• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Cao Wengeng, Wang Yanyan, Zhang Yanan, Guo Jiju, Xiao Shunyu, Ding Minjin, Na Jing, Sun Zhuang. 2024. Pollution status, environmental risk and development trend of groundwater containing microplastics[J]. Geology in China, 51(6): 1895−1916. DOI: 10.12029/gc20231028001
Citation: Cao Wengeng, Wang Yanyan, Zhang Yanan, Guo Jiju, Xiao Shunyu, Ding Minjin, Na Jing, Sun Zhuang. 2024. Pollution status, environmental risk and development trend of groundwater containing microplastics[J]. Geology in China, 51(6): 1895−1916. DOI: 10.12029/gc20231028001

Pollution status, environmental risk and development trend of groundwater containing microplastics

Funds: Supported by Outstanding Youth Science Foundation of Hebei Natural Science Foundation (No. D2023504030) and Hebei Central Government-Guided Local Science and Technology Development Fund Project (No. 246Z3601G).
More Information
  • Author Bio:

    CAO Wengeng, male, born in 1985, associate researcher, mainly engaged in hydrogeology and hydrogeochemistry; E-mail: caowengeng@mail.cgs.gov.cn

  • Corresponding author:

    WANG Yanyan, female, born in 1987, associate researcher, mainly engaged in the research of water pollution control; E-mail: wangyanyan@mail.cgs.gov.cn.

  • Received Date: October 27, 2023
  • Revised Date: January 28, 2024
  • This paper is the result of hydrogeological survey engineering.

    Objective 

    Microplastics (MPs) have emerged as a global pollutant, causing increasingly severe environmental problems. While most research has focused on surface water bodies such as oceans and rivers, studies on MPs in groundwater systems have been relatively limited.

    Methods 

    Based on extensive literature research and analysis, this paper examines the progress made in the study of MPs in groundwater. It explores the sources, detection methods, distribution characteristics, environmental risks and future trends of MPs in groundwater. The objective is to provide references for future research and facilitate risk prevention and control of MPs−contaminated groundwater.

    Results 

    MPs primarily enter groundwater through three pathways: surface water−groundwater interaction, soil infiltration, and direct injection. Currently, research on MPs in groundwater is primarily concentrated in coastal areas, particularly in China, Europe and North America. However, additional data and research are needed in regions such as South America, Africa and Oceania. The most common types of MPs found in groundwater are polyethylene terephthalate (PET) and polyethylene (PE), with fibers and debris being the predominant shapes. Groundwater contaminated with MPs poses environmental risks to soil and crop health, pollutant migration, human health, underground ecosystem, and the effectiveness of groundwater pollution remediation. Future research on MPs in groundwater should prioritize the establishment of standardized sampling and detection procedures, determination of spatial distribution characteristics, and exploration of key scientific issues influencing the migration and transformation mechanism.

    Conclusions 

    Numerous studies have been conducted on the sources, distribution characteristics, environmental risks and development trends of MPs in groundwater. However, current research is still in its early stage and is expected to continue growing due to the vital role groundwater plays in sustaining human activities and natural ecosystems. Management strategies for MPs pollution in groundwater should primarily focus on three aspects. Firstly, controlling the source by minimizing plastic waste production is crucial. Secondly, it is important to cut off migratory routes of MPs by implementing preventive measures in high−risk areas. Lastly, developing appropriate remediation technologies is essential for the end−removal of MPs from groundwater.

