• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Ding Jianhua, Zhang Yong, Li Lixing, Ye Huishou, Li Houmin, Fu Xuerui. 2025. Geological characteristics and resource potential of vanadium deposits in China[J]. Geology in China, 52(1): 22−42. DOI: 10.12029/gc20230526003
Citation: Ding Jianhua, Zhang Yong, Li Lixing, Ye Huishou, Li Houmin, Fu Xuerui. 2025. Geological characteristics and resource potential of vanadium deposits in China[J]. Geology in China, 52(1): 22−42. DOI: 10.12029/gc20230526003

Geological characteristics and resource potential of vanadium deposits in China

Funds: Supported by the projects of Science & Technology Fundamental Resources Investigation Program (No.2022FY101705) and China Geology Survey (No.DD20230305).
More Information
  • Author Bio:

    DING Jianhua, female, born in 1969, senior engineer, mainly engaged in research on potential evaluation of mineral resources; E-mail: dingzhanzhan@163.com

  • Received Date: May 25, 2023
  • Revised Date: August 21, 2023
  • Available Online: January 19, 2025
  • This paper is the result of mineral exploration engineering.

    Objective 

    Vanadium is widely used in multiple fields due to its unique physical and chemical properties, playing an increasingly important role in economic development, and its demand is increasing. China is one of the countries with the largest amount of vanadium ore resources, ranking first in the world in terms of total resources, mineral product production, and consumption. It is of theoretical and practical significance to summarize the metallogenic regularity and assess the potential of vanadium.

    Methods 

    We evaluated the potential of vanadium resources in China based on systematically summarizing the metallogenic regularity and mineralization patterns of vanadium deposits.

    Results 

    The sedimentary vanadium deposits related to the black rock series are the type of vanadium deposits with the highest proportion of identified resources in China. This type of deposits mainly distributes in the northern edges and southeastern part of the Yangtze block, the Qinling–Dabie orogenic belt, and the northern edge of the Tarim block. The black strata deposited under the influence of marine invasion, biological organic matter, and hot water are the most important elements for searching for this type of deposit. The next important deposit type is vanadium titanium magnetite type related to basic ultrabasic rocks. The mineralization mainly related to deep and large faults. The banded structure igneous rock belt is the most important element for searching for this type of deposit. We delineated 213 prediction areas, including 32 in class A, 85 in class B and 96 in class C.

    Conclusions 

    The characteristics of vanadium resources in China are abundant resources, low grade, abundant co associated minerals, and complex mineral composition. The low level of mineral processing and smelting technology leads to a low level of comprehensive utilization of vanadium resources and significant waste of resources. To consolidate and cultivate the advantages of vanadium resources in China, we suggest as follows: (1) Increase the investment in the exploration of magmatic− type V−deposits to ensure the production capacity demand of the existing V−industrial base. (2) Strengthen the research and development of sedimentary−type V ore processing and metallurgical technology, and the scientific and technological research and development of high−grade vanadium products. (3) Improve the efficient and high−end development and utilization of vanadium resources.

