Citation: | Cheng Zhengpu, Wei Qiang, Lian Sheng, Zhang Haijiang, Hu Wenguang, Mi Xiaoli, Lei Ming, Li Shu, Yu Lei. 2025. Deep−seated granite thermal reservoir exploration and hot dry rock potential assessment in the Qiabuqia Area, Gonghe Basin: A time−frequency electromagnetic method approach[J]. Geology in China, 52(2): 1−14. DOI: 10.12029/gc20231115001 |
This paper is the result of geothermal survey engineering.
The Qiabuqia area within China's Gonghe Basin represents a key research zone for granite−hosted hot dry rock (HDR) systems. This study systematically investigates the caprock thickness variation and granite basement topography while elucidating the spatial configuration of granitic bodies to establish predictive models for HDR reservoir distribution.
Innovatively applying the Time−Frequency Electromagnetic (TFEM) method−traditionally employed in deep hydrocarbon exploration − to HDR characterization, we implemented a comprehensive workflow encompassing advanced data preprocessing, electrical parameter optimization, and constrained inversion modeling. Integrated interpretation of resistivity profiles with multi−source datasets (geological mapping, borehole logs, and auxiliary geophysical surveys) enabled three−dimensional reconstruction of stratigraphic architecture, granitic intrusion geometry, and HDR reservoir characteristics.
(1) TFEM demonstrates exceptional capability in resolving electrical stratigraphy within 10 km depth. Resistivity profiles reveal a tripartite H−type structure comprising a sub−high−resistivity superficial layer (900−1,400 m thickness, eastward−thinning), an intermediate conductive zone, and a high−resistivity basement. Granitic bodies exhibit A−type resistivity progression with depth, featuring westward−deepening top surfaces (−900 to −2900 m elevation). (2) Thermal logging−constrained models delineate distinct spatial configurations of the Qiabuqia and Dalianhai HDR reservoirs, demonstrating strong correlation with structural highs.
(1)Thermo−structural analysis identifies competent batholiths and stocks as preferential heat flow conduits, serving as prime HDR exploration targets. (2)Magmatic emplacement heterogeneity drives vertical zonation: deep−seated batholiths transition upward through intermediate stocks to shallow sills. (3)Resistivity anomalies within granitic masses reflect structural integrity gradients, with batholiths and stocks exhibiting superior mechanical continuity compared to fractured sill complexes.
[1] |
Brown D. 1995. The US hot dry rock program−20 years of experience in reservoir testing[C]// Proceedings of World Geothermal Congress, 2607−2611.
|
[2] |
Cheng Zhengpu, Lei Ming, Li Shu, Lian Sheng, Wei Qiang. 2023. Research on time−frequency electromagnetic method detection of deep karst thermal reservoir and prediction of favorable area in Dongli Lake of Tianjin[J]. North China Geology, 46(2): 1−8 (in Chinese with English abstract).
|
[3] |
Cheng Zhengpu, Lian Sheng, Wei Qiang, Hu Wenguang, Lei Ming, Li Shu. 2023. Research on time−frequency electromagnetic method detection of Wumishan Formation thermal reservoir in deep Xiong’an New Area[J]. Geophysical and Geochemical Exploration, 47(6): 1400−1409 (in Chinese with English abstract).
|
[4] |
Dong W B, Zhao X M, Liu F, Zhao G. 2008. The time frequency electromagnetic method and its application in western China[J]. Applied Geophysics, 5(2): 127−135. doi: 10.1007/s11770-008-0020-8
|
[5] |
He Zhanxiang, Dong Weibin, Zhao Guo, Hou Yujian, Shen Yibin, Liu Xuejun. 2021. Time−frequency electromagnetic (TFEM) technology: Data processing[J]. Oil Geophysical Prospecting, 56(6): 1391−1399 (in Chinese with English abstract).
|
[6] |
He Zhanxiang, Hu Zuzhi, Wang Zhigang, Zhao Yunsheng, Shen Yibin, Liu Xuejun. 2020. Time−frequency electromagnetic(TFEM) technique: Step−by−step constraint inversion based on artificial fish swarm algorithm[J]. Oil Geophysical Prospecting, 55(4): 898−905 (in Chinese with English abstract).
