing reconstruction.

    Highlights
    The influence of complex fault zone on in−situ stress distribution is revealed. The disturbance mechanism of different genetic fault zones on geostress is discussed. The prediction model of disturbance width in the direction of geostress in Dingbei area is established.
  • [1]
    Chen Shijie, Xiao Ming, Chen Juntao, Ren Junqing. 2020. Disturbance law of faults to in−situ stress field directions and its inversion analysis method[J]. Journal of Rock Mechanics and Engineering, 39(7): 1434−1444 (in Chinese with English abstract).
    [2]
    Chen Wei, Wu Zhiping, Hou feng, Kong Fei. 2010. Internal structures of fault zones and their relationship with hydrocarbon migration and accumulation[J]. Acta Petrolei Sinica, 31(5): 774−780 (in Chinese with English abstract).
    [3]
    Fu H L, Xu W, Wu Y M. 2023. Study on the distribution law of crustal stress in fault fracture area[J]. Applied Sciences, 13(13): 7678. doi: 10.3390/app13137678
    [4]
    He Jianhua, Cao Feng, Deng Hucheng, Wang Yuanyuan, Li Yong, Xu Qinglong. 2022. Evaluation of in−situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China, 50(4): 1107−1121 (in Chinese with English abstract).
    [5]
    Huang Tao, Liu Yan, He Jianhua, Ye Tairan, Deng Hucheng, Li Ruixue, Li Kesai, Zhang Jiawei. 2023. Evaluation method and engineering application of in−situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan−Fenggu area, western Sichuan[J]. Geology in China, 51(1): 89−104 (in Chinese with English abstract).
    [6]
    Huang Rongzun, Zhuang Jinjiang. 1986. A new method for predicting formation fracture pressure[J]. Oil Drilling & Production Technology, (3): 1−14 (in Chinese).
    [7]
    Jia Ailin, Wei Yunsheng, Guo Zhi, Wang Guoting, Meng Deiwei, Huang Suqi. 2022. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 42(1): 83−92 (in Chinese with English abstract).
    [8]
    Jia Xiaoliang, Cui Hongqing, Zhang Zimin. 2010. Numerical simulation of geostatic stress influening factor at the end of fault[J]. Coal Geology & Exploration, 38(4): 47−51 (in Chinese with English abstract).
    [9]
    Li Jing, Liu Chen, Liu Huimin, Xu Yanchao, Xie Li, Huang Guipeng. 2021. Distribution and influencing factors of in−situ in complex fault tectonic region[J]. Journal of China University of Mining and Technology, 50(1): 123−137 (in Chinese with English abstract).
    [10]
    Li Tang, Fu Meiyan, Deng Hucheng, Li Xiaohui, Wang Kunyu, Ran Hui. 2023. Diagenetic facies and distribution of tight sandstone reservoirs containing volcanic ash: A case study of the Upper Paleozoic in Dingbei area[J]. Natural Gas Geoscience, 34(10): 1768−1779 (in Chinese with English abstract).
    [11]
    Li Y J, Chen L W, Tan P, Li H. 2014. Lower crustal flow and its relation to the surface deformation and stress distribution in western Sichuan region, China[J]. Journal of Earth Science, 25(4): 630−637. doi: 10.1007/s12583-014-0467-x
    [12]
    Liu Hongping. 2017. Field Development Geologic Evaluation of Tight Gas Sandstones in Taiyuan Formation, Dingbei Area, Ordos Basin, China[D]. Wuhan: China University of Geosciences, 1−204 (in Chinese with English abstract).
    [13]
    Liu Yingjun, Zhu Haiyan, Tang Xuanhe, Sun Hansen, Zhang Binhai Chen Zhengrong. 2022. Four−dimensional in−situ stress model of CBM reservoirs based on geology–engineering integration[J]. Natural Gas Industry, 42(2): 82−92 (in Chinese with English abstract).
    [14]
    Liu Z Y, Zhao H F, Shi H W. 2022. Experimental study on stress monitoring in fractured−vuggy carbonate reservoirs before and after fracturing[J]. Journal of Petroleum Science and Engineering, 218: 110958. doi: 10.1016/j.petrol.2022.110958
    [15]
    Liu Zhongchun, Lü Xinrui, Li Yukun, Zhang Hui. 2016. Mechanism of faults acting on in−situ stress field direction[J]. Petroleum and Natural Gas Geology, 37(3): 387−393 (in Chinese with English abstract).