    Highlights
    (1) There are two types of vanadium deposits in China, one is sedimentary black shale type and the other is vanadium−titanium magnetite type related to basic ultrabasic rocks. (2) 213 prediction areas were delineated, including 32 category A prediction areas, 85 category B prediction areas and 96 category C prediction areas.
  • [1]
    Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology, 268(3/4): 211−225.
    [2]
    Chen Anguo, Wang Jizhong, Peng Gang. 1996. Geological characteristics of ultrabasic rocks in North Hebei Province[J]. Journal of Hebei College of Geology, 19(3/4): 314−319 (in Chinese with English abstract).
    [3]
    China Academy of Geology and Mineral Resources Information. 1996. Foreign Mineral Resources[M]. Beijing: Seismological Publishing House (in Chinese).
    [4]
    Deng Zewen. 2012. Geological Characteristics and Genesis of Zhabuqi Iron Deposit of Ximeng, Inner Mongolia[D]. Changchun: Jiling University, 1–68 (in Chinese with English abstract).
    [5]
    Fan Delian, Zhang Tao, Ye Jie, et al. 2004. Black Rock Series and Related Mineral Deposits in China [M]. Beijing: Science Press, 1–421 (in Chinese).
    [6]
    Fujian Geology and Mineral Resources Bureau. 1985. Regional Geological Records of Fujian Province[M]. Beijing: Geological Publishing House (in Chinese).
    [7]
    Fu Yong, Zhou Wenxi, Wang Huajian, Qiao Wenlang, Ye Yuntao, Jiang Ran, Wang Xiaomei, Su Jin, Li Di, Xia Peng. 2021. The relationship between environment and geochemical characteristics of black rock series of Lower Cambrian in northern Guizhou[J]. Acta Geologica Sinica, 95(2): 536−548 (in Chinese with English abstract).
    [8]
    Gao Yongzhang. 2019. Vanadium resources and its supply and demand situation in Chian[J]. China Mining Magazine, 28(S2): 5−10 (in Chinese with English abstract).
    [9]
    Gao Zhenjia, et al. 1993. Precambrian Geology, No. 6–Precambrian in Northern Xinjiang[M]. Beijing: Geological Publishing House, 1–171 (in Chinese).
    [10]
    Goldberg I. 1992. International Strategic Minerals Inventory Summary Report—Vanadium.[M] Denver, U. S. GPO.
    [11]
    Guangdong Geology and Mineral Resources Bureau. 1988. Regional Geological Records of Guangdong Province[M]. Beijing: Geological Publishing House (in Chinese).
    [12]
    Hao Wenli, Sun Guibin, Wen Li. 2008. Discussion on the economic value and comprehensive development of vanadium mine associated with Liumao graphite mine in Jixi city[J]. Heilongjiang Land and Resources, (5): 75 (in Chinese).
    [13]
    Han Shanchu. 2013. Supeerimposed Biotic, Hydrothermal and Seawater Mineralization and Its Variations in Early Cambrian Black Shales of South China: Case Studies Based on Ni–Mo and Barite Deposits[D]. Nanjing: Nanjing University, 1–130 (in Chinese with English abstract).
    [14]
    Han T, Fan H F, Zhu X Q, Wen H J, Zhao C H, Xiao F. 2017. Submarine hydrothermal contribution for the extreme element accumulation during the early Cambrian, South China[J]. Ore Geology Reviews, 86: 297−308. doi: 10.1016/j.oregeorev.2017.02.030
    [15]