    Highlights
    (1) This paper systematically reviews the pollution status and environmental risks of groundwater containing microplastics, and discusses the future development trend in this field. (2) The management strategy of groundwater microplastics pollution should be considered from three aspects: Controlling the source, cutting off the migratory routes and end−removal.
  • [1]
    Accinelli C, Abbas H K, Shier W T, Vicari A, Little N S, Aloise M R, Giacomini S. 2019. Degradation of microplastic seed film−coating fragments in soil[J]. Chemosphere, 226: 645−650. doi: 10.1016/j.chemosphere.2019.03.161
    [2]
    Akechti M, Benomar M, Alami M, Mendiguchia C. 2022. Metal adsorption by microplastics in aquatic environments under controlled conditions: exposure time, pH and salinity[J]. International Journal of Environmental Analytical Chemistry, 102(5): 1118−1125.
    [3]
    Akdogan Z, Guven B, Kideys A E. 2023. Microplastic distribution in the surface water and sediment of the Ergene River[J]. Environmental Research, 234: 116500. doi: 10.1016/j.envres.2023.116500
    [4]
    Anger P M, von der Esch E, Baumann T, Elsner M, Niessner R, Ivleva N P. 2018. Raman microspectroscopy as a tool for microplastic particle analysis[J]. TrAC–Trends in Analytical Chemistry, 109: 214−226. doi: 10.1016/j.trac.2018.10.010
    [5]
    Banu J R, Sharmila V G, Ushani U, Amudha V, Kumar G. 2020. Impervious and influence in the liquid fuel production from municipal plastic waste through thermo–chemical biomass conversion technologies–A review[J]. Science of the Total Environment, 718: 137287. doi: 10.1016/j.scitotenv.2020.137287
    [6]
    Bharath K M, Usha N, Vaikunth R, Kumar R P, Ruthra R, Srinivasalu S. 2021. Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater[J]. Chemosphere, 277: 130263. doi: 10.1016/j.chemosphere.2021.130263
    [7]
    Bradney L, Wijesekara H, Palansooriya K N, Obadamudalige N, Bolan N S, Ok Y S, Rinklebe J O R, Kim K H, Kirkham M. 2019. Particulate plastics as a vector for toxic trace–element uptake by aquatic and terrestrial organisms and human health risk[J]. Environment International, 131: 104937. doi: 10.1016/j.envint.2019.104937
    [8]
    Brennecke D, Duarte B, Paiva F, Caçador I, Canning–Clode J. 2016. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine[J]. Estuarine Coastal and Shelf Science, 178: 189−195. doi: 10.1016/j.ecss.2015.12.003
    [9]
    Bridson J H, Gaugler E C, Smith D A, Northcott G L, Gaw S. 2021. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches[J]. Journal of Hazardous Materials, 414: 125571. doi: 10.1016/j.jhazmat.2021.125571
    [10]
    Cao Wengeng, Wang Yanyan, Ren Yu, Fei Yuhong, Li Jinchen, Li Zeyan, Zhang Dong, Shuai Guanyin. 2022. Status and progress of treatment technologies for arsenic–bearing groundwater[J]. Geology in China, 49(5): 1408−1426 (in Chinese with English abstract).
    [11]
    Cao Wengeng, Wang Yanyan, Zhang Dong, Sun Xiaoyue, Wen Aixin, Na Jing. 2023. Research status and new development on heavy metals removal from industrial wastewater[J]. Geology in China, 50(3): 756−776 (in Chinese with English abstract).
    [12]
    Carr S A, Liu J, Tesoro A G. 2016. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 91: 174−182. doi: 10.1016/j.watres.2016.01.002
    [13]
    Chang X, Xue Y, Li J, Zou L, Tang M. 2020. Potential health impact of environmental micro– and nanoplastics pollution[J]. Journal of Applied Toxicology, 40(1): 4−15. doi: 10.1002/jat.3915
    [14]
    Chen Q, Hao D C, Wei J C, Jia C P, Wang H M, Shi L Q, Liu S L, Ning F Z, Ji Y H, Dong F Y, Jia Z W. 2019. Geo–chemical processes during the mixing of seawater and fresh water in estuarine regions and their effect on water fluorine levels[J]. Mausam, 70(2): 329−338.
    [15]
    Chen H, Hua X, Yang Y, Wang C, Jin L, Dong C, Chang Z, Ding P, Xiang M, Li H, Yu Y. 2021. Chronic exposure to UV–aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans[J]. Journal of Hazardous Materials, 419: 126482. doi: 10.1016/j.jhazmat.2021.126482
    [16]
    Cheng F Y, Zhang T T, Liu Y, Zhang Y N, Qu J. 2022. Non–negligible effects of UV irradiation on transformation and environmental risks of microplastics in the water environment[J]. Journal of Xenobiotics, 12: 1−12.
    [17]
    Chia R W, Lee J Y, Kim H, Jang J. 2021. Microplastic pollution in soil and groundwater: A review[J]. Environmental Chemistry Letters, 19(6): 4211−4224. doi: 10.1007/s10311-021-01297-6
    [18]
    Chu X, Li T, Li Z, Yan A, Shen C. 2019. Transport of microplastic particles in saturated porous media[J]. Water, 11: 2474. doi: 10.3390/w11122474
    [19]
    Crawford C B, Quinn B. 2017. Microplastic Separation Techniques[M]. Microplastic Pollutants, 203–218.
    [20]
    Dai Y, Shi J, Zhang N, Pan Z, Xing C, Chen X. 2022. Current research trends on microplastics pollution and impacts on agro–ecosystems: A short review[J]. Separation Science and Technology, 57(4): 656−669. doi: 10.1080/01496395.2021.1927094
    [21]
    Danso D, Chow J, Streit W R. 2019. Plastics: Environmental and biotechnological perspectives on microbial degradation[J]. Applied & Environmental Microbiology, 85(19): 1−14.
    [22]
    Dekiff J H, Remy D, Klasmeier J, Fries E. 2014. Occurrence and spatial distribution of microplastics in sediments from Norderney[J]. Environmental Pollution, 186: 248−256. doi: 10.1016/j.envpol.2013.11.019
    [23]
    Dilkes–Hoffman L, Ashworth P, Laycock B, Pratt S, Lant P. 2019. Public attitudes towards bioplastics–knowledge, perception and end–of–life management[J]. Resources, Conservation and Recycling, 151: 104479.
    [24]
    Ding J, Ju P, Ran Q, Li J, Jiang F, Cao W, Zhang J, Sun C. 2023. Elder fish means more microplastics? Alaska pollock microplastic story in the Bering Sea[J]. Science Advances, 9(27): eadf5897. doi: 10.1126/sciadv.adf5897
    [25]
    Do M V, Le T X T, Vu N D, Dang T T. 2022. Distribution and occurrence of microplastics in wastewater treatment plants[J]. Environmental Technology & Innovation, 26: 102286.
    [26]
    Dong Z, Zhu L, Zhang W, Huang R, Lv X, Jing X, Yang Z, Wang J, Qiu Y. 2019. Role of surface functionalities of nanoplastics on their transport in seawater–saturated sea sand[J]. Environmental Pollution, 255: 113177. doi: 10.1016/j.envpol.2019.113177
    [27]
    Dong Shunan, Xia Jihong, Wang Weimu, Liu Hui, Sheng Liting. 2020a. Review on impact factors and mechanisms of microplastic transport in soil and groundwater[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(14): 1−8 (in Chinese with English abstract).