    [16]
    Luo Jianqiang, He Zhongming. 2008. Tectonic evolution and oil−gas distributoon in the mesozoic Ordos Basin[J]. Geology and Resources, 17(2): 135−138 (in Chinese with English abstract).
    [17]
    Lü Jing. 2017. Continental Facies Shale Formation Rock Mechanical Characteristics and Stress Field Evaluation Technique[D]. Chengdu: Chengdu University of Technology, 1−164 (in Chinese with English abstract).
    [18]
    Qi Hongwei, Shen Jie. 2023. Fracture development characteristics and influencing factors of Upper Paleozoic in Dingbei area[J]. World Petroleum Industry, 30(4): 48−54 (in Chinese with English abstract).
    [19]
    Shan Yuming, Zhou Wen, Tong Kaijun, Xie Runcheng. 2010. Application of synthetic evaluation for present ground stress field in deep formation of XC gas field in western Sichuan[J]. Mineralogy and Petrology, 30(3): 69−76 (in Chinese with English abstract).
    [20]
    Sun Lijian, Zhu Yuanqing, Yang Guangliang, Yin Jiyao. 2009. Numerical simulation of ground stress field at ends and vicinity of a fault[J]. Journal of Geodesy and Geodynamics, 29(2): 7−12 (in Chinese with English abstract).
    [21]
    Su Shengrui. 2001. The Effect of Fractures on Rock Stresses and Its Significance in Geological Engineering[D]. Chengdu: Chengdu University of Technology, 1−153 (in Chinese with English abstract).
    [22]
    Su Shengrui, Wang Shitian, Zhu Hehua. 2022. The effect of faults on geostress fields[C]// China Science and Technology Press, 662−667 (in Chinese with English abstract).
    [23]
    Weng Jianqiao, Zeng Lianbo, Lü Wenya, Liu Qi, Zu Kewei. 2020. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 26(1): 39−47 (in Chinese with English abstract).
    [24]
    Wu Xiaoqi, Ni Chunhua, Chen Yingbin, Zhu Jianhui, Li Kuang, Zeng Huasheng. 2019. Source of the Upper Paleozoic natural gas in Dingbei area in the Ordos Basin[J]. Natural Gas Geoscience, 30(6): 819−827 (in Chinese with English abstract).
    [25]
    Xian Chenggang. 2018. Shale gas geological engineering integrated modeling and numerical simulation: Present conditions, challenges and opportunities[J]. Petroleum Science and Technology Forum, 37(5): 24−34 (in Chinese with English abstract).
    [26]
    Xu Ke, Dai Junsheng, Shang Lin, Fang Lu, Feng Jianwei, Du He. 2019. Characteristics and infiuencing factors of in−situ stress of Nanpu sag, Bohai Bay basin, China[J]. Journal of China University of Mining & Technology, 48(3): 570−583 (in Chinese with English abstract).
    [27]
    Xu Ke, Tian Jun, Yang Haijun, Zhang Hui, Wang Zhimin, Yuan Fang, Wang Haiying. 2020. Prediction of current in−situ stress filed and its application of deeply buried tight sandstone reservoir: A case study of Keshen 10 gas reservoir in Kelasu structural belt, Tarim Basin[J]. Journal of China University of Mining & Technology, 49(4): 708−720 (in Chinese with English abstract).
    [28]
    Xu Ke, Zhang Hui, Liu Xinyu, Wang Zhimin, Lai Shujun. 2022. Current in−situ stress characteristics of deep fractured reservoirs in Kuqa Depression and its guiding significance to natural gas exploration and development[J]. Petroleum Geology and Recovery Efficiency, 29(2): 34−45 (in Chinese with English abstract).
    [29]
    Xu Liming, Zhou Lifa, Zhang Yikai, Dang Ben. 2006. Characteristics and tectonic setting of tectono−stress field of Ordos Basin[J]. Tectonics and Mineralogy, 30(4): 455−462 (in Chinese with English abstract).
    [30]
    Zhang Chong. 2015. The Fracture Characteristics, Causes and Distribution Evaluation of the Ordovician Karst Reservoir in Daniudi Gas Field[D]. Chengdu: Chengdu University of Technology, 1−103 (in Chinese with English abstract).
    [31]
    Zhang Wei, Lu Tao. 2019. Control effect of fault system on gas−water distribution in Dingbei area[J]. Science and Technology & Innovation, (16): 81−82 (in Chinese).