    Horan M, Morgan J W, Grauch R I, Coveney R M, Murowchick J B, Hulbert L J. 1994. Rhenium and osmium isotopes in black shales and Ni–Mo–PGE–rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou provinces, China[J]. Geochimica et Cosmochimica Acta, 58(1): 257−265. doi: 10.1016/0016-7037(94)90463-4
    [16]
    Hu Guohui, Zhang Shuanhong, Zhang Qiqi, Wang Shiyan. 2019. New geochronological constraints on the Dahongkou Formation of the Luanchuan Group and its implications on the Neoproterozoic tectonic evolution of the southern margin of the North China Craton[J]. Acta Petrologica Sinica, 35(8): 2503−2517 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.08.12
    [17]
    Jiang S Y, Yang J H, Ling H F, Feng H Z, Chen Y Q, Chen J H. 2003. Re–Os isotopes and PGE geochemistry of black shales and intercalated Ni–Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China[J]. Progress in Natural Science, 13(10): 788−794. doi: 10.1080/10020070312331344440
    [18]
    Jiang S Y, Yang J H, Ling H F, Chen Y Q, Feng H Z, Zhao K D, Ni P. 2007. Extreme enrichment of polymetallic Ni–Mo–PGE–Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 217–228.
    [19]
    Lei Yingping, Yu Jimiao, Shen Jianquan. 2005. Geological characteristics and ore−controlling factors of the Shanglin vanadium deposit in Guangxi[J]. Land and Resources of Southern China, (5): 18−20 (in Chinese).
    [20]
    Lehmann B, Nägler T F, Holland H D, Wille M, Mao J W, Pan J Y, Ma D S, Dulski P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology, 35(5): 403−406. doi: 10.1130/G23543A.1
    [21]
    Li Houmin, Wang Denghong, Li Lixing, Chen Jing, Yang Xiuqing, Liu Mingjun. 2012. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China[J]. Geology in China, 39(3): 559−580 (in Chinese with English abstract).
    [22]
    Li Jun, Gao Junbo, Wei Huairui, Cheng Shuyun, Wu Tong, Gao Lei, Yang Ruidong. 2019. Division and contrast of metallogenic sequence in the base of Cambrian black rock series in Guizhou Province[J]. Geology and Exploration, 55(2): 508−518 (in Chinese with English abstract).
    [23]
    Li Mei, Zhang Fuxin. 2009. Characteristics of the Zhongcun–Yinhua vanadium deposit in black rock series, Shanyang County, Shanxi Province[J]. Geology in China, 36(5): 1009−1109 (in Chinese with English abstract).
    [24]
    Li Shengrong, Xiao Yiyun, Shen Junfeng, Sun Li, Liu Bo, Yan Baikun. 2002. Re Os isotope constraints on the source and mineralization age of platinum group elements in the lower Cambrian of Guizhou, south China[J]. Science China (Series D: Earth Science), 32(7): 568−575 (in Chinese).
    [25]
    Li Zimin, Ma Dongfeng, Feng Yaju, Gou Aisuo, Bi Yuzhong. 2013. Analysis of the geological and geochemical characteristics of the Vanadium in the Meiyaogou Formation in Western Henan Province[J]. Sichuan Nonferrous Metals, (1): 42−46 (in Chinese with English abstract).
    [26]
    Liu Mingpei. 2009. Analysis of vanadium distribution regularity in Panzhihua vanadium−titanium magnetite mine[J]. Mining Engineering, 7(5): 9−11 (in Chinese with English abstract).
    [27]