    [28]
    Dong Y, Gao M, Song Z, Qiu W. 2020b. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 259: 113892. doi: 10.1016/j.envpol.2019.113892
    [29]
    Dong S, Xia J, Sheng L, Wang W, Liu H, Gao B. 2021a. Transport characteristics of fragmental polyethylene glycol terephthalate (PET) microplastics in porous media under various chemical conditions[J]. Chemosphere, 276: 130214. doi: 10.1016/j.chemosphere.2021.130214
    [30]
    Dong Y, Gao M, Qiu W, Song Z. 2021b. Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil[J]. Ecotoxicology and Environmental Safety, 211: 111899. doi: 10.1016/j.ecoenv.2021.111899
    [31]
    Drummond J D, Nel H A, Packman A I, Krause S. 2020. Significance of hyporheic exchange for predicting microplastic fate in rivers[J]. Environmental Science & Technology Letters, 7: 727−732.
    [32]
    Du C, Liang H, Li Z, Gong J. 2020. Pollution characteristics of microplastics in soils in southeastern suburbs of Baoding City, China[J]. International Journal of Environmental Research and Public Health, 17(3): 845. doi: 10.3390/ijerph17030845
    [33]
    Edo C, Gonzalez–Pleiter M, Leganes F, Fernandez–Pinas F, Rosal R. 2020. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge[J]. Environmental Pollution, 259: 113837. doi: 10.1016/j.envpol.2019.113837
    [34]
    Eerkes–Medrano D, Thompson R C, Aldridge D C. 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs[J]. Water Research, 75: 63−82. doi: 10.1016/j.watres.2015.02.012
    [35]
    Erni–Cassola G, Wright R J, Gibson M I, Christie–Oleza J A. 2020. Early colonization of weathered polyethylene by distinct bacteria in marine coastal seawater[J]. Microbial Ecology, 79(3): 517−526. doi: 10.1007/s00248-019-01424-5
    [36]
    Famiglietti J S. 2014. The global groundwater crisis[J]. Nature Climate Change, 4(11): 945−948. doi: 10.1038/nclimate2425
    [37]
    Foschi E, Bonoli A. 2019. The commitment of packaging industry in the framework of the European strategy for plastics in a circular economy[J]. Administrative Sciences, 9(1): 18. doi: 10.3390/admsci9010018
    [38]
    Fotopoulou K N, Karapanagioti H K. 2012. Surface properties of beached plastic pellets[J]. Marine Environmental Research, 81: 70−77. doi: 10.1016/j.marenvres.2012.08.010
    [39]
    Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Romano D. 2018. Marine litter plastics and microplastics and their toxic chemicals components: The need for urgent preventive measures[J]. Environmental Sciences Europe, 30(1): 13. doi: 10.1186/s12302-018-0139-z
    [40]
    Gao M, Liu Y, Song Z. 2019. Effects of polyethylene microplastic on the phytotoxicity of di–n–butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort)[J]. Chemosphere, 237: 124482. doi: 10.1016/j.chemosphere.2019.124482
    [41]
    Gao D, Li X Y, Liu H T. 2020. Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil[J]. Science of the Total Environment, 742: 140355. doi: 10.1016/j.scitotenv.2020.140355
    [42]
    Geyer R, Jambeck J R, Law K L. 2017. Production, use, and fate of all plastics ever made[J]. Science Advances, 3(7): 1700782. doi: 10.1126/sciadv.1700782
    [43]
    Giorgetti L, Spano C, Muccifora S, Bottega S, Barbieri F, Bellani L, Castiglione M R. 2020. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 149: 170−177. doi: 10.1016/j.plaphy.2020.02.014
    [44]
    Godoy V, Blázquez G, Calero M, Quesada L, Martín–Lara M. 2019. The potential of microplastics as carriers of metals[J]. Environmental Pollution, 255: 113363. doi: 10.1016/j.envpol.2019.113363
    [45]
    Goeppert N, Goldscheider N. 2021. Experimental field evidence for transport of microplastic tracers over large distances in an alluvial aquifer[J]. Journal of Hazardous Materials, 408: 124844. doi: 10.1016/j.jhazmat.2020.124844
    [46]
    Gopinath S, Srinivasamoorthy K, Saravanan K, Prakash R, Karunanidhi D. 2019. Characterizing groundwater quality and seawater intrusion in coastal aquifers of Nagapattinam and Karaikal, South India using hydrogeochemistry and modeling techniques[J]. Human and Ecological Risk Assessment: An International Journal, 25(1/2): 314−334. doi: 10.1080/10807039.2019.1578947
    [47]
    Gunarathne V, Ashiq A, Ramanayaka S, Wijekoon P, Vithanage M. 2019. Biochar from municipal solid waste for resource recovery and pollution remediation[J]. Environmental Chemistry Letters, 17(3): 1225−1235. doi: 10.1007/s10311-019-00866-0
    [48]
    Guo X, Wang J. 2019. Sorption of antibiotics onto aged microplastics in freshwater and seawater[J]. Marine Pollution Bulletin, 149: 110511. doi: 10.1016/j.marpolbul.2019.110511
    [49]
    Guo J J, Huang X P, Xiang L, Wang Y Z, Li Y W, Li H, Cai Q Y, Mo C H, Wong M H. 2020. Source, migration and toxicology of microplastics in soil[J]. Environment International, 137: 105263. doi: 10.1016/j.envint.2019.105263
    [50]
    Guo Z, Wang D, Yan Z, Qian L, Yang L, Yan J, Chen M. 2023. Efficient remediation of p–chloroaniline contaminated soil by activated persulfate using ball milling nanosized zero valent iron/biochar composite: Performance and mechanisms[J]. Nanomaterials, 13(9): 1517. doi: 10.3390/nano13091517
    [51]
    Hahladakis J N, Velis C A, Weber R, Iacovidou E, Purnell P. 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 344: 179−199. doi: 10.1016/j.jhazmat.2017.10.014
    [52]
    Halle t A, Ladirat L, Martignac M, Mingotaud A F, Boyron O, Perez E. 2017. To what extent are microplastics from the open ocean weathered?[J]. Environmental Pollution, 227: 167−174. doi: 10.1016/j.envpol.2017.04.051
    [53]
    Hermabessiere L, Himber C, Boricaud B, Kazour M, Amara R, Cassone A L, Laurentie M, PaulPont I, Soudant P, Dehaut A, Duflos G. 2018. Optimization, performance, and application of a pyrolysis–GC/MS method for the identification of microplastics[J]. Analytical & Bioanalytical Chemistry, 410(25): 6663−6676.
    [54]
    Hou J, Xu X, Lan L, Miao L, Xu Y, You G, Liu Z L. 2020. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors[J]. Environment Pollution. 263: 114499.
    [55]
    Hu B, Li Y, Jiang L, Chen X, Wang L, An S, Zhang F. 2020. Influence of microplastics occurrence on the adsorption of 17β–estradiol in soil[J]. Journal of Hazardous Materials, 400: 123325. doi: 10.1016/j.jhazmat.2020.123325
    [56]
    Hu Tingting, Chen Jiawei. 2022. A review on adsorption and transport of microplastics in soil and the effects of ageing on environmental behavior of pollutants[J]. Rock and Mineral Analysis, 41(3): 353−363 (in Chinese with English abstract).