    [32]
    Zhang Xiaoju, He Jianhua, Xu Qinglong, Ye Tairan, Deng Hucheng, Xu Zhengqi, Cao Feng, Yuan Yunqi. 2022. Distribution characteristics and disturbance mechanism of presnt in−situ stress field in the second member of Xujiane formation in Hechuan area[J]. Mineral Rock, 42(4): 71−82 (in Chinese with English abstract).
    [33]
    Zhang Yueqiao, Liao Changzhen. 2006. Transition of the Late Mesozoic–Cenozoic tectonic regimes and modification of the Ordos Basin[J]. Geology in China, 33(1): 28−40 (in Chinese with English abstract).
    [34]
    Zhao Ronghua. 2021. Types and models of gas accumulation in Upper Paleozoic in Dingbei area[J]. Journal of Hebei GEO University, 44(3): 37−40 (in Chinese with English abstract).
    [35]
    Zhao Yuting, Duan Dong, Yang Yao, Fang Chaohe, Qu Xiaoming, Kang Zhiqin. 2015. Numerical simulation on influence factors of ground stress at the end of fault[J]. Safety in Coal Mines, 46(10): 210−213 (in Chinese with English abstract).
    [36]
    陈世杰, 肖明, 陈俊涛, 任俊卿. 2020. 断层对地应力场方向的扰动规律及反演分析方法[J]. 岩石力学与工程学报, 39(7): 1434−1444.
    [37]
    陈伟, 吴智平, 侯峰, 孔菲. 2010. 断裂带内部结构特征及其与油气运聚关系[J]. 石油学报, 31(5): 774−780. doi: 10.7623/syxb201005012
    [38]
    何建华, 曹峰, 邓虎成, 王园园, 李勇, 徐庆龙. 2022. 四川盆地HC地区须二段致密砂岩储层地应力评价及其在致密气开发中的应用[J]. 中国地质, 50(4): 1107−1121.
    [39]
    黄滔, 刘岩, 何建华, 叶泰然, 邓虎成, 李瑞雪, 李可赛, 张家维. 2023. 川西孝泉−丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用[J]. 中国地质, 51(1): 89−104.
    [40]
    黄荣樽, 庄锦江. 1986. 一种新的地层破裂压力预测方法[J]. 石油钻采工艺, (3): 1−14.
    [41]
    贾爱林, 位云生, 郭智, 王国亭, 孟德伟, 黄苏琦. 2022. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业, 42(1): 83−92. doi: 10.3787/j.issn.1000-0976.2022.01.008
    [42]
    贾晓亮, 崔洪庆, 张子敏. 2010. 断层端部地应力影响因素数值分析[J]. 煤田地质与勘探, 38(4): 47−51. doi: 10.3969/j.issn.1001-1986.2010.04.011
    [43]
    李静, 刘晨, 刘惠民, 许艳超, 解丽, 黄贵朋. 2021. 复杂断层构造区地应力分布规律及其影响因素[J]. 中国矿业大学学报, 50(1): 123−137.
    [44]
    李傥, 伏美燕, 邓虎成, 李晓慧, 王琨瑜, 冉辉. 2023. 含火山灰的致密砂岩储层成岩相及其分布—以定北地区上古生界为例[J]. 天然气地球科学, 34(10): 1768−1779.
    [45]
    刘洪平. 2017. 鄂尔多斯盆地定北地区太原组致密砂岩气层开发地质评价[D]. 武汉: 中国地质大学, 1−204.
    [46]
    刘英君, 朱海燕, 唐煊赫, 孙晗森, 张滨海, 陈峥嵘. 2022. 基于地质工程一体化的煤层气储层四维地应力演化模型及规律[J]. 天然气工业, 42(2): 82−92. doi: 10.3787/j.issn.1000-0976.2022.02.009
    [47]
    刘中春, 吕心瑞, 李玉坤, 张辉. 2016. 断层对地应力场方向的影响机理[J]. 石油与天然气地质, 37(3): 387−393. doi: 10.11743/ogg20160311
    [48]
    罗建强, 何忠明. 2008. 鄂尔多斯盆地中生代构造演化特征及油气分布[J]. 地质与资源, 17(2): 135−138. doi: 10.3969/j.issn.1671-1947.2008.02.010
    [49]
    吕晶. 2017. 陆相泥页岩地层岩石力学特征及地应力场评价技术[D]. 成都: 成都理工大学, 1−164.