    Ma Dongfeng, Zhang Zanfei, Jiang Wei, Li Changqing, Bi Chong. 2016. Geological characteristics and genesis of vanadium deposit in the Meiyaogou Formation, Henan Province[J]. Engineering Technology, (3): 225−226 (in Chinese).
    [28]
    Mao Jingwen, Zhang Guangdi, Du Andao, Wang Yitian, Zeng Mingguo. 2001. Geology, geochemistry, and Re–Os isotopic dating of the Huangjiawan Ni–Mo–PGE deposit, Zunyi, Guizhou Province: With a discussion of the polymetallic mineralization of basal Cambrian black shales in South China[J]. Acta Geologica Sinica, 75(2): 234−244 (in Chinese with English abstract).
    [29]
    Mao J W, Lehmann B, Du A D, Zhang G D, Ma D S, Wang Y T, Zeng M G, Kerrich R. 2002. Re–Os dating of polymetallic Ni–Mo–PGE–Au mineralization in lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 97(5): 105l−1061.
    [30]
    Mckelvey V E, Strobell J D, Staughter A L. 1986. The Vanadiferous Zone of the Phosphoria Formation in Western Wyoming and Southeastern Idaho[M]. Denver: U. S. Geological Survey Professional Paper, 1–27.
    [31]
    Ministry of Natural Resources, PRC. 2019. China Mineral Resources[M]. Beijing: Geological Publishing House.
    [32]
    Ministry of Natural Resources, PRC. 2022. China Mineral Resources[M]. Beijing: Geological Publishing House.
    [33]
    Nadoll P, Angerer T, Mauk J L, French D, Walshe J. 2014. The chemistry of hydrothermal magnetite: A review[J]. Ore Geology Reviews, 61: 1−32. doi: 10.1016/j.oregeorev.2013.12.013
    [34]
    She Y W, Yu S Y, Song X Y, Chen L M, Zheng W Q, Luan Y. 2014. The formation of P–rich Fe–Ti oxide ore layers in the Taihe layered intrusion, SW China: Implications for magma–plumbing system process[J]. Ore Geology Reviews, 57: 539−559. doi: 10.1016/j.oregeorev.2013.07.007
    [35]
    Shi Chunhua, Cao Jian, Hu Kai, Bian Lizeng, Han Shanchu, Yao Suping. 2013. A review of origins of mineral deposits hosted in black rock series and the mineralizing functions of their sea water, hydrothermal fluid and bio−organics[J]. Earth Science Frontiers, 20(1): 19−31 (in Chinese with English abstract).
    [36]
    Song Xieyan, Chen, Liemeng. 2012. The core issue of the large−scale mineralization in small intrusion: Mineralization in magmatic plumbing system principles, key features and exploration marks[J]. Northwestern Geology, 45(4): 117−127 (in Chinese with English abstract).
    [37]
    Song X Y, Reid R K, Xiao L, Qi H W, Ihlenfeld C. 2009. Platinum group element geochemistry of the continental flood basalts in the central Emeishan Large Igneous Province, SW China[J]. Chemical Geology, 262(3/4): 246−261.
    [38]
    Wan Tianfeng. 2011. Tectonics of China[M]. Beijing: Geological Publishing House (in Chinese).
    [39]
    Wang Guocan, Tan Yingjia, Wang Fangzheng. 1992. Multiphase thrusting of the Chongli–Chicheng regional fracture of North Hebei Province and tectonic factors of Inner Mongolian axis upwarping[J]. Earth Science, 17(6): 621−630 (in Chinese with English abstract).
    [40]
    Wang Jia, Li Fengjie, Zhang Xihua, Chen Cong, Gao Zhaolong. 2023. Genetic analysis of "Datangpo type" manganese deposit in Qianyang Basin, southwest Hunan: A case study of Jingzhou, Hunan Province[J]. Geology in China, 50(1): 249−263 (in Chinese with English abstract).