    [57]
    Huang Y, Zhao Y, Wang J, Zhang M, Jia W, Qin X. 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 254: 112983. doi: 10.1016/j.envpol.2019.112983
    [58]
    Huang J, Chen H, Zheng Y, Yang Y, Zhang Y, Gao B. 2021a. Microplastic pollution in soils and groundwater: Characteristics, analytical methods and impacts[J]. Chemical Engineering Journal, 425: 131870. doi: 10.1016/j.cej.2021.131870
    [59]
    Huang M, Wang X, Liu C, Fang G, Gao J, Wang Y, Zhou D. 2021b. Mechanism of metal sulfides accelerating Fe(II)/Fe(III) redox cycling to enhance pollutant degradation by persulfate: Metallic active sites vs. reducing sulfur species[J]. Journal of Hazardous Materials, 404: 124175. doi: 10.1016/j.jhazmat.2020.124175
    [60]
    Hussain M S, Abd–Elhamid H F, Javadi A A, Sherif M M. 2019. Management of seawater intrusion in coastal aquifers: A review[J]. Water, 11(12): 2467. doi: 10.3390/w11122467
    [61]
    Iannilli V, Pasquali V, Setini A, Corami F. 2019. First evidence of microplastics ingestion in benthic amphipods from Svalbard[J]. Environmental Research, 179: 108811. doi: 10.1016/j.envres.2019.108811
    [62]
    Imhof H K, Ivleva N P, Schmid J, Niessner R, Laforsch C. 2013. Contamination of beach sediments of a subalpine lake with microplastic particles[J]. Current Biology, 23(19): 867−868. doi: 10.1016/j.cub.2013.09.001
    [63]
    Iñiguez M E, Conesa J A, Fullana A. 2018. Recyclability of four types of plastics exposed to UV irradiation in a marine environment[J]. Waste Management, 79: 339−345. doi: 10.1016/j.wasman.2018.08.006
    [64]
    Jeong E, Kim Y I, Lee J Y, Raza M. 2023. Microplastic contamination in groundwater of rural area, eastern part of Korea[J]. Science of the Total Environment, 895: 165006. doi: 10.1016/j.scitotenv.2023.165006
    [65]
    Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G. 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 250: 831−838. doi: 10.1016/j.envpol.2019.04.055
    [66]
    Kabir M S, Wang H, Luster–Teasley S, Zhang L, Zhao R. 2023. Microplastics in landfill leachate: Sources, detection, occurrence, and removal[J]. Environmental Science and Ecotechnology, 16: 100256. doi: 10.1016/j.ese.2023.100256
    [67]
    Katyal D, Kong E, Villanueva J. 2020. Microplastics in the environment: Impact on human health and future mitigation strategies[J]. Environmental Health Review, 63(1): 27−31. doi: 10.5864/d2020-005
    [68]
    Käppler A, Fischer M, Scholz–Böttcher B M, Oberbeckmann S, Labrenz M, Fischer D, Eichhorn K J, Voit B. 2018. Comparison of μ–ATR–FTIR spectroscopy and Py–GCMS as identification tools for microplastic particles and fibers isolated from river sediments[J]. Analytical & Bioanalytical Chemistry, 410(21): 5313−5327.
    [69]
    Kedzierski M, Le Tilly V, Bourseau P, Bellegou H, César G, Sire O, Bruzaud S. 2018. Challenging the microplastic extraction from sandy sediments[C]// Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea, 59–65.
    [70]
    Kirstein I V, Kirmizi S, Wichels A, Garin–Fernandez A, Erler R, Löder M, Gerdts G. 2016. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles[J]. Marine Environmental Research, 120: 1−8. doi: 10.1016/j.marenvres.2016.07.004
    [71]
    Kirstein I V, Hensel F, Gomiero A, Iordachescu L, Vianello A, Wittgren H B, Vollertsen J. 2021. Drinking plastics? Quantification and qualification of microplastics in drinking water distribution systems by µFTIR and Py–GCMS[J]. Water Research, 188: 116519. doi: 10.1016/j.watres.2020.116519
    [72]
    Li J, Zhang K, Zhang H. 2018. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 237: 460−467. doi: 10.1016/j.envpol.2018.02.050
    [73]
    Li M, Zhang X, Yi K, He L, Han P, Tong M. 2021. Transport and deposition of microplastic particles in saturated porous media: Co–effects of clay particles and natural organic matter[J]. Environmental Pollution, 287: 117585. doi: 10.1016/j.envpol.2021.117585
    [74]
    Li X, Mei Q, Chen L, Zhang H, Dong B, Dai X, He C, Zhou J. 2019a. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process[J]. Water Research, 157: 228−237. doi: 10.1016/j.watres.2019.03.069
    [75]
    Li Y, Li M, Li Z, Yang L, Liu X. 2019b. Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic[J]. Chemosphere, 231: 308−314. doi: 10.1016/j.chemosphere.2019.05.116
    [76]
    Li Z, Li R, Li Q, Zhou J, Wang G. 2020a. Physiological response of cucumber (Cucumis sativus L. ) leaves to polystyrene nanoplastics pollution[J]. Chemosphere, 255: 127041. doi: 10.1016/j.chemosphere.2020.127041
    [77]
    Li Z, Hu X, Qin L, Yin D. 2020b. Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons[J]. Water Research, 170: 115290. doi: 10.1016/j.watres.2019.115290
    [78]
    Lian Jianjun, Xie Shiting, Wu Pei, Meng Guanhua, Chen Bo. 2023. Effect of microplastics on ammonia nitrogen adsorption by zeolite and its mechanism[J]. Environmental Science, 7(1): 1−12 (in Chinese with English abstract).
    [79]
    Liedermann M, Gmeiner P, Pessenlehner S, Haimann M, Hohenblum P, Habersack H. 2018. A methodology for measuring microplastic transport in large or medium rivers[J]. Water, 10(4): 414. doi: 10.3390/w10040414
    [80]
    Liu X, Xu J, Zhao Y, Shi H, Huang C H. 2019a. Hydrophobic sorption behaviors of 17β–Estradiol on environmental microplastics[J]. Chemosphere, 226: 726−735. doi: 10.1016/j.chemosphere.2019.03.162
    [81]
    Liu Y, Hu Y, Yang C, Chen C, Huang W, Dang Z. 2019b. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments[J]. Water Research, 163: 114870. doi: 10.1016/j.watres.2019.114870
    [82]
    Liu P, Lu K, Li J, Wu X, Qian L, Wang M, Gao S. 2020. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates[J]. Journal of Hazardous Materials, 384: 121193. doi: 10.1016/j.jhazmat.2019.121193
    [83]
    Lu T, Gilfedder B S, Peng H, Niu G, Frei S, 2021. Effects of clay minerals on the transport of nanoplastics through water–saturated porous media[J]. Science of the Total Environment, 796: 148982.
    [84]
    Luo H, Liu C, He D, Xu J, Sun J, Li J, Pan X. 2022a. Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions[J]. Journal of Hazardous Materials, 423: 126915. doi: 10.1016/j.jhazmat.2021.126915
    [85]
    Luo Z, Zhu J, Yu L, Yin K. 2021. Heavy metal remediation by nano zero–valent iron in the presence of microplastics in groundwater: Inhibition and induced promotion on aging effects[J]. Environmental Pollution, 287: 117628. doi: 10.1016/j.envpol.2021.117628
    [86]