|
[7] |
He Z X, Suo X D, Hu Z Z, Shi Y L, Shi D Y, Dong W B. 2019. Time frequency electromagnetic method for exploring favorable deep igneous rock targets: A case study from north Xinjiang[J]. Journal of Environmental and Engineering Geophysics, 24(2): 215−224. doi: 10.2113/JEEG24.2.215
|
[8] |
He Zhanxiang. Chen Zhongchang, Ren Wenjing, Pang Hengchang, Tian Zhiquan, Shen Yibin. 2020. Time−frequency electromagnetic(TFEM) method: Data acquisition system and its application[J]. Oil Geophysical Prospecting, 55(5): 1131−1138 (in Chinese with English abstract).
|
[9] |
Hou Z Y, Xu T F, Jiang Z J, Feng B. 2018. Geochemical and isotopic characteristics of geothermal water in the Gonghe Basin of the northeast Tibetan Plateau, China[C]// Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford University.
|
[10] |
Li Linguo, Li Baixiang. 2017. A discussion on the heat source mechanism and geothermal system of Gonghe−Guide basin and mountain geothermal field in Qinghai Province[J]. Geophysical and Geochemical Exploration, 41(1): 29−34 (in Chinese with English abstract).
|
[11] |
Li Y L, Jin F M, W Q. 2016. Hydrocarbon prediction with TFEM in buried hills. Jizhong Depression. Petroleum Geophysical Exploration, 51(S): 137−143.
|
[12] |
Li Yongge. 2006. Hydrogeochemical Characteristics and Origin Analysis of Geothermal Water in the Qabhcha Area, Gonghe Basin, Qinghai Province[D]. Nanchang: East China University of Technology, 1− (in Chinese with English abstract).
|
[13] |
Lin Wenjing, Wang Guiling, Zhang Shengsheng, Zhao Zhen, Xing Linxiao, GanHaonan. 2022. Hot−dry−rock heat source mechanism of Gonghe Basin on the northeast margin of Qinghai−Tibet Plateau[J]. Geothermal Energy, (3): 14−24 (in Chinese with English abstract).
|
[14] |
Mao Xiang, Guo Dianbin, Luo Lu, Wang Tinghao. 2019. The global development process of hot dry rock (enhanced geothermal system) and its geological background[J]. Geological Review, 65(6): 1462−1472 (in Chinese with English abstract).
|
[15] |
Mu Qunying, Wei Qi, Pang Hengchang, Feng Yongqiang, Zhang Qimao. 2017. System composition and functions of the TFEM network time frequency electromagnetic acquisition system[J]. Equipment for Geophysical Prospecting, 27(1): 67−70 (in Chinese with English abstract).
|
[16] |
Pang Hengchang, Gao Hua. 2009. Introduction on the high−power constant−current time−frequency electromagnetic instrument[J]. Equipment for Geophysical Prospecting, (S1): 49−53 (in Chinese with English abstract).
|
[17] |
Shi Zhuo, Zhang Hui, Duan Tao, Zhang Peng. 2018. Investigation of oil and gas reservoir in Jizhong depression based on time−frequency electromagnetic method[J]. Global Geology, 37(2): 585−594 (in Chinese with English abstract).
|
[18] |
Sun Zhixin, Li Baixiang, Wang Zhilin. 2011. Exploration of the possibility of hot dry rock occurring in the Qinghai Gonghe Basin[J]. Hydrogeology Engineering Geology, (2): 119−124 (in Chinese with English abstract).
|
[19] |
Wang Bin, Li Baixiang, Ma Xinhua. 2015. Prediction of heat storage temperature and depth in exploration and evaluation of hot dry rocks in Gonghe−Guide, Qinghai[J]. Ground Water, 37(3): 28−30 (in Chinese with English abstract).
|
[20] |
Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2007. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 38(4): 449−459 (in Chinese with English abstract).
|
[21] |
Wang Ruizhen, Wang Jinkuan, Yan Feng, Li Haidong, Han Li, Wu Peipei. Research on seismic exploration technology of hot dry rock in Gonghe Basin[J]. Unconventional Oil & Gas, 9(4): 9−15 (in Chinese with English abstract).