    [41]
    Wang Lishe. 2009. Study on the Metallogenic Regularity and Geological–Geochemistry for Black Rock Series and Related Typical Deposits in Qinling Mounitains, Shaanxi[D]. Xi’an: Northwest University, 1–163 (in Chinese with English abstract).
    [42]
    Wu Bin, Can Junxing, Tang Yuqiang, Zou Jun, Yu Zhou. 2012. Geological features of the vanadium–titanium magnetite deposit in the Hongge area and its geophysical prospecting[J]. Geology and Prospecting, 48(1): 140−147 (in Chinese with English abstract).
    [43]
    Wu Chaodong, Chen Qiying, Lei Jiajin. 1999. The genesis factors and organic petrology of black shale series from the Upper Sinian to the Lower Cambrian, southwest of China[J]. Acta Petrologica Sinica, 15(3): 453−462 (in Chinese with English abstract).
    [44]
    Xing Changming, Wang Yan, Zhang Mingjie. 2012. Volatile and C–H–O isotopic compositions of giant Fe–Ti–V oxide deposits in the Panxi region and their implications for the sources of volatiles and the origin of Fe–Ti oxide ores[J]. Science China: Earth Sciences, 42(11): 1701−1715 (in Chinese).
    [45]
    Xu Lingang, Fu Xuerui, Ye Huishou, Zeng Wei, Chen Bo, Fang Zhenglong. 2022. Geochemical composition and paleoceanic environment of the Lower Cambrian black shale–hosted Qianjiaping vanadium deposit in the southern Qinling Region[J]. Earth Science Frontiers, 29(1): 160−175 (in Chinese with English abstract).
    [46]
    Xu L G, Mao J W. 2021. Trace element and C–S–Fe geochemistry of Early Cambrian black shales and associated polymetallic Ni–Mo sulfide and vanadium mineralization, South China: Implications for paleoceanic redox variation[J]. Ore Geology Reviews, 135: 104210. doi: 10.1016/j.oregeorev.2021.104210
    [47]
    Xu Zhigang, Chen Yuchuan, Wang Denghong, Li Houmin, Chen Zhenghui. 2008. Division of Mineralization Zones in China[M]. Beijing: Geological Publishing House, 1–138 (in Chinese).
    [48]
    Yang Jinghong, Jiang Shaoyong, Ling Hongfei, Chen Yongquan. 2005. Re–Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 12(2): 143−150 (in Chinese with English abstract).
    [49]
    Yang Tao, Peng Rupan, Luo Pengpeng. 2021. Geological characteristics of Muguaping vanadium mine in Baihe County, Shaanxi Province[J]. West–China Exploration Engineering, 33(8): 161−162,168 (in Chinese).
    [50]
    Ye Jie, Fan Delian. 2000. Characteristics and mineralization of ore deposits related to black shale series[J]. Bulletin of Mineraloty, Petroloty and Geochemisty, 19(2): 95–102 (in Chinese with English abstract).
    [51]
    You Xianjun. 2010. Research on the Ni–Mo–V Deposits in Lower Cambrian Black Rock Series in Western Hunan[D]. Changsha: Central South University, 1–100 (in Chinese with English abstract).
    [52]
    Yu Bingsong, Wang Lidong, Chen Jianqiang, Chen Xiaolin, Liang Shiyou, Li Zhongbao, Lin Changsong. 2003. The suboxic depositional setting of black shales in Lower Cambrian from northern Tarim basin[J]. Earth Science Frontiers, 10(4): 545−550 (in Chinese with English abstract).
    [53]