    Luo Zhenyi. 2022b. Effect and Mechanism of Microplastics on Remediation of Heavy Metal Pollution in Groundwater by Nano–zero–valent−iron[D]. Nanjing: Nanjing Forestry University, 1−63 (in Chinese with English abstract).
    [87]
    Lwanga E H, Gertsen H, Gooren H, Peters P, Salánki T A S, van der Ploeg M, Besseling E, Koelmans A A, Geissen V. 2016. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 50(5): 2685−2691.
    [88]
    Ma H, Pu S, Liu S, Bai Y M. 2020. Microplastics in aquatic environments: Toxicity to trigger ecological consequences[J]. Environmental Pollution, 261: 114089. doi: 10.1016/j.envpol.2020.114089
    [89]
    Magalhães S, Alves L, Medronho B, Romano A, Rasteiro M G. 2020. Microplastics in ecosystems: From current trends to bio–based removal strategies[J]. Molecules, 25(17): 3954. doi: 10.3390/molecules25173954
    [90]
    Mintenig S M, Löder M G, Primpke S, Gerdts G. 2019. Low numbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 648(1): 631−635.
    [91]
    Mohajerani A, Ukwatta A, Jeffrey–Bailey T, Swaney M, Ahmed M, Rodwell G, Bartolo S, Eshtiaghi N, Setunge S. 2019. A proposal for recycling the world’s unused stockpiles of treated wastewater sludge (biosolids) in fired–clay bricks[J]. Buildings, 9(1): 14. doi: 10.3390/buildings9010014
    [92]
    Mohajerani A, Karabatak B. 2020. Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks[J]. Waste Management, 107: 252−265. doi: 10.1016/j.wasman.2020.04.021
    [93]
    Naqash N, Prakash S, Kapoor D, Singh R. 2020. Interaction of freshwater microplastics with biota and heavy metals: A review[J]. Environmental Chemistry Letters, 18(6): 1813−1824. doi: 10.1007/s10311-020-01044-3
    [94]
    Nizzetto L, Bussi G, Futter M N, Butterfield D, Whitehead P G. 2016. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments[J]. Environmental Science: Processes & Impacts, 18(8): 1050–1059.
    [95]
    Novotna K, Cermakova L, Pivokonska L, Cajthaml T, Pivokonsky M. 2019. Microplastics in drinking water treatment–current knowledge and research needs[J]. Science of The Total Environment, 667: 730−740. doi: 10.1016/j.scitotenv.2019.02.431
    [96]
    O 'Connor D, Pan S, Shen Z, Song Y, Jin Y, Wu W M, Hou D. 2019. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet–dry cycles[J]. Environmental Pollution, 249: 527−534. doi: 10.1016/j.envpol.2019.03.092
    [97]
    O’Kelly B C, El–Zein A, Liu X, Patel A, Fei X, Sharma S, Mohammad A, Goli V, Wang J J, Li D. 2021. Microplastics in soils: An environmental geotechnics perspective[J]. Environmental Geotechnics, 8(8): 586−618. doi: 10.1680/jenge.20.00179
    [98]
    Oliver B. 2021. From plastics to microplastics and organisms[J]. FEBS Open Bio, 11(4): 954−966. doi: 10.1002/2211-5463.13120
    [99]
    Othman A R, Hasan H A, Muhamad M H, Ismail N I, Abdullah S R S. 2021. Microbial degradation of microplastics by enzymatic processes: A review[J]. Environmental Chemistry Letters, 19(4): 3057−3073. doi: 10.1007/s10311-021-01197-9
    [100]
    Panno S V, Kelly W R, Scott J, Zheng W, Mcneish R E, Holm N, Hoellein T J, Baranski E L. 2019. Microplastic contamination in karst groundwater systems[J]. Groundwater, 57(2): 189−196. doi: 10.1111/gwat.12862
    [101]
    Pathan S I, Arfaioli P, Bardelli T, Ceccherini M T, Nannipieri P, Pietramellara G. 2020. Soil pollution from micro–and nanoplastic debris: A hidden and unknown biohazard[J]. Sustainability, 12(18): 7255. doi: 10.3390/su12187255
    [102]
    Peng S, Wu D, Ge Z, Tong M, Kim H. 2017. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media[J]. Environmental Pollution, 225(16): 141−149.
    [103]
    Picó Y, Barceló D. 2019. Analysis and prevention of microplastics pollution in water: Current perspectives and future directions[J]. ACS Omega, 4(4): 6709−6719. doi: 10.1021/acsomega.9b00222
    [104]
    Pita F, Castilho A. 2017. Separation of plastics by froth flotation. The role of size, shape and density of the particles[J]. Waste Management, 60: 91−99. doi: 10.1016/j.wasman.2016.07.041
    [105]
    Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V. 2018. Occurrence of microplastics in raw and treated drinking water[J]. Science of the Total Environment, 643: 1644−1651. doi: 10.1016/j.scitotenv.2018.08.102
    [106]
    Połeć M, Aleksander–Kwaterczak U, Wątor K, Kmiecik E. 2018. The occurrence of microplastics in freshwater systems–preliminary results from Krakow (Poland)[J]. Geology, Geophysics and Environment, 44(4): 391–400.
    [107]
    Prata J C, Da Costa J P, Girão A V, Lopes I, Duarte A C, Rocha–Santos T. 2019. Identifying a quick and efficient method of removing organic matter without damaging microplastic samples[J]. Science of the Total Environment, 686: 131−139. doi: 10.1016/j.scitotenv.2019.05.456
    [108]
    Prata J C, Da Costa J P, Lopes I, Duarte A C. 2020. Environmental exposure to microplastics: An overview on possible human health effects[J]. Science of the Total Environment, 702: 134455. doi: 10.1016/j.scitotenv.2019.134455
    [109]
    Primpke S, Christiansen S H, Cowger W, De Frond H, Deshpande A, Fischer M, Holland E, Meyns M, O'Donnell B A, Oßmann B E, Pittroff M, Sarau G, Scholz–Böttcher B M, Wiggin K. 2020. Critical assessment of analytical methods for the harmonized and cost–efficient analysis of microplastics[J]. Applied Spectroscopy, 74(6): 1012−1047.
    [110]
    Purwiyanto A I S, Suteja Y, Ningrum P S, Putri W A E, Agustriani F, Cordova M R, Koropitan A F. 2020. Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment[J]. Marine Pollution Bulletin, 158: 111380. doi: 10.1016/j.marpolbul.2020.111380
    [111]
    Qi Y, Yang X, Pelaez A M, Lwanga E H, Beriot N, Gertsen H, Garbeva P, Geissen V. 2018. Macro– and micro– plastics in soil–plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J]. Science of the Total Environment, 645(1): 1048−1056.
    [112]
    Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti M C A, Baiocco F, Draghi S, D'Amore E, Rinaldo D, Matta M, Giorgini E. 2021. Plasticenta: First evidence of microplastics in human placenta[J]. Environment International, 146: 106274. doi: 10.1016/j.envint.2020.106274
    [113]
    Re V. 2019. Shedding light on the invisible: Addressing the potential for groundwater contamination by plastic microfibers[J]. Hydrogeology Journal, 27(7): 2719−2727. doi: 10.1007/s10040-019-01998-x
    [114]
    Reddy M S, Basha S, Adimurthy S, Ramachandraiah G. 2006. Description of the small plastics fragments in marine sediments along the Alang–Sosiya ship–breaking yard, India[J]. Estuarine, Coastal and Shelf Science, 68: 656–660.