|
[22] |
Wang Zhigang, He Zhanxiang, Qin Jingcheng, Wang Zihan, Zhang Lin, Zhang Yongfu. 2016. Advances of TFEM technique and its application[J]. Oil Geophysical Prospecting, 51(S1): 144−151 (in Chinese with English abstract).
|
[23] |
Xing Congcong. 2017. Application of Gravity and Magnetic Data Processing in the Qiapuqia Area, Qinghai Province[D]. Changchun: Jilin University, 1− (in Chinese with English abstract).
|
[24] |
Xu Tianfu, Hu Zixu, Li Shengtao, Jiang Zhenjiao, Hou Zhaoyun, Li Fengyu, Liang Xu, Feng Bo. 2018. Enhanced geothermal system: International progress and research status of China[J]. Acta Geologica Sinica, 92(9): 1936−1947 (in Chinese with English abstract).
|
[25] |
Xu T F, Yuan Y L, Jia X F, Lei Y D, Li S T, Feng B, Hou Z Y, Jiang Z J. 2018. Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China[J]. Energy, 148(1): 196−207.
|
[26] |
Xue Jianqiu, Gan Bin, Li Baixiang, Wang Zhilin, 2013. Geological−geophysical characteristics of enhanced geothermal systems(hot dry rocks) in gonghe−guide basin [J]. Geophysical and Geochemical Exploration, 37(1): 35−41 (in Chinese with English abstract).
|
[27] |
Yan Weide. 2015. Characteristics of Gonghe Basin hot dry rock and its utilization prospects[J]. Science & Technology Review, 33(19): 54−57 (in Chinese with English abstract).
|
[28] |
Yue Gaofan, Deng Xiaofei, Xing Linxiao, Lin Wenjing, Liu Feng, Liu Yanguang, Wang Guiling, 2015. Numerical simulation of hot dry rock exploitation using enhanced geothermal systems in Gonghe Basin[J]. Science & Technology Review, 33(19): 62−67 (in Chinese with English abstract).
|
[29] |
Yun Xiaorui, Chen Xijie, Cai Zhihui, He Bizhu, Zhang Shengsheng, Lei Min, Xiang Hua. 2020. Preliminary study on magmatic emplacement and crystallization conditions and deep structure of hot dry rock in the northeastern Gonghe basin, Qinghai Province[J]. Acta Petrologica Sinica, 36(10): 3171−3191 (in Chinese with English abstract).
|
[30] |
Zhang Chao, Hu Shengbiao, Song Rongcai, Zuo Yinhui, Jiang Guangzheng, Lei Yude, Zhang Shengsheng, Wang Zhuting. 2020. Genesis of the hot dry rock geothermal resources in the Gonghe basin: constraints from the radiogenic heat production rate of rocks[J]. Chinese Journal of Geophysics, 63(7): 2697−2709 (in Chinese with English abstract).
|
[31] |
Zhang C , Jiang G Z, Shi Y Z, Wang Z T, Wang Y, Li S T, Jia X F, Hu S B. 2018. Terrestrial heat flow and crustal thermal structure of the Gonghe−Guide area, northeastern Qinghai−Tibetan plateau[J]. Geothermics, 72: 182−192.
|
[32] |
Zhang Chao, Zhang Shengsheng, Li Shengtao, Jia Xiaofeng, Jiang Guangzheng, Gao Peng, Wang Yibo, Hu Shengbiao. 2018. Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe basin, northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics, 61(11): 4545−4557 (in Chinese with English abstract).
|
[33] |
Zhang Chunhe, Liu Xuejun, He Lanfang, He Weihui, Zhou Yinming, Zhu Yongshan, Cui Zhiwei, Kuang Xihan. 2013. A study of exploration organic rich shales using Time−Frequency Electromagnetic Method (TFEM)[J]. Chinese Journal of Geophysics, (9): 3173−3183 (in Chinese with English abstract).
|
[34] |
Zhang Senqi, Fu Lei, Zhang yang, Song Jian, Wang Fuchun, Huang Jinhui, Jia Xiaofeng. Li Shengtao, Zhang Linyou, Feng Qingda. 2020. Delineation of hot dry rock exploration target area in the gonghe Basin based on high−precision aeromagnetic data[J]. Natural Gas Industry, 40(9): 156−169 (in Chinese with English abstract).
