• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Guo Gaoxuan, Dai Yindong, Xu Liang, Zhu Lin, Qi Qi, Ou Zhiliang, Shen Yuanyuan. 2024. Assessment of karst groundwater quality and its ecological environmental effects in Beijing[J]. Geology in China, 51(4): 1266−1279. DOI: 10.12029/gc20230423001
Citation: Guo Gaoxuan, Dai Yindong, Xu Liang, Zhu Lin, Qi Qi, Ou Zhiliang, Shen Yuanyuan. 2024. Assessment of karst groundwater quality and its ecological environmental effects in Beijing[J]. Geology in China, 51(4): 1266−1279. DOI: 10.12029/gc20230423001

Assessment of karst groundwater quality and its ecological environmental effects in Beijing

Funds: Supported by Beijing Ten Million Talents Project (No.2020A55), project of Beijing Municipal Commission of Science and Technology “Research and Demonstration on Key Technologies of Groundwater Restoration in the west of Beijing” (No.Z221100005222014), project of Beijing Association for Science and Technology Academic Demonstration “Evolution of Karst Fissure Water Environment and its Ecological Effect in the Western Mountains of Beijing”.
More Information
  • Author Bio:

    GUO Gaoxuan, male, born in 1979, Ph.D, professor level senior engineer, mainly engaged in investigations and research in hydrology, environmental geology and ecological geology; E-mail: ggx2008@qq.com

  • Received Date: April 22, 2023
  • Revised Date: May 26, 2024
  • Available Online: February 03, 2024
  • This paper presents the results of hydrogeological survey engineering.

    Objective 

    As an important water supply source in Beijing, karst groundwater plays an irreplaceable role in the security of the urban water supply and the improvement of the ecological environment.

    Methods 

    Based on the analysis of 278 karst groundwater samples systematically collected in Beijing in June 2021, both single-factor quality evaluation and comprehensive quality evaluation of karst water were carried out in different karst water systems. Additionally, the organic indicators were statistically counted and analyzed for the first time.

    Results 

    (1) The average values of pH, TDS, and TH of karst water in Beijing are 7.69, 334.77 mg/L, and 262.01 mg/L, respectively. These results indicate that the groundwater is weakly alkaline, with low salinity and low hardness, suggesting generally good water quality. (2) The detection rates for unconventional indicators, in descending order, were benzo[a]pyrene (4.32%), tribromomethane (3.60%), and total xylene (2.52%). These contaminants warrant significant attention. (3) The results of groundwater quality evaluation show that the overall proportion of karst water quality falling within Classes I−III is 82.01%, while Classes IV and V constitute 17.99%. The exceedance points are primarily located at the interface between mountainous and plain areas, with the primary exceedance indicators being Fe, TH, NH3-N, Mn, SO42−, F, and NO3-N.

    Conclusions 

    As the important water source supply area and ecological protection zone in Beijing's ecological conservation area, karst groundwater in the study area plays a very important role for ensuring the safety of the capital's water supply and protecting the ecological environment. In the future, to practically protect karst groundwater, measures such as increasing vegetation cover to enhance water conservation and recharge capacity, strictly controlling point source and non-point source pollution to reduce pollutant inputs, continuously optimizing the monitoring network for early warning, and broadly promoting public awareness and education on ecological protection should be implemented systematically.