    [115]
    Ren Z, Gui X, Xu X, Zhao L, Qiu H, Cao X. 2021a. Microplastics in the soil–groundwater environment: aging, migration, and co–transport of contaminants– A critical review[J]. Journal of Hazardous Materials, 419: 126455. doi: 10.1016/j.jhazmat.2021.126455
    [116]
    Ren Z, Gui X, Wei Y, Chen X, Xu X, Zhao L, Qiu H, Xao X. 2021b. Chemical and photo–initiated aging enhances transport risk of microplastics in saturated soils: Key factors, mechanisms, and modeling[J]. Water Research, 202: 117407. doi: 10.1016/j.watres.2021.117407
    [117]
    Robin R, Karthik R, Purvaja R, Ganguly D, Anandavelu I, Mugilarasan M, Ramesh R. 2020. Holistic assessment of microplastics in various coastal environmental matrices, southwest coast of India[J]. Science of the Total Environment, 703: 134947. doi: 10.1016/j.scitotenv.2019.134947
    [118]
    Rochman C M, Hoh E, Kurobe T, Teh S J. 2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 3(1): 3263. doi: 10.1038/srep03263
    [119]
    Samandra S, Johnston J M, Jaeger J E, Symons B, Xie S, Currell M, Ellis A V, Clarke B O. 2022. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia[J]. Science of the Total Environment, 802: 149727. doi: 10.1016/j.scitotenv.2021.149727
    [120]
    Sana S S, Dogiparthi L K, Gangadhar L, Chakravorty A, Abhishek N. 2020. Effects of microplastics and nanoplastics on marine environment and human health[J]. Environmental Science and Pollution Research, 27(36): 44743−44756. doi: 10.1007/s11356-020-10573-x
    [121]
    Sangkham S, Islam M A, Adhikari S, Kumar R, Sharma P, Sakunkoo P, Bhattacharya P, Tiwari A. 2023. Evidence of microplastics in groundwater: A growing risk for human health[J]. Groundwater For Sustainable Development, 23: 100981. doi: 10.1016/j.gsd.2023.100981
    [122]
    Schenkel C A, Brown M R M, Lenczewski M E. 2024. Impact of type and shape of microplastics on the transport in column experiments[J]. Groundwater, 62(4): 537−547.
    [123]
    Schroder G D, Hulse M. 1979. Survey of rodent populations associated with an urban landfill[J]. American Journal of Public Health, 69(7): 713−715. doi: 10.2105/AJPH.69.7.713
    [124]
    Schymanski D, Goldbeck C, Humpf H U, Fürst P. 2018. Analysis of microplastics in water by micro–Raman spectroscopy: Release of plastic particles from different packaging into mineral water[J]. Water Research, 129: 154−162. doi: 10.1016/j.watres.2017.11.011
    [125]
    Selvam S, Jesuraja K, Venkatramanan S, Roy P D, Kumari V J. 2021. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India[J]. Journal of Hazardous Materials, 402: 123786. doi: 10.1016/j.jhazmat.2020.123786
    [126]
    Severini E, Ducci L, Sutti A. 2022. River–groundwater interaction and recharge effects on microplastics contamination of groundwater in confined alluvial aquifers[J]. Water, 14(12): 1913. doi: 10.3390/w14121913
    [127]
    Shams M, Alam I, Chowdhury I. 2020. Aggregation and stability of nanoscale plastics in aquatic environment[J]. Water Research, 171: 115401. doi: 10.1016/j.watres.2019.115401
    [128]
    Shen M, Song B, Zhu Y, Zeng G, Zhang Y, Yang Y, Wen X, Chen M, Yi H. 2020. Removal of microplastics via drinking water treatment: Current knowledge and future directions[J]. Chemosphere, 251: 126612. doi: 10.1016/j.chemosphere.2020.126612
    [129]
    Shruti V, Kutralam–Muniasamy G. 2019. Bioplastics: Missing link in the era of Microplastics[J]. Science of the Total Environment, 697: 134139. doi: 10.1016/j.scitotenv.2019.134139
    [130]
    Shruti V, Pérez–Guevara F, Kutralam–Muniasamy G. 2020. Metro station free drinking water fountain– A potential “microplastics hotspot” for human consumption[J]. Environmental Pollution, 261: 114227. doi: 10.1016/j.envpol.2020.114227
    [131]
    Singh S, Kalyanasundaram M, Diwan V. 2021. Removal of microplastics from wastewater: Available techniques and way forward[J]. Water Science and Technology, 84(12): 3689−3704. doi: 10.2166/wst.2021.472
    [132]
    Singh S, Bhagwat A. 2022. Microplastics: A potential threat to groundwater resources[J]. Groundwater For Sustainable Development, 19: 100852. doi: 10.1016/j.gsd.2022.100852
    [133]
    Singh S, Trushna T, Kalyanasundaram M, Tamhankar A J, Diwan V. 2022. Microplastics in drinking water: A macro issue[J]. Water Supply, 22(5): 5650−5674. doi: 10.2166/ws.2022.189
    [134]
    SK A, Varghese G K. 2020. Environmental forensic analysis of the microplastic pollution at “Nattika” Beach, Kerala Coast, India[J]. Environmental Forensics, 21(1): 21−36. doi: 10.1080/15275922.2019.1693442
    [135]
    Smith M, Love D C, Rochman C M, Neff R A. 2018. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 5(3): 375−386. doi: 10.1007/s40572-018-0206-z
    [136]
    Strand J, Feld L, Murphy F, Mackevica A, Hartmann N B, Shruti V C, Pérez–Guevara F, Kutralam–Muniasamy G. 2018. Analysis of microplastic particles in Danish drinking water[M]. Aarhus, Denmark: DCE–Danish Centre for Environment and Energy.
    [137]
    Tan H, Yue T, Xu Y, Zhao J, Xing B. 2020. Microplastics reduce lipid digestion in simulated human gastrointestinal system[J]. Environmental Science & Technology, 54(19): 12285−12294.
    [138]
    Tiwari B R, Lecka J, Pulicharla R, Brar S K. 2023. Microplastic pollution and associated health hazards: Impact of COVID–19 pandemic[J]. Current Opinion in Environmental Science & Health, 34: 100480.
    [139]
    Tong M, Li T, Li M, He L, Ma Z. 2020. Cotransport and deposition of biochar with different sized–plastic particles in saturated porous media[J]. Science of the Total Environment, 713: 136387.
    [140]
    Turner A. 2016. Heavy metals, metalloids and other hazardous elements in marine plastic litter[J]. Marine Pollution Bulletin, 111(1): 136−142.
    [141]
    Vallespir L N, Ursell T. 2019. Structured environments fundamentally alter dynamics and stability of ecological communities[J]. Proceedings of the National Academy of Sciences, 116(2): 379−388. doi: 10.1073/pnas.1811887116
    [142]
    Viaroli S, Lancia M, Re V. 2022. Microplastics contamination of groundwater: Current evidence and future perspectives. A review[J]. Science of the Total Environment, 824: 153851. doi: 10.1016/j.scitotenv.2022.153851
    [143]
    Wagner M, Scherer C, Alvarez–Muñoz D, Brennholt N, Bourrain X, Buchinger S, Fries E, Grosbois C, Klasmeier J, Marti T. 2014. Microplastics in freshwater ecosystems: What we know and what we need to know[J]. Environmental Sciences Europe, 26(1): 12. doi: 10.1186/s12302-014-0012-7