|
[35] |
Zhang Senqi, Li Xufeng, Song Jian, Wen Dongguang, Li Zhiwei, Li Dunpeng, Cheng Zhengpu, Fu Lei, Zhang Linyou, Feng Qingda, Yang Tao, Niu Zhaoxuan. 2021. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin[J]. Earth Science, 46(4): 1416−1433 (in Chinese with English abstract).
|
[36] |
Zhang Senqi, Yan Weide, Li Dunpeng, Jia Xiaofeng, Zhang Shengsheng. Li Shengtao, Fu Lei, Wu Haidong, Zeng Zhaofa, Li Zhiwei, Mu Jianqiang, Cheng Zhengpu, Hu Lisha. 2018. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Acta Geologica Sinica, 45(6): 1087−1100 (in Chinese with English abstract).
|
[37] |
Zhang Shengsheng, Zhang Lei, Tian Chengcheng, Cai Jingshou, Tang Baochun. 2019. Occurrence geological characteristics and development potential of hot dry rocks in Qinghai Gonghe basin[J]. Journal of Geomechanics, 25(4): 501−508 (in Chinese with English abstract).
|
[38] |
Zhao Zhen, Chen Hujuan, Ma Jianqing, Liang Zhixiang. 2009. Evaluation and development of geothermal resources in the Qabhcha Area, Gonghe Basin, Qinghai Province[J]. Journal of Qinghai Environment, (2): 81−84 (in Chinese with English abstract).
|
[39] |
程正璞, 雷鸣, 李戍, 连晟, 魏强. 2023. 天津东丽湖深部岩溶热储时频电磁法探测及有利区预测[J]. 华东地质, 46(2): 1−8.
|
[40] |
程正璞, 连晟, 魏强, 胡文广, 雷鸣, 李戍. 2023. 雄安新区深部雾迷山组热储层时频电磁法探测研究[J]. 物探与化探, 47(6): 1400−1409.
|
[41] |
何展翔, 陈忠昌, 任文静, 庞恒昌, 田志权, 沈义斌. 2020. 时频电磁(TFEM)勘探技术: 数据采集系统[J]. 石油地球物理勘探, 55(5): 1131−1138.
|
[42] |
何展翔, 董卫斌, 赵国, 侯宇健, 沈义斌, 刘雪军. 2021. 时频电磁(TFEM)技术: 数据处理[J]. 石油地球物理勘探, 56(6): 1391−1399.
|
[43] |
何展翔, 胡祖志, 王志刚, 赵云生, 沈义斌, 刘雪军. 2020. 时频电磁(TFEM)技术: 数据联合约束反演[J]. 石油地球物理勘探, 55(4): 898−905.
|
[44] |
李林果, 李百祥. 2017. 从青海共和—贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 41(1): 29−34.
|
[45] |
李永革. 2006. 青海省共和盆地恰卜恰地区地下热水水文地球化学特征及成因分析[D]. 南昌: 东华理工大学, 1−.
|
[46] |
蔺文静, 王贵玲, 张盛生, 赵振, 邢林啸, 甘浩男. 2022. 青藏高原东北缘共和盆地干热岩热源机制[J]. 地热能, (3): 14−24.
|
[47] |
毛翔, 国殿斌, 罗璐, 王婷灏. 2019. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评, 65(6): 1462−1472.
|
[48] |
穆群英, 魏启, 庞恒昌, 冯永强, 张启卯. 2017. TFEM组网式时频电磁采集系统组成及功能[J]. 物探装备, 27(1): 67−70. doi: 10.3969/j.issn.1671-0657.2017.01.018
|
[49] |
庞恒昌, 高华. 2009. 大功率恒流时频电磁仪[J]. 物探装备, (S1): 49−53. doi: 10.3969/j.issn.1671-0657.2009.z1.011
|
[50] |
石卓, 张辉, 段涛, 张鹏. 2018. 基于时频电磁法的冀中坳陷油气藏勘探调查[J]. 世界地质, 37(2): 585−594. doi: 10.3969/j.issn.1004-5589.2018.02.025
|
[51] |
孙知新, 李百祥, 王志林. 2011. 青海共和盆地存在干热岩可能性探讨[J]. 水文地质工程地质, (2): 119−124. doi: 10.3969/j.issn.1000-3665.2011.02.021
|
[52] |
王斌, 李百祥, 马新华. 2015. 青海共和−贵德干热岩勘查评价中热储温度与深度预测[J]. 地下水, 37(3): 28−30. doi: 10.3969/j.issn.1004-1184.2015.03.011
|
[53] |
王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2007. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449−459.