    Highlights
    For the first time, single factor and comprehensive quality evaluation of karst water were conducted based on system theory in Beijing, and hydrochemical types were systematically compared; The main environmental issues and characteristic indicators of karst water were identified; The detection and exceeding of organic indicators were analyzed for the first time in the study area; The countermeasures and suggestions for the protection of karst water environment were proposed according to the findings in this study
  • [1]
    Chen Long, Liu Chunlan, Pei Sha, Liu Xiaona, Ning Yangcui. 2020. Evaluation of the effect terrain gradient of ecosystem services in the transitional zone of Beijing bay[J]. Research of Soil and Water Conservation, 27(4): 247−255 (in Chinese with English abstract).
    [2]
    Gao Shuai, Li Changsuo, Jia Chao, Sun Bin, Zhang Hailin, Pang Wei. 2019. Spatiotemporal difference study of karst hydrochemical characteristics in the Baotu Spring area of Jinan[J]. Acta Geologica Sinica, 93(S1): 61−70 (in Chinese with English abstract). doi: 10.1111/1755-6724.13937
    [3]
    Guo Gaoxuan, Liu Wenchen, Xin Baodong, Li Yu, Chen Yuanyuan. 2011. Current situation and discussions on karst groundwater resources exploration in Beijing[J]. South–to–North Diversion and Water Science & Technology, 9(2): 33−36,45 (in Chinese with English abstract).
    [4]
    Guo Gaoxuan. 2012. Comprehensive assessment of groundwater quality of different aquifers in Beijing Plain[J]. Geology in China, 39(2): 518−523 (in Chinese with English abstract).
    [5]
    Guo Xiaomeng. 2014. Numerical Simulation of Karst Water in Beijing Xishan and Evaluation of Its Emergency Mining Capacity[D]. Beijing: Capital Normal University, 1–67(in Chinese).
    [6]
    Han Zaisheng. 2003. Eco–environment geological survey: progress and prospects[J]. Geological Bulletin of China, (Z1): 977−983 (in Chinese with English abstract).
    [7]
    Ji Yiqun, Wang Shufang, Han Zheng, Huang Yuqi, Cao Ying, Guo Zhaocheng. 2020. Reseach on infiltration coefficient of precipitation in karst area of Beijing[J]. Yellow River, 42(2): 38−41,47 (in Chinese with English abstract).
    [8]
    Li Lu, Qin Dajun, Guo Yi, Sun Jie. 2019. Sources and migration of nitrate in groudwater in Xishan karst aquifer in Beijing[J]. Hydrogeology & Engineering Geology, 46(4): 73−80,96 (in Chinese with English abstract).
    [9]
    Li Lingqiao, Lei Xiaodong, Yang Yong, Yang Quanhe, Li Chen, Guan Wei, Sun Jiefu. 2019. A study of flow path in Yuquanshan area of western Beijing based on integrated geophysical technology[J]. Geology in China, 46(2): 346−358 (in Chinese with English abstract).
    [10]
    Li Shijun. 2012. A Study of the Characteristic and Regulation–Storage Capacity of the Zhangfang Karst–groundwater Reservoir in Beijing[D]. Beijing: China University of Geosciences (Beijing), 1–109 (in Chinese with English abstract).
    [11]
    Li Xiaopan. 2017. Characteristics of the Circulation and Renewability of the Karst Water System in Xishan Area, Beijing[D]. Beijing: China University of Geosciences (Beijing), 1–92 (in Chinese with English abstract).
    [12]
    Liang Yongping, Wang Weitai. 2010. The division and characteristics of karst water systems in Northern China[J]. Acta Geoscientica Sinica, 31(6): 860−868 (in Chinese with English abstract).