    [144]
    Wang F, Yang W, Cheng P, Zhang S, Zhang S, Jiao W, Sun Y. 2019. Adsorption characteristics of cadmium onto microplastics from aqueous solutions[J]. Chemosphere, 235: 1073−1080. doi: 10.1016/j.chemosphere.2019.06.196
    [145]
    Wang S, Xue N, Li W, Zhang D, Pan X, Luo Y. 2020a. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters[J]. Science of the Total Environment, 708: 134594. doi: 10.1016/j.scitotenv.2019.134594
    [146]
    Wang W, Ge J, Yu X, Li H. 2020b. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective[J]. Science of the Total Environment, 708: 134841. doi: 10.1016/j.scitotenv.2019.134841
    [147]
    Wang Z, Sedighi M, Lea–Langton A. 2020c. Filtration of microplastic spheres by biochar: Removal efficiency and immobilisation mechanisms[J]. Water Research, 184: 116165. doi: 10.1016/j.watres.2020.116165
    [148]
    Wang Z, Lin T, Chen W. 2020d. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP)[J]. Science of the Total Environment, 700: 134520. doi: 10.1016/j.scitotenv.2019.134520
    [149]
    Wang C, Zhao J, Xing B. 2021a. Environmental source, fate, and toxicity of microplastics[J]. Journal of Hazardous Materials, 407: 124357. doi: 10.1016/j.jhazmat.2020.124357
    [150]
    Wang Y, Wang X, Li Y, Li J, Liu Y, Xia S, Zhao J. 2021b. Effects of exposure of polyethylene microplastics to air, water and soil on their adsorption behaviors for copper and tetracycline[J]. Chemical Engineering Journal, 404: 126412. doi: 10.1016/j.cej.2020.126412
    [151]
    Weber F, Kerpen J, Wolff S, Langer R, Eschweiler V. 2021. Investigation of microplastics contamination in drinking water of a German city[J]. Science of the Total Environment, 755: 143421. doi: 10.1016/j.scitotenv.2020.143421
    [152]
    Wu P, Cai Z, Jin H, Tang Y. 2019. Adsorption mechanisms of five bisphenol analogues on PVC microplastics[J]. Science of the Total Environment, 650: 671−678. doi: 10.1016/j.scitotenv.2018.09.049
    [153]
    Wu J, Xu P, Chen Q, Ma D, Ge W, Jiang T, Chai C. 2020. Effects of polymer aging on sorption of 2, 2’, 4, 4’–tetrabromodiphenyl ether by polystyrene microplastics[J]. Chemosphere, 253: 126706. doi: 10.1016/j.chemosphere.2020.126706
    [154]
    Yan Yuchen, Yang Zhongfang, Yu Tao. 2022. Sources, ecological hazards and treatment technologies of microplastics in soil[J]. Geology in China, 49(3): 770−788 (in Chinese with English abstract).
    [155]
    Yang Jie, Li Lianzhen, Zhou Qian, Li Ruijie, Tu Chen, Luo Yongming. 2021. Microplastics contamination of soil environment: Sources, processes and risks[J]. Acta Pedologica Sinica, 58(2): 281−298 (in Chinese with English abstract).
    [156]
    Yao L, Hui L, Yang Z, Chen X, Xiao A. 2020. Freshwater microplastics pollution: Detecting and visualizing emerging trends based on Citespace II[J]. Chemosphere, 245: 125627. doi: 10.1016/j.chemosphere.2019.125627
    [157]
    Yu M, Van Der Ploeg M, Lwanga E H, Yang X, Zhang S, Ma X, Ritsema C J, Geissen V. 2019. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows[J]. Environmental Chemistry, 16(1): 31−40. doi: 10.1071/EN18161
    [158]
    Yu Q, Hu X, Yang B, Zhang G, Wang J, Ling W. 2020. Distribution, abundance and risks of microplastics in the environment[J]. Chemosphere, 249: 126059. doi: 10.1016/j.chemosphere.2020.126059
    [159]
    Zang H, Zhou J, Marshall M R, Chadwick D R, Wen Y, Jones D L. 2020. Microplastics in the agroecosystem: Are they an emerging threat to the plant–soil system[J]. Soil Biology and Biochemistry, 148: 107926. doi: 10.1016/j.soilbio.2020.107926
    [160]
    Zhang J, Wang L, Halden R U, Kannan K. 2019. Polyethylene terephthalate and polycarbonate microplastics in sewage sludge collected from the United States[J]. Environmental Science & Technology Letters, 6(11): 650−655.
    [161]
    Zhang T, Jiang B, Xing Y, Ya H, Lv M, Wang X. 2022a. Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms[J]. Environmental Science and Pollution Research, 29(12): 16830−16859. doi: 10.1007/s11356-022-18504-8
    [162]
    Zhang Y, Cheng F, Zhang T, Li C, Qu J, Chen J, Peijnenburg W J. 2022b. Dissolved organic matter enhanced the aggregation and oxidation of nanoparticles under simulated sunlight irradiation in water[J]. Environmental Science & Technology, 56: 3085−3095.
    [163]
    Zhou Y, Liu X, Wang J. 2019. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China[J]. Science of the Total Environment, 694: 133798. doi: 10.1016/j.scitotenv.2019.133798
    [164]
    Zhou Y, Wang J, Zou M, Jia Z, Zhou S, Li Y. 2020. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks[J]. Science of the Total Environment, 748: 141368. doi: 10.1016/j.scitotenv.2020.141368
    [165]
    Zhuang S, Wang J. 2023. Interaction between antibiotics and microplastics: Recent advances and perspective[J]. Science of the Total Environment, 897: 165414. doi: 10.1016/j.scitotenv.2023.165414
    [166]
    Ziajahromi S, Neale P A, Rintoul L, Leusch F D. 2017. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater–based microplastics[J]. Water Research, 112: 93−99. doi: 10.1016/j.watres.2017.01.042
    [167]
    Zou Yanqiao, Chen Guangquan, Yu Hongjun, Song Fan, Wang Yancheng, Zhao Wenqing. 2023. Review of the transport mechanism and environmental effects of microplastics in coastal aquifers[J]. Marine Sciences, (6): 130−143 (in Chinese with English abstract).
    [168]
    Zuo L Z, Li H X, Lin L, Sun Y X, Diao Z H, Liu S, Zhang Z Y, Xu X R. 2019. Sorption and desorption of phenanthrene on biodegradable poly (butylene adipate co–terephtalate) microplastics[J]. Chemosphere, 215: 25−32. doi: 10.1016/j.chemosphere.2018.09.173
    [169]
    曹文庚, 王妍妍, 任宇, 费宇红, 李瑾丞, 李泽岩, 张栋, 帅官印. 2022. 含砷地下水的治理技术现状与进展[J]. 中国地质, 49(5): 1408−1426.
    [170]
    曹文庚, 王妍妍, 张栋, 孙晓悦, 文爱欣, 那静. 2023. 工业废水去除重金属技术的研究现状与进展[J]. 中国地质, 50(3): 756−776.
    [171]
    董姝楠, 夏继红, 王为木, 刘慧, 盛丽婷, 2020. 土壤–地下水中微塑料迁移的影响因素及机制研究进展[J]. 农业工程学报, 36(14) : 1–8.
    [172]
    胡婷婷, 陈家玮. 2022. 土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展[J]. 岩矿测试, 41(3): 353−363.
    [173]
    练建军, 谢诗婷, 吴培, 孟冠华, 陈波, 2023. 微塑料对沸石吸附水体氨氮的影响及其机制[J]. 环境科学, 7(1) : 1–12.
    [174]
    罗镇懿. 2022. 微塑料对纳米零价铁修复地下水重金属污染的影响与机理[D]. 南京: 南京林业大学, 1−63.
    [175]
    延雨宸, 杨忠芳, 余涛. 2022. 土壤中微塑料的来源、生态环境危害及治理技术[J]. 中国地质, 49(3): 770−788.
    [176]
    杨杰, 李连祯, 周倩, 李瑞杰, 涂晨, 骆永明. 2021. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 58(2): 281−298.
    [177]
    邹寅俏, 陈广泉, 于洪军, 宋凡, 王延诚, 赵文卿. 2023. 滨海地下水含水层中微塑料运移机制及环境效应研究综述[J]. 海洋科学, (6): 130−143.
  • Related Articles