|
[54] |
王瑞贞, 王金宽, 晏丰, 李海东, 韩力, 武佩佩. 2022. 共和盆地干热岩地震勘探技术研究[J]. 非常规油气, 9(4): 9−15.
|
[55] |
王志刚, 何展翔, 覃荆城, 王子晗, 张林, 张永富. 2016. 时频电磁技术的新进展及应用效果[J]. 石油地球物理勘探, 51(S1): 144−151.
|
[56] |
邢琮琮. 2017. 重磁数据处理在青海恰卜恰地区的应用研究[D]. 长春: 吉林大学, 1−.
|
[57] |
许天福, 胡子旭, 李胜涛, 姜振蛟, 侯兆云, 李凤昱, 梁旭, 冯波. 2018. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 92(9): 1936−1947.
|
[58] |
薛建球, 甘斌, 李百祥, 王志林. 2013. 青海共和—贵德盆地增强型地热系统(干热岩)地质—地球物理特征[J]. 物探与化探, 37(1): 35−41.
|
[59] |
严维德. 2015. 共和盆地干热岩特征及利用前景[J]. 科技导报, 33(19): 54−57.
|
[60] |
贠晓瑞, 陈希节, 蔡志慧, 何碧竹, 张盛生, 雷敏, 向华. 2020. 青海共和盆地东北部干热岩岩浆侵位结晶条件及深部结构初探[J]. 岩石学报, 36(10): 3171−3191.
|
[61] |
岳高凡, 邓晓飞, 邢林啸, 蔺文静, 刘峰, 刘彦广, 王贵玲. 2015. 共和盆地增强型地热系统开采过程数值模拟[J]. 科技导报, 33(19): 62−67.
|
[62] |
张超, 胡圣标, 宋荣彩, 左银辉, 姜光政, 雷玉德, 张盛生, 王朱亭. 2020. 共和盆地干热岩地热资源的成因机制: 来自岩石放射性生热率的约束[J]. 地球物理学报, 63(7): 2697−2709. doi: 10.6038/cjg2020N0381
|
[63] |
张超, 张盛生, 李胜涛, 贾小丰, 姜光政, 高堋, 王一波, 胡圣标. 2018. 共和盆地恰卜恰地热区现今地热特征[J]. 地球物理学报, 61(11): 4545−4557. doi: 10.6038/cjg2018L0747
|
[64] |
张春贺, 刘雪军, 何兰芳, 何委徽, 周印明, 朱永山, 崔志伟, 邝锡汉. 2013. 基于时频电磁法的富有机质页岩层系勘探研究[J]. 地球物理学报, (9): 3173−3183. doi: 10.6038/cjg20130930
|
[65] |
张森琦, 付雷, 张杨, 宋健, 王富春, 黄金辉, 贾小丰, 李胜涛, 张林友, 冯庆达. 2020. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定[J]. 天然气工业, 40(9): 156−169. doi: 10.3787/j.issn.1000-0976.2020.09.019
|
[66] |
张森琦, 李旭峰, 宋健, 文冬光, 李志伟, 黎敦朋, 程正璞, 付雷, 张林友, 冯庆达, 杨涛, 牛兆轩. 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析[J]. 地球科学, 46(4): 1416−1436.