    [13]
    Liang Yongping, Wang Weitai, Zhao Chunhong, Wang Wei, Tang Chunlei. 2013. Variations of karst water and environmental problems in North China[J]. Carsologica Sinica, 32(1): 34−42 (in Chinese with English abstract).
    [14]
    Liang Yongping, Zhao Chunhong, Tang Chunlei, Wang Weitai, Shen Haoyong. 2015. Progress of hydrogeology and environmental geology survey in karst area of Northern China: An example from karst area in Western Hills of Beijing[J]. Geological Survey of China, 2(8): 1−8 (in Chinese with English abstract).
    [15]
    Liang Yongping, Shen Haoyong, Zhao Chunhong, Wang Zhiheng, Tang Chunlei, Zhao Yi, Xie Hao, Shi Weizhi. 2021. Thinking and practice on the research direction of karst water in northern China[J]. Carsologica Sinica, 40(3): 363−380 (in Chinese with English abstract).
    [16]
    Liu Chongjun, Liu Quanguo, Yu Yang, Wang Xiaosong. 2017. Permeability coefficient calculation and aquiferous property analysis on karst water system in the West Hill of Beijing[J]. Urban Geology, 12(2): 73−77 (in Chinese with English abstract).
    [17]
    Liu Shicheng. 2017. Discussion on water abundance of karst water system in Shunping Area, Beijing[J]. Urban Geology, 12(4): 67−71 (in Chinese with English abstract).
    [18]
    Ma Zhen, Xia Yubo, Li Haitao, Han Bo, Yu Xuezhong, Zhou Yalong, Wang Yushan, Guo Xu, Li Hongqiang, Pei Yandong. 2021. Analysis of natural resources and environment eco–geological conditions in the Xiong'an New Area[J]. Geology in China, 48(3): 677−696 (in Chinese with English abstract).
    [19]
    Nie Hongfeng, Xiao Chunlei, Ren Weixiang, Liu Jianyu, Dai Meng. 2021. Progress and prospect of ecogeological research[J]. Geological Survey of China, 8(6): 1−8 (in Chinese with English abstract).
    [20]
    Qin Dajun, Sun Jie, Guo Yi, Li Lu, Mohammed Haji, Wang Dongdong, Liu Wencai. 2019. Impacts of Yongding River on the Xishan karst aquifer and Yuquan spring in Beijing, China[J]. Journal of Engineering Geology, 27(1): 162−169 (in Chinese with English abstract).
    [21]
    Shen Yuanyuan, Xin Baodong, Guo Gaoxuan, Ji Yiqun. 2011. Numerical simulation and prediction of groundwater flow in emergency karst well fields in Fangshan, Beijing[J]. South–to–North Water Diversion and Water Science & Technology, 9(5): 103−106,114 (in Chinese with English abstract).
    [22]
    Shen Yuanyuan, Guo Gaoxuan, Ou Zhiliang, Xin Baodong, Nan Yinghua, Wang Liya, Wang Shufang, Liu Jiurong. 2021. Recovery scheme of Yuquanshan spring in Beijing[J]. South–to–North Water Transfers and Water Science & Technology, 19(4): 645−655 (in Chinese with English abstract).
    [23]
    Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. 1993. Hydrogeochemical Basis[M]. Beijing: Geological Publishing House, 1–189 (in Chinese).
    [24]
    Shi Xiaodi, Kang Xiaobing, Xu Mo, Deng Hongke. 2019. Hydrochemcial characteristics and evolution laws of karst groundwater in the slope zone of the canyon area, Sichuan–Yunnan Plateau[J]. Acta Geologica Sinica, 93(11): 2975−2984 (in Chinese with English abstract).
    [25]
    Usunoff E J, Amado G G. 1989. Multivariate analysis in hydrochemistry: An example of the use of factor and correspondence analyses[J]. Groundwater, 27(1): 27−34. doi: 10.1111/j.1745-6584.1989.tb00004.x
    [26]