    [1]JIAO Huazhe, CHEN Xi, ZHANG Tiegang, YANG Liuhua, CHEN Xinming, HONAKER Rick, MA Junwei, YU Yang. Cause analysis of groundwater pollution in coal development zone of Yellow River Basin and prevention suggestions[J]. GEOLOGY IN CHINA, 2024, 51(1): 143-156. DOI: 10.12029/gc20230217001
    [2]MA Tao, LI Wenli, HAN Shuangbao, ZHANG Hongqiang, WANG Wenke, LI Fucheng, LI Haixue, HE Xubo, ZHAO Meimei. Distribution characteristics, influencing factors and development potential of groundwater resources in Shaanxi Province of the Yellow River Basin[J]. GEOLOGY IN CHINA, 2023, 50(5): 1432-1445. DOI: 10.12029/gc20220401001
    [3]ZHAO Minmin, WANG Siyuan, HAN Shuangbao, WANG Sai, LI Fucheng, LI Haixue, YUAN Lei, MA Tao, WEI Shibo, WU Xi, LIN Pengfei, BAO Jing. Influence mechanism and ecological effect of water saving irrigation on water balance in the Yellow River irrigation area of Ningxia[J]. GEOLOGY IN CHINA, 2023, 50(1): 26-35. DOI: 10.12029/gc20220320002
    [4]SHI Peidong, LIU Yi, SUN Yaqin, CHEN Peng, XU Kairan, JIANG Yuge, LIU Miao, ZANG Mingdong. Analysis and evaluation of environmental sensitivity in the Qinhe River Basin in the middle reaches of the Yellow River[J]. GEOLOGY IN CHINA, 2023, 50(1): 13-25. DOI: 10.12029/gc20220310002
    [5]SHEN Haoyong, LI Jia, WANG Zhiheng, XIE Hao, LIANG Yongping, XU Yongxin, HAN Shuangbao, REN Jianhui, PAN Yaoyun, ZHAO Chunhong, ZHAO Yi. Water resources utilization and eco-environment problem of Fenhe River, branch of Yellow river[J]. GEOLOGY IN CHINA, 2022, 49(4): 1127-1138. DOI: 10.12029/gc20220407
    [6]MIAO Xiong-yi, YE Si-yuan, DING Xi-gui, YUAN Hong-ming, ZHAO Guang-ming, WANG Jin. REE distribution characteristics of different kinds of wetlands in Yellow River delta[J]. GEOLOGY IN CHINA, 2014, 41(1): 303-313. DOI: 10.12029/gc20140125
    [7]HAN Jian-en, SHAO Zhao-gang, ZHU Da-gang, MENG Xian-gang, YU Jia, WANG Jin, LV Rong-ping, QIAN Cheng, HE Cheng-guang. Characteristics of river terraces and formation of the Yellow River in the source region of Yellow River[J]. GEOLOGY IN CHINA, 2013, 40(5): 1531-1541. DOI: 10.12029/gc20130518
    [8]QIAN Cheng, HAN Jian-en, ZHU Da-gang, HE Cheng-guang, MENG Xian-gang, SHAO Zhao-gang, WANG Jin, YU Jia. An analysis of geomorphologic characteristics of the Yellow River source region based on ASTER-GDEM[J]. GEOLOGY IN CHINA, 2012, 39(5): 1247-1260. DOI: 10.12029/gc20120512
    [9]HAN Jian-en, YU Jia, ZHU Da-gang, SHAO Zhao-gang, MENG Xian-gang, QIAN Cheng, HE Cheng-guang, WANG Jin, LV Rong-ping. Magnetic fabric of rock in the source area of the Yellow River and its geological significance[J]. GEOLOGY IN CHINA, 2011, 38(6): 1493-1503. DOI: 10.12029/gc20110610
    [10]HE Qing-cheng, ZHANG Bo, LI Cai. Monitoring the change of the coastline of the Yellow River delta by integrating remote sensing (RS) and GIS[J]. GEOLOGY IN CHINA, 2006, 33(5): 1118-1123. DOI: 10.12029/gc20060522
  • Cited by

    Periodical cited type(1)

    1. 李全聪,雷国良,赵晖,朱芸,孙婉婷,于源,江戈平. 巴丹吉林沙漠腹地盐湖碳酸盐同位素特征及其环境意义. 干旱区地理. 2025(02): 247-256 .

    Other cited types(0)

Catalog

    Article views (3399) PDF downloads (527) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return