|
[67] |
张森琦, 严维德, 黎敦朋, 贾小丰, 张盛生, 李胜涛, 付雷, 吴海东, 曾昭发, 李志伟, 穆建强, 程正璞, 胡丽莎. 2018. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 45(6): 1087−1102. doi: 10.12029/gc20180601
|
[68] |
张盛生, 张磊, 田成成, 蔡敬寿, 唐保春. 2019. 青海共和盆地干热岩赋存地质特征及开发潜力[J]. 地质力学学报, 25(4): 501−508. doi: 10.12090/j.issn.1006-6616.2019.25.04.048
|
[69] |
赵振, 陈惠娟, 马建青, 梁志祥. 2009. 青海省共和盆地恰卜恰地区地热资源评价与开发利用[J]. 青海环境, (2): 81−84. doi: 10.3969/j.issn.1007-2454.2009.02.010
|
[1] | HAN Bo, XIA Yubo, MA Zhen, WANG Xiaodan, GUO Xu, LIN Liangjun, PEI Yandong. Division of engineering geological strata, building of 3D geological structure and its application in urban planning and construction in Xiong'an New Area[J]. GEOLOGY IN CHINA, 2023, 50(6): 1903-1918. DOI: 10.12029/gc20210305004 |
[2] | YAO Yahui, JIA Xiaofeng, LI Shengtao, ZHANG Jianwei, SONG Jian, YANG Tao, YUE Dongdong. Heat flow determination of Archean strata under the karst thermal reservoir of D01 well in Xiong'an New Area[J]. GEOLOGY IN CHINA, 2022, 49(6): 1723-1731. DOI: 10.12029/gc20220602 |
[3] | XING Yifei, WANG Huiqun, LI Jie, TENG Yanguo, ZHANG Baojian, LI Yanyan, WANG Guiling. Chemical field of geothermal water in Xiong'an New Area and analysis of influencing factors[J]. GEOLOGY IN CHINA, 2022, 49(6): 1711-1722. DOI: 10.12029/gc20220601 |
[4] | YIN Dechao, QI Xiaofan, WANG Yushan, XU Rongzhen, AN Yonghui, WANG Xuqing, GENG Hongjie. Geochemical characteristics and ecological risk assessment of heavy metals in surface sediments of Baiyangdian Lake, Xiong'an New Area[J]. GEOLOGY IN CHINA, 2022, 49(3): 979-992. DOI: 10.2029/gc20220321 |
[5] | WANG Changyu, ZHANG Surong, LIU Jihong, XING Yi, LI Mingze, LIU Qingxue. Pollution level and risk assessment of heavy metals in a metal smelting area of Xiong'an New District[J]. GEOLOGY IN CHINA, 2021, 48(6): 1697-1709. DOI: 10.12029/gc20210603 |
[6] | WANG Kai, ZHANG Jie, BAI Dawei, WU Xingang, YUE Hangyu, ZHANG Baowei, WANG Xiaojiang, ZHANG Kai. Geothermal-geological model of Xiong'an New Area: Evidence from geophysics[J]. GEOLOGY IN CHINA, 2021, 48(5): 1453-1468. DOI: 10.12029/gc20210511 |
[7] | LI Haitao, FENG Wei, WANG Kailin, ZHAO Kai, LI Gang, ZHANG Yuan, LI Muzi, SUN Lu, CHEN Yichao, YOU Bing. Groundwater resources in Xiong'an New Area and its exploitation potential[J]. GEOLOGY IN CHINA, 2021, 48(4): 1112-1126. DOI: 10.12029/gc20210409 |
[8] | MA Zhen, XIA Yubo, LI Haitao, HAN Bo, YU Xuezhong, ZHOU Yalong, WANG Yushan, GUO Xu, LI Hongqiang, PEI Yandong. Analysis of natural resources and environment eco-geological conditions in the Xiong'an New Area[J]. GEOLOGY IN CHINA, 2021, 48(3): 677-696. DOI: 10.12029/gc20210301 |
[9] | MA Zhen, XIA Yubo, WANG Xiaodan, HAN Bo, Gao Yihang. Integration of Engineering Geological Investigation Data and Construction of a 3D Geological Structure Model in the Xiong’an New Area[J]. GEOLOGY IN CHINA, 2019, 46(S2): 123-129. DOI: 10.12029/gc2019Z213 |
[10] | ZHANG Yuan, ZHAO Kai, LI Haitao, YOU Bing, WANG Yongbo, WANG Shixiong. Dataset of the 1: 50 000 Hydrogeological Map of the Plain Area of the Baiyangdian Lake Basin, Xiongan New Area[J]. GEOLOGY IN CHINA, 2018, 45(S2): 1-29. DOI: 10.12029/gc2018Z201 |