    Wang Haiyan. 2022. The forest coverage rate in mountainous areas of Beijing has reached 58.8%[N]. Beijing Daily, http://www.forestry.gov.cn/zlszz/4262/20200623/092454097789248.html (in Chinese).
    [27]
    Wang Jingbin, Wei Xiaofeng, Zhang Huiqiong, Gan Fengwei. 2020. The eco–geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province[J]. Geology in China, 47(6): 1611−1624 (in Chinese with English abstract).
    [28]
    Wang Tianqi, Xu Rui, Zhang Yali. 2022. The gurgling spring water moistens the capital city[N]. Beijing Daily, http://www.beijing.gov.cn/renwen/jrbj/202203/t20220323_2637189.html (in Chinese).
    [29]
    Wang Xiaohong, Liu Wenchen, Shen Yuanyuan, Liu Shicheng. 2011. Analysis on the hydrogeology characteristics and exploitation on potential of the emergency karst water source field in Xishan region, Beijing[J]. Carsologica Sinica, 30(2): 216−221 (in Chinese with English abstract).
    [30]
    Wang Xiaohong, Liu Jiurong, Xin Baodong, Ye Chao, Shen Yuanyuan. 2016. Division and characterization analysis of karst groundwater system in Beijing[J]. Urban Geology, 11(3): 8−15 (in Chinese with English abstract).
    [31]
    Wu Le, Zhang Youquan, Gong Huili, Ye Chao, Shen Yuanyuan, Wang Rong. 2016. Numerical simulation of groundwater flow for Xishan area in Beijing[J]. Hydrogeology & Engineering Geology, 43(3): 29−36 (in Chinese with English abstract).
    [32]
    Xin Baodong. 2022. Karst Water in Beijing[M]. Beijing: Geoligical Publishing House, 1–273 (in Chinese).
    [33]
    Yang Ping, Hou Jingyan, Gao Ruihua. 1984. On the supply source of Yuquan Mountain Spring in Beijing – Runoff characteristics of Ordovician karst water in front of Xishan Mountain in Beijing[J]. Hydrogeology & Engineering Geology, (2): 15−19 (in Chinese).
    [34]
    Zhang Changmin. 2009. Subsidence Features and Risk Prediction in Coaling Goafs: A Case Study of the Xishan Area in Beijing[D]. Beijing: China University of Geosciences (Beijing), 1–159 (in Chinese with English abstract).
    [35]
    Zhang Ying, Liu Jingtao, Zhou Shiyang, Liu Chunyan, Yang Mingnan, Zhang Yuxi. 2024. Characteristics, controlling factors and effects on human health of groundwater chemical evolution in Wenzhou Plain, lower Oujiang River catchment[J]. Geology in China, 51(3): 1059−1073 (in Chinese with English abstract).
    [36]
    Zhao Chunhong, Li Qiang, Liang Yongping, Xu Liang, Wang Weitai, Lu Haiping, Tang Chunlei. 2014. Karst water system boundaries and hydrogeological properties of Heilongguan springshed in Xishan region, Beijing[J]. Advances in Earth Science, 29(3): 412−419 (in Chinese with English abstract).
    [37]
    Zhao Chunhong, Liang Yongping, Wang Weitai, Tang Chunlei, Shen Haoyong. 2017. Discussion on the characteristics of karst water systems in the Xishan area of Beijing[J]. Carsologica Sinica, 36(5): 641−647 (in Chinese with English abstract).
    [38]
    陈龙, 刘春兰, 裴厦, 刘晓娜, 宁杨翠. 2020. 北京湾过渡带生态系统服务地形梯度效应评价[J]. 水土保持研究, 27(4): 247−255.
    [39]
    高帅, 李常锁, 贾超, 孙斌, 张海林, 逄伟. 2019. 济南趵突泉泉域岩溶水化学特征时空差异性研究[J]. 地质学报, 93(S1): 61−70.
    [40]
    郭高轩, 刘文臣, 辛宝东, 李宇, 沈媛媛. 2011. 北京岩溶水勘查开发的现状与思考[J]. 南水北调与水利科技, 9(2): 33−36,45.
    [41]
    郭高轩. 2012. 北京市平原区地下水分层质量评价[J]. 中国地质, 39(2): 518−523. doi: 10.3969/j.issn.1000-3657.2012.02.022
    [42]
    郭小萌. 2014. 北京西山岩溶水数值模拟及其应急开采能力评价[D]. 北京: 首都师范大学, 1–67.
    [43]