    Zhang Chengjiang, Liu Jiaduo, Liu Xianfan, Li Youguo, Yang Zhengxi. 2009. Metallization systems in the Panzhihua–Xichang area of Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 33(4): 387−394 (in Chinese with English abstract).
    [54]
    Zhang Guowei, Guo Anlin, Wang Yuejun, Li Sanzhong, Dong Yunpeng, Liu Shaofeng, He Dengfa, Cheng Shunyou, Lu Rukui, Yao Anping. 2013. Tectonics of South China continent and its implications[J]. Science China: Earth Sciences, 56(10): 1804−1828 (in Chinese)
    [55]
    Zhang Kuo, Shen Baofeng, Sun Fengyue, Zhou Hongying, Li Huakun. 2016. Metallogenic epoch of Zhaoanzhuang iron ore deposit in Wuyang, Henan Province: Oldest magmatic type iron ore deposit in China[J]. Mineral Deposits, 35(50): 889−901 (in Chinese with English abstract).
    [56]
    Zhang Qinshan, Tian Tao, He Li, Liu Changzheng. 2020. The discovery of the first vanadium deposit in Qinghai Province and its significance[J]. Geological Bulletin of China, 39(2/3): 330−337 (in Chinese with English abstract).
    [57]
    Zhang Zhaochong, Hou Tong, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan. 2014. Enrichment mechanism of iron in magmatic hydrothermal system[J]. Acta Petrologica Sinica, 30(5): 1189−1204 (in Chinese with English abstract).
    [58]
    Zhao Jie. 2022. Sedimentary phosphate–vanadium deposits in the Lower Cambrian black rock series in the Wushi–Keping area, Xinjiang[J]. Xinjiang Non–ferrous Metals, 45(5): 64−67 (in Chinese).
    [59]
    Zhao Xingmin, Nie Fengjun, Jiang Sihong, Bai Daming. 2002. Geological features and origin of the Fangshankou large–scale V–P–U deposit in Dunhuang, Gansu Province[J]. Acta Geoscientica Sinica, 23(3): 207−212 (in Chinese with English abstract).
    [60]
    陈安国, 王吉中, 彭岗. 1996. 冀北超基性岩地质特征[J]. 河北地质学院学报, 19(3/4): 314−319.
    [61]
    邓泽文. 2012. 内蒙古锡盟扎布其铁矿地质特征及成因[D]. 长春: 吉林大学, 1–68.
    [62]
    范德廉, 张焘, 叶杰, 等. 2004. 中国的黑色岩系及有关矿床[M]. 北京: 科学出版社, 1–421.
    [63]
    福建省地质矿产局. 1985. 福建省区域地质志[M]. 北京: 地质出版社.
    [64]
    付勇, 周文喜, 王华建, 谯文浪, 叶云涛, 江冉, 王晓梅, 苏劲, 李迪, 夏鹏. 2021. 黔北下寒武统黑色岩系的沉积环境与地球化学响应[J]. 地质学报, 95(2): 536−548.
    [65]
    高永璋. 2019. 中国钒矿资源及供需形势分析[J]. 中国矿业, 28(S2): 5−10. doi: 10.12075/j.issn.1004-4051.2019.S2.040
    [66]
    高振家, 等. 1993. 前寒武纪地质第6号—新疆北部前寒武系[M]. 北京: 地质出版社, 1–171.
    [67]
    广东省地质矿产局. 1988. 广东省区域地质志[M]. 北京: 地质出版社.
    [68]
    郝文丽, 孙贵斌, 温丽. 2008. 鸡西市柳毛石墨矿伴生钒矿经济价值及综合开发探讨[J]. 黑龙江国土资源, (5): 75.
    [69]
    韩善楚. 2013. 华南早寒武世黑色岩系生物−热水−海水三元叠合成矿作用及其差异性研究—以镍钼和重晶石矿床为例[D]. 南京: 南京大学, 1–130.
    [70]
    胡国辉, 张拴宏, 张琪琪, 王世炎. 2019. 华北克拉通南缘栾川群大红口组形成时代及其对新元古代构造演化的制约[J]. 岩石学报, 35(8): 2503−2517. doi: 10.18654/1000-0569/2019.08.12
    [71]
    雷英凭, 余继淼, 沈健全. 2005. 广西上林钒矿床地质特征及控矿因素[J]. 南方国土资源, (5): 18−20.
    [72]
    李厚民, 王登红, 李立兴, 陈靖, 杨秀清, 刘明军. 2012. 中国铁矿成矿规律及重点矿集区资源潜力分析[J]. 中国地质, 39(3): 559−580. doi: 10.3969/j.issn.1000-3657.2012.03.001
    [73]
    李军, 高军波, 魏怀瑞, 陈述云, 吴桐, 高磊, 杨瑞东. 2019. 贵州寒武系底部黑色岩系成矿序列划分与对比[J]. 地质与勘探, 55(2): 508−518. doi: 10.12134/j.dzykt.2019.02.006
    [74]
    李玫, 张复新. 2009. 陕西山阳县黑色岩系中中村—银花钒矿床地质特征[J]. 中国地质, 36(5): 1009−1109.
    [75]
    李胜荣, 肖启云, 申俊峰, 孙丽, 刘波, 阎柏琨. 2002. 湘黔下寒武统铂族元素来源与矿化年龄的Re–Os同位素制约[J]. 中国科学(D辑: 地球科学), 32(7): 568−575.
    [76]