    [50]
    齐宏伟, 沈杰. 2023. 定北地区上古生界裂缝发育特征及影响因素[J]. 世界石油工业, 30(4): 48−54.
    [51]
    单钰铭, 周文, 童凯军, 谢润成. 2010. 现今地应力场特征综合评价技术在川西XC气田深层中的应用[J]. 矿物岩石, 30(3): 69−76. doi: 10.3969/j.issn.1001-6872.2010.03.009
    [52]
    孙礼健, 朱元清, 杨光亮, 尹继尧. 2009. 断层端部及附近地应力场的数值模拟[J]. 大地测量与地球动力学, 29(2): 7−12. doi: 10.3969/j.issn.1671-5942.2009.02.003
    [53]
    苏生瑞. 2001. 断裂构造对地应力场的影响及其工程意义[D]. 成都: 成都理工学院, 1−153.
    [54]
    苏生瑞, 王士天, 朱合华. 2002. 断裂对地应力场影响的研究[C]//岩石力学新进展与西部开发中的岩土工程问题—中国岩石力学与工程学会第七次学术大会论文集: 中国科学技术出版社, 662−667.
    [55]
    翁剑桥, 曾联波, 吕文雅, 刘奇, 祖克威. 2020. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 26(1): 39−47. doi: 10.12090/j.issn.1006-6616.2020.26.01.004
    [56]
    吴小奇, 倪春华, 陈迎宾, 朱建辉, 李贶, 曾华盛. 2019. 鄂尔多斯盆地定北地区上古生界天然气来源[J]. 天然气地球科学, 30(6): 819−827. doi: 10.11764/j.issn.1672-1926.2019.03.015
    [57]
    鲜成钢. 2018. 页岩气地质工程一体化建模及数值模拟: 现状、挑战和机遇[J]. 石油科技论坛, 37(5): 24−34. doi: 10.3969/j.issn.1002-302x.2018.05.005
    [58]
    徐珂, 戴俊生, 商琳, 房璐, 冯建伟, 杜赫. 2019. 南堡凹陷现今地应力特征及影响因素[J]. 中国矿业大学学报, 48(3): 570−583.
    [59]
    徐珂, 田军, 杨海军, 张辉, 王志民, 袁芳, 王海应. 2020. 深层致密砂岩储层现今地应力场预测及应用—以塔里木盆地克拉苏构造带克深10气藏为例[J]. 中国矿业大学学报, 49(4): 708−720.
    [60]
    徐珂, 张辉, 刘新宇, 王志民, 来姝君. 2022. 库车坳陷深层裂缝性储层现今地应力特征及其对天然气勘探开发的指导意义[J]. 油气地质与采收率, 29(2): 34−45.
    [61]
    徐黎明, 周立发, 张义楷, 党犇. 2006. 鄂尔多斯盆地构造应力场特征及其构造背景[J]. 大地构造与成矿学, 30(4): 455−462. doi: 10.3969/j.issn.1001-1552.2006.04.007
    [62]
    张冲. 2015. 大牛地气田奥陶系岩溶储层裂缝特征、成因及分布评价[D]. 成都: 成都理工大学, 1−103.
    [63]
    张威, 卢涛. 2019. 定北地区断裂系统对气水分布的控制作用[J]. 科技与创新, (16): 81−82.
    [64]
    张小菊, 何建华, 徐庆龙, 叶泰然, 邓虎成, 徐争启, 曹峰, 阮韵琪. 2022. 合川地区须二段现今地应力场分布特征与扰动机制研究[J]. 矿物岩石, 42(4): 71−82. doi: 10.3969/j.issn.1001-6872.2022.4.kwys202204007
    [65]
    张岳桥, 廖昌珍. 2006. 晚中生代—新生代构造体制转换与鄂尔多斯盆地改造[J]. 中国地质, 33(1): 28−40. doi: 10.3969/j.issn.1000-3657.2006.01.003
    [66]
    赵荣华. 2021. 定北地区上古生界天然气成藏类型及模式[J]. 河北地质大学学报, 44(3): 37−40.
    [67]
    赵钰挺, 段东, 杨瑶, 方朝合, 曲晓明, 康志勤. 2015. 断层端部地应力分布规律影响因素的数值模拟[J]. 煤矿安全, 46(10): 210−213.

Catalog

    Article views (8845) PDF downloads (713) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return