    纪轶群, 王树芳, 韩征, 黄昱琪, 曹颖, 郭兆成. 2020. 北京岩溶水系统降水入渗系数研究[J]. 人民黄河, 42(2): 38−41,47. doi: 10.3969/j.issn.1000-1379.2020.02.008
    [44]
    韩再生. 2003. 生态环境地质调查进展与展望[J]. 地质通报, (Z1): 977–983.
    [45]
    李露, 秦大军, 郭艺, 孙杰. 2019. 北京西山岩溶水中硝酸盐来源及迁移特征[J]. 水文地质工程地质, 46(4): 73−80, 96.
    [46]
    李灵巧, 雷晓东, 杨勇, 杨全合, 李晨, 关伟, 孙杰夫. 2019. 北京西郊玉泉山地区岩溶水强径流路径地球物理分析[J]. 中国地质, 46(2): 346−358. doi: 10.12029/gc20190211
    [47]
    李世君. 2012. 北京张坊岩溶地下水库特征及调蓄能力研究[D]. 北京: 中国地质大学(北京), 1–109.
    [48]
    李小盼. 2017. 北京西山岩溶水系统的循环特征和可更新能力研究[D]. 北京: 中国地质大学(北京), 1–92.
    [49]
    梁永平, 王维泰. 2010. 中国北方岩溶水系统划分与系统特征[J]. 地球学报, 31(6): 860−868.
    [50]
    梁永平, 王维泰, 赵春红, 王玮, 唐春雷. 2013. 中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶, 32(1): 34−42. doi: 10.3969/j.issn.1001-4810.2013.01.006
    [51]
    梁永平, 赵春红, 唐春雷, 王维泰, 申豪勇. 2015. 北方岩溶区水文地质环境地质调查进展—以北京西山岩溶区为例[J]. 中国地质调查, 2(8): 1−8.
    [52]
    梁永平, 申豪勇, 赵春红, 王志恒, 唐春雷, 赵一, 谢浩, 石维芝. 2021. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 40(3): 363–380.
    [53]
    刘崇军, 刘全国, 于洋, 王小松. 2017. 北京西山岩溶水系统渗透系数计算及富水性分析[J]. 城市地质, 12(2): 73−77. doi: 10.3969/j.issn.1007-1903.2017.02.014
    [54]
    刘士成. 2017. 北京顺平岩溶水系统富水性分析[J]. 城市地质, 12(4): 67−71. doi: 10.3969/j.issn.1007-1903.2017.04.013
    [55]
    马震, 夏雨波, 李海涛, 韩博, 余学中, 周亚龙, 王雨山, 郭旭, 李洪强, 裴艳东. 2021. 雄安新区自然资源与环境–生态地质条件分析[J]. 中国地质, 48(3): 677–696.
    [56]
    聂洪峰, 肖春蕾, 任伟祥, 刘建宇, 戴蒙. 2021. 生态地质研究进展与展望[J]. 中国地质调查, 8(6): 1–8.
    [57]
    秦大军, 孙杰, 郭艺, 李露, Mohammed Haji, 王东东, 刘文才. 2019. 永定河对北京西山岩溶水和玉泉山泉的影响[J]. 工程地质学报, 27(1): 162−169.
    [58]
    沈媛媛, 辛宝东, 郭高轩, 纪轶群. 2011. 北京房山岩溶水应急水源地地下水流数值模拟及预测[J]. 南水北调与水利科技, 9(5): 103−106, 114.
    [59]
    沈媛媛, 郭高轩, 欧志亮, 辛宝东, 南英华, 王丽亚, 王树芳, 刘久荣. 2021. 北京玉泉山泉恢复方案[J]. 南水北调与水利科技(中英文), 19(4): 645−655.
    [60]
    沈照理, 朱宛华, 钟佐燊. 1993. 水文地球化学基础[M]. 北京: 地质出版社, 1–189.
    [61]
    史箫笛, 康小兵, 许模, 邓宏科. 2019. 川滇高原斜坡地带峡谷区岩溶水化学特征及演化规律[J]. 地质学报, 93(11): 2975−2984. doi: 10.3969/j.issn.0001-5717.2019.11.019
    [62]
    王海燕. 2020. 北京市山区森林覆盖率达到58.8%[N]. 北京日报, http://www.forestry.gov.cn/zlszz/4262/20200623/092454097789248.html.
    [63]
    王京彬, 卫晓锋, 张会琼, 甘凤伟. 2020. 基于地质建造的生态地质调查方法—以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611−1624. doi: 10.12029/gc20200601
    [64]
    王天淇, 许睿, 张雅丽. 2022. 汩汩泉水润京城[N]. 北京日报, http://www.beijing.gov.cn/renwen/jrbj/202203/t20220323_2637189.html.
    [65]
    王晓红, 刘文臣, 沈媛媛, 刘士成. 2011. 北京西山岩溶水应急水源地水文地质特征及开采潜力分析[J]. 中国岩溶, 30(2): 216−221. doi: 10.3969/j.issn.1001-4810.2011.02.015
    [66]
    王晓红, 刘久荣, 辛宝东, 叶超, 沈媛媛. 2016. 北京岩溶水系统划分及特征分析[J]. 城市地质, 11(3): 8−15. doi: 10.3969/j.issn.1007-1903.2016.03.002
    [67]
    吴乐, 张有全, 宫辉力, 叶超, 沈媛媛, 王荣. 2016. 北京市西山地区地下水数值模拟及预测[J]. 水文地质工程地质, 43(3): 29−36.
    [68]
    辛宝东, 等. 2022. 北京岩溶水[M]. 北京: 地质出版社, 1−273.
    [69]
    杨平, 侯井岩, 高润华. 1984. 论北京玉泉山泉补给源—北京西山山前奥陶系岩溶水径流特征[J]. 水文地质工程地质, (2): 15−19.
    [70]
    张长敏. 2009. 煤矿采空塌陷特征与危险性预测研究—以北京西山地区为列[D]. 北京: 中国地震局地质研究所, 1–159.
    [71]
    张英, 刘景涛, 周施阳, 刘春燕, 杨明楠, 张玉玺. 2024. 瓯江流域下游温州平原地下水化学演化特征、控制因素及对人体健康的影响[J]. 中国地质, 51(3): 1059−1073.
    [72]
    赵春红, 李强, 梁永平, 许亮, 王维泰, 卢海平, 唐春雷. 2014. 北京西山黑龙关泉域岩溶水系统边界与水文地质性质[J]. 地球科学进展, 29(3): 412−419. doi: 10.11867/j.issn.1001-8166.2014.03.0412
    [73]
    赵春红, 梁永平, 王维泰, 唐春雷, 申豪勇. 2017. 北京西山泉域岩溶水系统特征探讨[J]. 中国岩溶, 36(5): 641−647.

Catalog

    Article views (4923) PDF downloads (509) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return