    李自民, 马东峰, 冯亚举, 郭爱锁, 毕羽中. 2013. 豫西煤窑沟组钒的地质地球化学特征[J]. 四川有色金属, (1): 42−46. doi: 10.3969/j.issn.1006-4079.2013.01.007
    [77]
    刘明培. 2009. 浅析攀枝花钒钛磁铁矿钒的分布规律[J]. 矿业工程, 7(5): 9−11. doi: 10.3969/j.issn.1671-8550.2009.05.004
    [78]
    马东峰, 张赞飞, 姜伟, 李长青, 毕翀. 2016. 河南省煤窑沟组地层钒矿床地质特征与矿床成因研究[J]. 工程技术(全文版), (3): 225−226.
    [79]
    毛景文, 张光第, 杜安道, 王义天, 曾明果. 2001. 遵义黄家湾镍钼铂族元素矿床地质、地球化学和Re–Os同位素年龄测定—兼论华南寒武系底部黑色页岩多金属成矿作用[J]. 地质学报, 75(2): 234−244. doi: 10.3321/j.issn:0001-5717.2001.02.013
    [80]
    施春华, 曹剑, 胡凯, 边立曾, 韩善楚, 姚素平. 2013. 黑色岩系矿床成因及其海水、热水与生物有机成矿作用[J]. 地学前缘, 20(1): 19−31.
    [81]
    宋谢炎, 陈列锰. 2012. “小岩体成大矿”的核心—岩浆通道系统成矿原理、特征及找矿标志[J]. 西北地质, 45(4): 117−127. doi: 10.3969/j.issn.1009-6248.2012.04.010
    [82]
    万天丰. 2011. 中国大地构造学[M]. 北京: 地质出版社.
    [83]
    王国灿, 谭应佳, 王方正. 1992. 冀北崇礼—赤城断裂的多相逆冲—兼论内蒙地轴隆升的构造制约因素[J]. 地球科学, 17(6): 621−630.
    [84]
    王佳, 李凤杰, 张玺华, 陈聪, 高兆龙. 2023. 湘西南黔阳盆地“大塘坡式”锰矿成因分析: 以湖南靖州地区为例[J]. 中国地质, 50(1): 249−263. doi: 10.12029/gc20220130001
    [85]
    王立社. 2009. 陕西秦岭黑色岩系及其典型矿床地质地球化学与成矿规律研究[D]. 西安: 西北大学, 1–163.
    [86]
    武斌, 曹俊兴, 唐玉强, 邹俊, 余舟. 2012. 红格地区钒钛磁铁矿地质特征及地球物理找矿的探讨[J]. 地质与勘探, 48(1): 140−147.
    [87]
    吴朝东, 陈其英, 雷家锦. 1999. 湘西震旦—寒武纪黑色岩系的有机岩石学特征及其形成条件[J]. 岩石学报, 15(3): 453−461. doi: 10.3321/j.issn:1000-0569.1999.03.014
    [88]
    邢长明, 王焰, 张铭杰. 2012. 攀西地区超大型钒钛磁铁矿矿床挥发份组成及其C–H–O稳定同位素研究: 对挥发份来源和矿石成因的约束[J]. 中国科学: 地球科学, 42(11): 1701−1715.
    [89]
    徐林刚, 付雪瑞, 叶会寿, 郑伟, 陈勃, 方正龙. 2022. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 29(1): 160−175.
    [90]
    徐志刚, 陈毓川, 王登红, 李厚民, 陈郑辉. 2008. 中国成矿区带划分方案[M]. 北京: 地质出版社, 1–138.
    [91]
    杨競红, 蒋少涌, 凌洪飞, 陈永权. 2005. 黑色页岩与大洋缺氧事件的Re–Os同位素示踪与定年研究[J]. 地学前缘, 12(2): 143−150. doi: 10.3321/j.issn:1005-2321.2005.02.016
    [92]
    杨涛, 彭如盼, 雒鹏鹏. 2021. 陕西省白河县木瓜坪钒矿地质特征[J]. 西部探矿工程, 33(8): P161−162,168. doi: 10.3969/j.issn.1004-5716.2021.08.057
    [93]
    叶杰, 范德廉. 2000. 黑色岩系型矿床的形成作用及其在我国的产出特征[J]. 矿物岩石地球化学通报, 19(2): 95−102. doi: 10.3969/j.issn.1007-2802.2000.02.004
    [94]
    游先军. 2010. 湘西下寒武统黑色岩系中的镍钼钒矿研究[D]. 长沙: 中南大学, 1–100.
    [95]
    于炳松, 王黎栋, 陈建强, 陈晓林, 梁世友, 刘忠宝, 林畅松. 2003. 塔里木盆地北部下寒武统底部黑色页岩形成的次氧化条件[J]. 地学前缘, 10(4): 545−550. doi: 10.3321/j.issn:1005-2321.2003.04.020
    [96]
    张成江, 刘家铎, 刘显凡, 李佑国, 阳正熙. 2009. 攀西地区金属成矿系统[J]. 成都理工大学学报(自然科学版), 33(4): 387−394.
    [97]
    张国伟, 郭安林, 王岳军, 李三忠, 董云鹏, 刘少峰, 何登发, 程顺有, 鲁如魁, 姚平安. 2013. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 43(10): 1553−1582.
    [98]
    张阔, 沈保丰, 孙丰月, 周红英, 李怀坤. 2016. 河南舞阳地区赵案庄铁矿床成矿时代及地质意义—中国最古老的岩浆型铁矿床[J]. 矿床地质, 35(50): 889−901.
    [99]
    张勤山, 田滔, 何利, 刘长征. 2020. 青海省首个钒矿床的发现及意义[J]. 地质通报, 39(2/3): 330−337.
    [100]
    张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 2014. 岩浆−热液系统中铁的富集机制探讨[J]. 岩石学报, 30(5): 1189−1204.
    [101]
    赵杰. 2022. 新疆乌什—柯坪一带下寒武统黑色岩系中的沉积型磷钒矿[J]. 新疆有色金属, 45(5): 64−67.
    [102]
    赵省民, 聂风军, 江思宏, 白大明. 2002. 敦煌方山口大型钒磷铀矿床的地质特征及成因[J]. 地球学报, 23(3): 207−212. doi: 10.3321/j.issn:1006-3021.2002.03.003
    [103]
    中国地质矿产信息研究院. 1996. 国外矿产资源[M]. 北京: 地震出版社.
    [104]
    中华人民共和国自然资源部. 2019. 中国矿产资源报告[M]. 北京: 地质出版社.
    [105]
    中华人民共和国自然资源部. 2022. 中国矿产资源报告[M]. 北京: 地质出版社.

Catalog

    Article views (2949) PDF downloads (446) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return